切换至 "中华医学电子期刊资源库"

中华损伤与修复杂志(电子版) ›› 2020, Vol. 15 ›› Issue (04) : 268 -274. doi: 10.3877/cma.j.issn.1673-9450.2020.04.007

所属专题: 文献

专家述评

巨型先天性黑素细胞痣的研究现状与治疗策略
贾赤宇1,(), 程夏霖1   
  1. 1. 361102 厦门大学附属翔安医院烧伤整形与创面修复科
  • 收稿日期:2020-06-02 出版日期:2020-08-01
  • 通信作者: 贾赤宇
  • 基金资助:
    福建省自然科学基金(2019J01011)

Research status and therapeutic strategy of giant congenital melanocytic nevus

Chiyu Jia1,(), Xialin Cheng1   

  1. 1. Department of Burns & Plastic and Wound Healing, Xiang′an Hospital of Xiamen University, Xiamen 361102, China
  • Received:2020-06-02 Published:2020-08-01
  • Corresponding author: Chiyu Jia
  • About author:
    Corresponding author: Jia Chiyu, Email:
引用本文:

贾赤宇, 程夏霖. 巨型先天性黑素细胞痣的研究现状与治疗策略[J]. 中华损伤与修复杂志(电子版), 2020, 15(04): 268-274.

Chiyu Jia, Xialin Cheng. Research status and therapeutic strategy of giant congenital melanocytic nevus[J]. Chinese Journal of Injury Repair and Wound Healing(Electronic Edition), 2020, 15(04): 268-274.

巨型先天性黑素细胞痣(GCMN)是指出生时即存在的皮肤黑色素沉着性病变,其特征主要是病变面积大、黑素细胞浸润皮肤深处或皮下组织,具有独特的组织学表现。患者大多呈散发性,但也有家族性病例的报道,其发病机制目前尚不确切。由于严重影响外观,并可能发展为恶性黑色素瘤或神经皮肤黑变病(NCM),常对患者及其家属造成严重的心理负担。GCMN的治疗方式包括手术治疗和非手术治疗,不同方式均有其适应证和优缺点。目前对GCMN的预防及治疗效果尚不尽如人意,有研究初步表明药物治疗有望降低其并发症的发生率、改善患者的预后,可做为传统治疗的辅助疗法。

Giant congenital melanocytic nevus (GCMN) is defined as a melanotic lesion of the skin that is present at birth and is mainly characterized by a large area of the lesion, infiltration of melanocytes deep in the skin or subcutaneous tissue, with unique histological findings. Most of the patients are sporadic, but familial cases have also been reported, its pathogenesis is still unclear. It often places a serious psychological burden on patients and their families because it severely affects the appearance and may develop into malignant melanoma or neurocutaneous melanosis(NCM). The treatment methods of GCMN include surgical treatment and non-surgical treatment. Different methods have their indications and advantages and disadvantages. The prevention and treatment effect of GCMN are not satisfactory at present. Some studies have preliminarily shown that drug treatment is expected to reduce the incidence of complications and improve the recovery of patients, which can be used as an adjuvant therapy of traditional treatment methods.

