切换至 "中华医学电子期刊资源库"

中华损伤与修复杂志(电子版) ›› 2020, Vol. 15 ›› Issue (04) : 268 -274. doi: 10.3877/cma.j.issn.1673-9450.2020.04.007

所属专题: 文献

专家述评

巨型先天性黑素细胞痣的研究现状与治疗策略
贾赤宇1,(), 程夏霖1   
  1. 1. 361102 厦门大学附属翔安医院烧伤整形与创面修复科
  • 收稿日期:2020-06-02 出版日期:2020-08-01
  • 通信作者: 贾赤宇
  • 基金资助:
    福建省自然科学基金(2019J01011)

Research status and therapeutic strategy of giant congenital melanocytic nevus

Chiyu Jia1,(), Xialin Cheng1   

  1. 1. Department of Burns & Plastic and Wound Healing, Xiang′an Hospital of Xiamen University, Xiamen 361102, China
  • Received:2020-06-02 Published:2020-08-01
  • Corresponding author: Chiyu Jia
  • About author:
    Corresponding author: Jia Chiyu, Email:
引用本文:

贾赤宇, 程夏霖. 巨型先天性黑素细胞痣的研究现状与治疗策略[J/OL]. 中华损伤与修复杂志(电子版), 2020, 15(04): 268-274.

Chiyu Jia, Xialin Cheng. Research status and therapeutic strategy of giant congenital melanocytic nevus[J/OL]. Chinese Journal of Injury Repair and Wound Healing(Electronic Edition), 2020, 15(04): 268-274.

巨型先天性黑素细胞痣(GCMN)是指出生时即存在的皮肤黑色素沉着性病变,其特征主要是病变面积大、黑素细胞浸润皮肤深处或皮下组织,具有独特的组织学表现。患者大多呈散发性,但也有家族性病例的报道,其发病机制目前尚不确切。由于严重影响外观,并可能发展为恶性黑色素瘤或神经皮肤黑变病(NCM),常对患者及其家属造成严重的心理负担。GCMN的治疗方式包括手术治疗和非手术治疗,不同方式均有其适应证和优缺点。目前对GCMN的预防及治疗效果尚不尽如人意,有研究初步表明药物治疗有望降低其并发症的发生率、改善患者的预后,可做为传统治疗的辅助疗法。

Giant congenital melanocytic nevus (GCMN) is defined as a melanotic lesion of the skin that is present at birth and is mainly characterized by a large area of the lesion, infiltration of melanocytes deep in the skin or subcutaneous tissue, with unique histological findings. Most of the patients are sporadic, but familial cases have also been reported, its pathogenesis is still unclear. It often places a serious psychological burden on patients and their families because it severely affects the appearance and may develop into malignant melanoma or neurocutaneous melanosis(NCM). The treatment methods of GCMN include surgical treatment and non-surgical treatment. Different methods have their indications and advantages and disadvantages. The prevention and treatment effect of GCMN are not satisfactory at present. Some studies have preliminarily shown that drug treatment is expected to reduce the incidence of complications and improve the recovery of patients, which can be used as an adjuvant therapy of traditional treatment methods.

