切换至 "中华医学电子期刊资源库"

中华损伤与修复杂志(电子版) ›› 2020, Vol. 15 ›› Issue (04) : 322 -325. doi: 10.3877/cma.j.issn.1673-9450.2020.04.018

所属专题: 文献

综述

皮肤创面无瘢痕愈合的研究进展
张之迅1, 李海航2, 朱世辉2,()   
  1. 1. 046011 长治,解放军92187部队医院
    2. 200433 上海,海军军医大学第一附属医院烧伤外科,全军烧伤研究所
  • 收稿日期:2020-06-09 出版日期:2020-08-01
  • 通信作者: 朱世辉
  • 基金资助:
    国家重点研发计划资助项目(2019YFA0110600,2019YFA0110603); 军队后勤项目(AWS18C001)

Advance research on scar-free healing of skin wounds

Zhixun Zhang1, Haihang Li2, Shihui Zhu2,()   

  1. 1. PLA 92187 Force, Changzhi 046011, China
    2. Department of Burn Surgery, Burn Institute of PLA, First Affiliated Hospital, Naval Military Medical University, Shanghai 200433, China
  • Received:2020-06-09 Published:2020-08-01
  • Corresponding author: Shihui Zhu
  • About author:
    Corresponding author: Zhu Shihui, Email:
引用本文:

张之迅, 李海航, 朱世辉. 皮肤创面无瘢痕愈合的研究进展[J]. 中华损伤与修复杂志(电子版), 2020, 15(04): 322-325.

Zhixun Zhang, Haihang Li, Shihui Zhu. Advance research on scar-free healing of skin wounds[J]. Chinese Journal of Injury Repair and Wound Healing(Electronic Edition), 2020, 15(04): 322-325.

皮肤作为表层的防御器官,大部分动物的皮肤受损后均以瘢痕修复的形式完成创面愈合。与此相反,部分物种具有再生皮肤而不形成瘢痕组织的独特能力,甚至存在能够再生皮肤附件的哺乳动物,其主要机制与细胞因子、免疫反应和细胞外基质(ECM)重塑有关。本文分析了具有无瘢痕创面愈合再生能力的物种的最新研究进展,并对无瘢痕创面愈合特征进行综述。

The skin acts as a defensive organ of the surface layer, and most animals have their wounds healed in the form of scar repair. In contrast, some species have the unique ability to regenerate skin without forming scar tissue, and even some mammals that are capable of regenerating skin attachments. The main mechanisms are related to cytokines, immune response and extracellular matrix (ECM) remodeling. This paper reviews the latest research progress of species with the ability to regenerate scar-free wound healing and reviews the characteristics of scar-free wound healing.