[1]
Mort RL, Jackson IJ, Patton EE. The melanocyte lineage in development and disease[J]. Development, 2015, 142(4): 620-632.
[2]
Cotton CH, Goldberg GN. Evolution of congenital melanocytic nevi toward benignity: A case series[J]. Pediatr Dermatol, 2019, 36(2): 227-231.
[3]
Charbel C, Fontaine RH, Malouf GG, et al. NRAS mutation is the sole recurrent somatic mutation in large congenital melanocytic nevi[J]. J Invest Dermatol, 2014, 134(4): 1067-1074.
[4]
Martins da Silva V, Martinez-Barrios E, Tell-Martí G, et al. Genetic Abnormalities in Large to Giant Congenital Nevi: Beyond NRAS Mutations[J]. J Invest Dermatol, 2019, 139(4): 900-908.
[5]
Salgado CM, Basu D, Nikiforova M, et al. BRAF mutations are also associated with neurocutaneous melanocytosis and large/giant congenital melanocytic nevi[J]. Pediatr Dev Pathol, 2015, 18(1): 1-9.
[6]
Samatar AA, Poulikakos PI. Targeting RAS-ERK signalling in cancer: promises and challenges[J]. Nat Rev Drug Discov, 2014, 13(12): 928-942.
[7]
Stark MS. Large-Giant Congenital Melanocytic Nevi: Moving Beyond NRAS Mutations[J]. J Invest Dermatol, 2019, 139(4): 756-759.
[8]
Pawlikowski JS, McBryan T, van Tuyn J, et al. Wnt signaling potentiates nevogenesis[J]. Proc Natl Acad Sci U S A, 2013, 110(40): 16009-16014.
[9]
Takeo M, Lee W, Rabbani P, et al. EdnrB Governs Regenerative Response of Melanocyte Stem Cells by Crosstalk with Wnt Signaling[J]. Cell Rep, 2016, 15(6): 1291-1302.
[10]
Chitsazan A, Ferguson B, Villani R, et al. Keratinocyte Sonic Hedgehog Upregulation Drives the Development of Giant Congenital Nevi via Paracrine Endothelin-1 Secretion[J]. J Invest Dermatol, 2018, 138(4): 893-902.
[11]
Chitsazan A, Ferguson B, Ram R, et al. A mutation in the Cdon gene potentiates congenital nevus development mediated by NRAS(Q61K)[J]. Pigment Cell Melanoma Res, 2016, 29(4): 459-464.
[12]
Kinsler VA, Anderson G, Latimer B, et al. Immunohistochemical and ultrastructural features of congenital melanocytic naevus cells support a stem-cell phenotype[J]. Br J Dermatol, 2013, 169(2): 374-383.
[13]
Cramer SF, Fesyuk A. On the development of neurocutaneous units-implications for the histogenesis of congenital, acquired, and dysplastic nevi[J]. Am J Dermatopathol, 2012, 34(1): 60-81.
[14]
Charbel C, Fontaine RH, Kadlub N, et al. Clonogenic cell subpopulations maintain congenital melanocytic nevi[J]. J Invest Dermatol, 2015, 135(3): 824-833.
[15]
Ruiz-Maldonado R. Measuring congenital melanocytic nevi[J]. Pediatr Dermatol, 2004, 21(2): 178-179.
[16]
Krengel S, Scope A, Dusza SW, et al. New recommendations for the categorization of cutaneous features of congenital melanocytic nevi[J]. J Am Acad Dermatol, 2013, 68(3): 441-451.
[17]
Martins da Silva VP, Marghoob A, Pigem R, et al. Patterns of distribution of giant congenital melanocytic nevi (GCMN): The 6B rule[J]. J Am Acad Dermatol, 2017, 76(4): 689-694.
[18]
Tannous ZS, Mihm MC Jr, Sober A, et al. Congenital melanocytic nevi: clinical and histopathologic features, risk of melanoma, and clinical management[J]. J Am Acad Dermatol, 2005, 52(2): 197-203.
[19]
Simons EA, Huang JT, Schmidt B. Congenital melanocytic nevi in young children: Histopathologic features and clinical outcomes[J]. J Am Acad Dermatol, 2017, 76(5): 941-947.
[20]
Vergier B, Laharanne E, Prochazkova-Carlotti M, et al. Proliferative Nodules vs Melanoma Arising in Giant Congenital Melanocytic Nevi During Childhood[J]. JAMA Dermatol, 2016, 152(10): 1147-1151.
[21]
Yélamos O, Arva NC, Obregon R, et al. A comparative study of proliferative nodules and lethal melanomas in congenital nevi from children[J]. Am J Surg Pathol, 2015, 39(3): 405-415.
[22]
Viana ACL, Goulart EMA, Gontijo B, et al. A prospective study of patients with large congenital melanocytic nevi and the risk of melanoma[J]. An Bras Dermatol, 2017, 92(2): 200-205.
[23]
Vourc′h-Jourdain M, Martin L, Barbarot S, et al. Large congenital melanocytic nevi: therapeutic management and melanoma risk: a systematic review[J]. J Am Acad Dermatol, 2013, 68(3): 493-498, e1-e14.