[1]
Mort RL, Jackson IJ, Patton EE. The melanocyte lineage in development and disease[J]. Development, 2015, 142(4): 620-632.
[2]
Cotton CH, Goldberg GN. Evolution of congenital melanocytic nevi toward benignity: A case series[J]. Pediatr Dermatol, 2019, 36(2): 227-231.
[3]
Charbel C, Fontaine RH, Malouf GG, et al. NRAS mutation is the sole recurrent somatic mutation in large congenital melanocytic nevi[J]. J Invest Dermatol, 2014, 134(4): 1067-1074.
[4]
Martins da Silva V, Martinez-Barrios E, Tell-Martí G, et al. Genetic Abnormalities in Large to Giant Congenital Nevi: Beyond NRAS Mutations[J]. J Invest Dermatol, 2019, 139(4): 900-908.
[5]
Salgado CM, Basu D, Nikiforova M, et al. BRAF mutations are also associated with neurocutaneous melanocytosis and large/giant congenital melanocytic nevi[J]. Pediatr Dev Pathol, 2015, 18(1): 1-9.
[6]
Samatar AA, Poulikakos PI. Targeting RAS-ERK signalling in cancer: promises and challenges[J]. Nat Rev Drug Discov, 2014, 13(12): 928-942.
[7]
Stark MS. Large-Giant Congenital Melanocytic Nevi: Moving Beyond NRAS Mutations[J]. J Invest Dermatol, 2019, 139(4): 756-759.
[8]
Pawlikowski JS, McBryan T, van Tuyn J, et al. Wnt signaling potentiates nevogenesis[J]. Proc Natl Acad Sci U S A, 2013, 110(40): 16009-16014.
[9]
Takeo M, Lee W, Rabbani P, et al. EdnrB Governs Regenerative Response of Melanocyte Stem Cells by Crosstalk with Wnt Signaling[J]. Cell Rep, 2016, 15(6): 1291-1302.
[10]
Chitsazan A, Ferguson B, Villani R, et al. Keratinocyte Sonic Hedgehog Upregulation Drives the Development of Giant Congenital Nevi via Paracrine Endothelin-1 Secretion[J]. J Invest Dermatol, 2018, 138(4): 893-902.
[11]
Chitsazan A, Ferguson B, Ram R, et al. A mutation in the Cdon gene potentiates congenital nevus development mediated by NRAS(Q61K)[J]. Pigment Cell Melanoma Res, 2016, 29(4): 459-464.
[12]
Kinsler VA, Anderson G, Latimer B, et al. Immunohistochemical and ultrastructural features of congenital melanocytic naevus cells support a stem-cell phenotype[J]. Br J Dermatol, 2013, 169(2): 374-383.
[13]
Cramer SF, Fesyuk A. On the development of neurocutaneous units-implications for the histogenesis of congenital, acquired, and dysplastic nevi[J]. Am J Dermatopathol, 2012, 34(1): 60-81.
[14]
Charbel C, Fontaine RH, Kadlub N, et al. Clonogenic cell subpopulations maintain congenital melanocytic nevi[J]. J Invest Dermatol, 2015, 135(3): 824-833.
[15]
Ruiz-Maldonado R. Measuring congenital melanocytic nevi[J]. Pediatr Dermatol, 2004, 21(2): 178-179.
[16]
Krengel S, Scope A, Dusza SW, et al. New recommendations for the categorization of cutaneous features of congenital melanocytic nevi[J]. J Am Acad Dermatol, 2013, 68(3): 441-451.
[17]
Martins da Silva VP, Marghoob A, Pigem R, et al. Patterns of distribution of giant congenital melanocytic nevi (GCMN): The 6B rule[J]. J Am Acad Dermatol, 2017, 76(4): 689-694.
[18]
Tannous ZS, Mihm MC Jr, Sober A, et al. Congenital melanocytic nevi: clinical and histopathologic features, risk of melanoma, and clinical management[J]. J Am Acad Dermatol, 2005, 52(2): 197-203.
[19]
Simons EA, Huang JT, Schmidt B. Congenital melanocytic nevi in young children: Histopathologic features and clinical outcomes[J]. J Am Acad Dermatol, 2017, 76(5): 941-947.
[20]
Vergier B, Laharanne E, Prochazkova-Carlotti M, et al. Proliferative Nodules vs Melanoma Arising in Giant Congenital Melanocytic Nevi During Childhood[J]. JAMA Dermatol, 2016, 152(10): 1147-1151.
[21]
Yélamos O, Arva NC, Obregon R, et al. A comparative study of proliferative nodules and lethal melanomas in congenital nevi from children[J]. Am J Surg Pathol, 2015, 39(3): 405-415.
[22]
Viana ACL, Goulart EMA, Gontijo B, et al. A prospective study of patients with large congenital melanocytic nevi and the risk of melanoma[J]. An Bras Dermatol, 2017, 92(2): 200-205.
[23]
Vourc′h-Jourdain M, Martin L, Barbarot S, et al. Large congenital melanocytic nevi: therapeutic management and melanoma risk: a systematic review[J]. J Am Acad Dermatol, 2013, 68(3): 493-498, e1-e14.
[24]