[24]
Hale EK, Stein J, Ben-Porat L, et al. Association of melanoma and neurocutaneous melanocytosis with large congenital melanocytic naevi--results from the NYU-LCMN registry[J]. Br J Dermatol, 2005, 152(3): 512-517.
[25]
Kinsler VA, O′Hare P, Bulstrode N, et al. Melanoma in congenital melanocytic naevi[J]. Br J Dermatol, 2017, 176(5): 1131-1143.
[26]
Marghoob AA, Agero AL, Benvenuto-Andrade C, et al. Large congenital melanocytic nevi, risk of cutaneous melanoma, and prophylactic surgery[J]. J Am Acad Dermatol, 2006, 54(5): 868-870; discussion 871-873.
[27]
Jakchairoongruang K, Khakoo Y, Beckwith M, et al. New insights into neurocutaneous melanosis[J]. Pediatr Radiol, 2018, 48(12): 1786-1796.
[28]
Chen Lei, Zhai Liqin, Al-Kzayer Lika′a Fasih Y et al. Neurocutaneous Melanosis in Association With Large Congenital Melanocytic Nevi in Children: A Report of 2 Cases With Clinical, Radiological, and Pathogenetic Evaluation[J]. Front Neurol, 2019, 10: 79.
[29]
Bekiesińska-Figatowska M, Sawicka E, Zak K, et al. Age related changes in brain MR appearance in the course of neurocutaneous melanosis[J]. Eur J Radiol, 2016, 85(8): 1427-1431.
[30]
张辉. 不同术式治疗48例巨痣临床应用研究[D]. 乌鲁木齐:新疆医科大学,2019.
[31]
Mir A, Agim NG, Kane AA, et al. Giant Congenital Melanocytic Nevus Treated With Trametinib[J]. Pediatrics, 2019, 143(3): e20182469.
[32]
Pawlikowski JS, Brock C, Chen SC, et al. Acute Inhibition of MEK Suppresses Congenital Melanocytic Nevus Syndrome in a Murine Model Driven by Activated NRAS and Wnt Signaling[J]. J Invest Dermatol, 2015, 135(8): 2093-2101.
[33]
Küsters-Vandevelde HV, Willemsen AE, Groenen PJ, et al. Experimental treatment of NRAS-mutated neurocutaneous melanocytosis with MEK162, a MEK-inhibitor[J]. Acta Neuropathol Commun, 2014, 2: 41.
[34]
Basu D, Salgado CM, Bauer BS, et al. Nevospheres from neurocutaneous melanocytosis cells show reduced viability when treated with specific inhibitors of NRAS signaling pathway[J]. Neuro Oncol, 2016, 18(4): 528-537.
[35]
Rouillé T, Aractingi S, Kadlub N, et al. Local Inhibition of MEK/Akt Prevents Cellular Growth in Human Congenital Melanocytic Nevi[J]. J Invest Dermatol, 2019, 139(9): 2004-2015, e13.
[36]
Polat Ekinci A, Kiliç S, Baykal C. Pigment Loss in Patients with Large Congenital Melanocytic Nevi: Various Clinical Presentations Documented in a Large Series[J]. Pediatr Dermatol, 2016, 33(3): 307-310.
[1] 杨水华, 何桂丹, 覃桂灿, 梁蒙凤, 罗艳合, 李雪芹, 唐娟松. 胎儿孤立性完全型肺静脉异位引流的超声心动图特征及高分辨率血流联合时间-空间相关成像的应用[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1061-1067.
[2] 蒋佳纯, 王晓冰, 陈培荣, 许世豪. 血清学指标联合常规超声及超声造影评分诊断原发性干燥综合征的临床价值[J]. 中华医学超声杂志(电子版), 2023, 20(06): 622-630.
[3] 易晨, 张亚东, 董茜, 唐海阔, 刘志国. 应用骨盖技术拔除下颌低位骨性埋伏阻生第三磨牙的疗效观察[J]. 中华口腔医学研究杂志(电子版), 2023, 17(06): 424-429.
[4] 李建美, 邓静娟, 杨倩. 两种术式联合治疗肝癌合并肝硬化门静脉高压的安全性及随访评价[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 41-44.
[5] 逄世江, 黄艳艳, 朱冠烈. 改良π形吻合在腹腔镜全胃切除消化道重建中的安全性和有效性研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 66-69.
[6] 杨体飞, 杨传虎, 陆振如. 改良无充气经腋窝入路全腔镜下甲状腺手术对喉返神经功能的影响研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 74-77.
[7] 彭旭, 邵永孚, 李铎, 邹瑞, 邢贞明. 结肠肝曲癌的诊断和外科治疗[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 108-110.
[8] 马伟强, 马斌林, 吴中语, 张莹. microRNA在三阴性乳腺癌进展中发挥的作用[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 111-114.
[9] 陈垚, 徐伯群, 高志慧. 改良式中间上入路根治术治疗甲状腺癌的有效性安全性研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 619-622.
[10] 代格格, 杨丽, 胡媛媛, 周文婷. 手术室综合干预在老年腹股沟疝患者中的应用效果[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 759-763.
[11] 吴凤芸, 滕鑫, 刘连娟. 高帧频超声造影与增强磁共振对不同直径原发性高分化肝细胞癌的诊断价值[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 404-408.
[12] 孙欣欣, 刘军, 陈超伍, 孙超. 超声内镜引导细针穿刺抽吸术在胰腺占位性病变中的应用[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 418-421.
[13] 袁媛, 赵良平, 刘智慧, 张丽萍, 谭丽梅, 閤梦琴. 子宫内膜癌组织中miR-25-3p、PTEN的表达及与病理参数的关系[J]. 中华临床医师杂志(电子版), 2023, 17(9): 1016-1020.
[14] 李田, 徐洪, 刘和亮. 尘肺病的相关研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(08): 900-905.
[15] 周婷, 孙培培, 张二明, 安欣华, 向平超. 北京市石景山区40岁及以上居民慢性阻塞性肺疾病诊断现状调查[J]. 中华临床医师杂志(电子版), 2023, 17(07): 790-797.
阅读次数
全文


摘要