Hale EK, Stein J, Ben-Porat L, et al. Association of melanoma and neurocutaneous melanocytosis with large congenital melanocytic naevi--results from the NYU-LCMN registry[J]. Br J Dermatol, 2005, 152(3): 512-517.
[25]
Kinsler VA, O′Hare P, Bulstrode N, et al. Melanoma in congenital melanocytic naevi[J]. Br J Dermatol, 2017, 176(5): 1131-1143.
[26]
Marghoob AA, Agero AL, Benvenuto-Andrade C, et al. Large congenital melanocytic nevi, risk of cutaneous melanoma, and prophylactic surgery[J]. J Am Acad Dermatol, 2006, 54(5): 868-870; discussion 871-873.
[27]
Jakchairoongruang K, Khakoo Y, Beckwith M, et al. New insights into neurocutaneous melanosis[J]. Pediatr Radiol, 2018, 48(12): 1786-1796.
[28]
Chen Lei, Zhai Liqin, Al-Kzayer Lika′a Fasih Y et al. Neurocutaneous Melanosis in Association With Large Congenital Melanocytic Nevi in Children: A Report of 2 Cases With Clinical, Radiological, and Pathogenetic Evaluation[J]. Front Neurol, 2019, 10: 79.
[29]
Bekiesińska-Figatowska M, Sawicka E, Zak K, et al. Age related changes in brain MR appearance in the course of neurocutaneous melanosis[J]. Eur J Radiol, 2016, 85(8): 1427-1431.
[30]
张辉. 不同术式治疗48例巨痣临床应用研究[D]. 乌鲁木齐:新疆医科大学,2019.
[31]
Mir A, Agim NG, Kane AA, et al. Giant Congenital Melanocytic Nevus Treated With Trametinib[J]. Pediatrics, 2019, 143(3): e20182469.
[32]
Pawlikowski JS, Brock C, Chen SC, et al. Acute Inhibition of MEK Suppresses Congenital Melanocytic Nevus Syndrome in a Murine Model Driven by Activated NRAS and Wnt Signaling[J]. J Invest Dermatol, 2015, 135(8): 2093-2101.
[33]
Küsters-Vandevelde HV, Willemsen AE, Groenen PJ, et al. Experimental treatment of NRAS-mutated neurocutaneous melanocytosis with MEK162, a MEK-inhibitor[J]. Acta Neuropathol Commun, 2014, 2: 41.
[34]
Basu D, Salgado CM, Bauer BS, et al. Nevospheres from neurocutaneous melanocytosis cells show reduced viability when treated with specific inhibitors of NRAS signaling pathway[J]. Neuro Oncol, 2016, 18(4): 528-537.
[35]
Rouillé T, Aractingi S, Kadlub N, et al. Local Inhibition of MEK/Akt Prevents Cellular Growth in Human Congenital Melanocytic Nevi[J]. J Invest Dermatol, 2019, 139(9): 2004-2015, e13.
[36]
Polat Ekinci A, Kiliç S, Baykal C. Pigment Loss in Patients with Large Congenital Melanocytic Nevi: Various Clinical Presentations Documented in a Large Series[J]. Pediatr Dermatol, 2016, 33(3): 307-310.
[1] 王亚红, 蔡胜, 葛志通, 杨筱, 李建初. 颅骨骨膜窦的超声表现一例[J/OL]. 中华医学超声杂志(电子版), 2024, 21(11): 1089-1091.
[2] 李刘庆, 陈小翔, 吕成余. 全腹腔镜与腹腔镜辅助远端胃癌根治术治疗进展期胃癌的近中期随访比较[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 23-26.
[3] 刘世君, 马杰, 师鲁静. 胃癌完整系膜切除术+标准D2根治术治疗进展期胃癌的近中期随访研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 27-30.
[4] 赵丽霞, 王春霞, 陈一锋, 胡东平, 张维胜, 王涛, 张洪来. 内脏型肥胖对腹腔镜直肠癌根治术后早期并发症的影响[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 35-39.
[5] 李华志, 曹广, 刘殿刚, 张雅静. 不同入路下行肝切除术治疗原发性肝细胞癌的临床对比[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 52-55.
[6] 常小伟, 蔡瑜, 赵志勇, 张伟. 高强度聚焦超声消融术联合肝动脉化疗栓塞术治疗原发性肝细胞癌的效果及安全性分析[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 56-59.
[7] 徐逸男. 不同术式治疗梗阻性左半结直肠癌的疗效观察[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 72-75.
[8] 王露, 周丽君. 全腹腔镜下远端胃大部切除不同吻合方式对胃癌患者胃功能恢复、并发症发生率的影响[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 92-95.
[9] 刘柏隆, 周祥福. 女性尿失禁吊带手术并发症处理的经验分享[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(01): 127-127.
[10] 中华医学会器官移植学分会. 肝移植术后缺血性胆道病变诊断与治疗中国实践指南[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 739-748.
[11] 刘琦, 王守凯, 王帅, 苏雨晴, 马壮, 陈海军, 司丕蕾. 乳腺癌肿瘤内微生物组的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(09): 841-845.
[12] 李浩, 陈棋帅, 费发珠, 张宁伟, 李元东, 王硕晨, 任宾. 慢性肝病肝纤维化无创诊断的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(09): 863-867.
[13] 谭瑞义. 小细胞骨肉瘤诊断及治疗研究现状与进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 781-784.
[14] 王子阳, 王宏宾, 刘晓旌. 血清标志物对甲胎蛋白阴性肝细胞癌诊断的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 677-681.
[15] 陈慧, 邹祖鹏, 周田田, 张艺丹, 张海萍. 皮肤镜对头皮红斑性皮肤病辅助鉴别诊断的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 692-698.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?