[1]
金剑,马兵,夏照帆. 病理性瘢痕形成相关信号通路的研究进展[J]. 中华烧伤杂志,2017, 33(3): 152-155.
[2]
吕国忠. 生物活性材料与瘢痕防治[J/CD]. 中华损伤与修复杂志(电子版), 2020, 15(2): 160.
[3]
Mascré G, Dekoninck S, Drogat B, et al. Distinct contribution of stem and progenitor cells to epidermal maintenance[J]. Nature, 2012, 489(7415): 257-262.
[4]
Sorenson R, Clark Brelje T. Atlas of Human Histology. A guide to microscopic structure of cells, tissues and organs[M]. United States: Lea & Febiger, Philadelphi, 2014: 181-192.
[5]
Tadeu AM, Horsley V. Notch signaling represses p63 expression in the developing surface ectoderm[J]. Developmen, 2013, 140(18): 3777-3786.
[6]
Okuyama R, Ogawa E, Nagoshi H, et al. p53 homologue, p51/p63, maintains the immaturity of keratinocyte stem cells by inhibiting Notch1 activity[J]. Oncogene, 2007, 26(31): 4478-4488.
[7]
Montes GS, Junqueira LC. Biology of collagen[J]. Rev Can Biol Exp, 1982, 41(2): 143-156.
[8]
Uitto J, Booth BA, Polak KL. Collagen biosynthesis by human skin fibroblasts. Ⅱ. Isolation and further characterization of type I and type Ⅲ procollagens synthesized in culture[J]. Biochim Biophys Acta, 1980, 624(2): 545-561.
[9]
Van Exan RJ, Hardy MH. The differentiation of the dermis in the laboratory mouse[J]. Am J Anat, 1984, 169(2): 149-164.
[10]
Reinke JM, Sorg H. Wound repair and regeneration[J]. Eur Surg Res, 2012, 49(1): 35-43.
[11]
Erickson JR, Echeverri K. Learning from regeneration research organisms: The circuitous road to scar free wound healing[J]. Dev Biol, 2018, 433(2): 144-154.
[12]
Takeo M, Lee W, Ito M. Wound healing and skin regeneration[J]. Cold Spring Harb Perspect Med, 2015, 5(1): a023267.
[13]
Yates CC, Hebda P, Wells A. Skin wound healing and scarring: fetal wounds and regenerative restitution[J]. Birth Defects Res C Embryo Today, 2012, 96(4): 325-333.
[14]
Almine JF, Wise SG, Weiss AS. Elastin signaling in wound repair[J]. Birth Defects Res C Embryo Today, 2012, 96(3): 248-257.
[15]
Penn JW, Grobbelaar AO, Rolfe KJ. The role of the TGF-β family in wound healing, burns and scarring: a review[J]. Int J Burns Trauma, 2012, 2(1): 18-28.
[16]
Stuart K, Paderi J, Snyder PW, et al. Collagen-binding peptidoglycans inhibit MMP mediated collagen degradation and reduce dermal scarring[J]. PLoS One, 2011, 6(7): e22139.
[17]
Bellemare J, Roberge CJ, Bergeron D, et al. Epidermis promotes dermal fibrosis: role in the pathogenesis of hypertrophic scars[J]. J Pathol, 2005, 206(1): 1-8.
[18]
LeBert DC, Squirrell JM, Rindy J, et al. Matrix metalloproteinase 9 modulates collagen matrices and wound repair[J]. Development, 2015, 142(12): 2136-2146.
[19]
Martin P, Nunan R. Cellular and molecular mechanisms of repair in acute and chronic wound healing[J]. Br J Dermatol, 2015, 173(2): 370-378.
[20]
Montes GS, Junqueira LC. Biology of collagen[J]. Rev Can Biol Exp, 1982, 41(2): 143-156.
[21]
van Zuijlen PP, Ruurda JJ, van Veen HA, et al. Collagen morphology in human skin and scar tissue: no adaptations in response to mechanical loading at joints[J]. Burns, 2003, 29(5): 423-431.
[22]
Kishi K, Okabe K, Shimizu R, et al. Fetal skin possesses the ability to regenerate completely: complete regeneration of skin[J]. Keio J Med, 2012, 61(4): 101-108.
[23]
Syed F, Ahmadi E, Iqbal SA, et al. Fibroblasts from the growing margin of keloid scars produce higher levels of collagen I and Ⅲ compared with intralesional and extralesional sites: clinical implications for lesional site-directed therapy[J]. Br J Dermatol, 2011, 164(1): 83-96.
[24]
Penn JW, Grobbelaar AO, Rolfe KJ. The role of the TGF-β family in wound healing, burns and scarring: a review[J]. Int J Burns Trauma, 2012, 2(1): 18-28.
[25]
Walraven M1, Gouverneur M, Middelkoop E, et al. Altered TGF-β signaling in fetal fibroblasts: what is known about the underlying mechanisms?[J]. Wound Repair Regen, 2014, 22(1): 3-13.
[26]
Helmo FR, Machado JR, Guimarães CS, et al. Fetal wound healing biomarkers[J]. Dis Markers, 2013, 35(6): 939-944.
[27]
Leavitt T, Hu MS, Marshall CD, et al. Scarless wound healing: finding the right cells and signals[J]. Cell Tissue Res, 2016, 365(3): 483-493.
[28]
Rakers S, Gebert M, Uppalapati S, et al. ′Fish matters′:the relevance of fish skin biology to investigative dermatology[J]. Exp Dermatol, 2010, 19(4): 313-324.
[29]
Richardson R, Hammerschmidt M. The role of Rho kinase (Rock) in re-epithelialization of adult zebrafish skin wounds[J]. Small GTPases, 2018, 9(3): 230-236.
[30]
Bertolotti E, Malagoli D, Franchini A. Skin wound healing in different aged Xenopus laevis[J]. J Morphol, 2013, 274(8): 956-964.
[31]
Otsuka-Yamaguchi R, Kawasumi-Kita A, Kudo N, et al. Cells from subcutaneous tissues contribute to scarless skin regeneration in Xenopus laevis froglets[J]. Dev Dyn, 2017, 246(8): 585-597.
[32]
Godwin JW, Rosenthal N. Scar-free wound healing and regeneration in amphibians: immunological influences on regenerative success[J]. Differentiation, 2014, 87(1/2): 66-75.
[33]
Li C, Zhao H, Liu Z, et al. Deer antler--a novel model for studying organ regeneration in mammals[J]. Int J Biochem Cell Biol, 2014, 56: 111-122.
[34]
Peter Bloom, Martina Jager. The injury and subsequent healing of a serious propeller strike to a wild bottle nose dolphin (Tursiops truncatus) resident in cold waters off the Northumberland coast of England[J]. Aquatic Mammals, 1994, 20(2): 59-64.
[35]
Seifert AW, Kiama SG, Seifert MG, et al. Skin shedding and tissue regeneration in African spiny mice (Acomys)[J]. Nature, 2012, 489(7417): 561-565.
[36]
Gawriluk TR, Simkin J, Thompson KL, et al. Comparative analysis of ear-hole closure identifies epimorphic regeneration as a discrete trait in mammals[J]. Nat Commun, 2016, 7: 11164.
[37]
Lévesque M, Villiard E, Roy S. Skin wound healing in axolotls: a scarless process[J]. J Exp Zool B Mol Dev Evol, 2010, 314(8): 684-697.
[38]
Rezvani O, Shabbak E, Aslani A, et al. A randomized, double-blind, placebo-controlled trial to determine the effects of topical insulin on wound healing[J]. Ostomy Wound Manage, 2009, 55(8): 22-28.
[39]
Razzell W, Evans IR, Martin P, et al. Calcium flashes orchestrate the wound inflammatory response through DUOX activation and hydrogen peroxide release[J]. Curr Biol, 2013, 23(5): 424-429.
[40]
Lisse TS, King BL, Rieger S. Comparative transcriptomic profiling of hydrogen peroxide signaling networks in zebrafish and human keratinocytes: Implications toward conservation, migration and wound healing[J]. Sci Rep, 2016, 6: 20328.
[41]
Cotter JD, Storfer A, Page RB, et al. Transcriptional response of mexican axolotls to ambystoma tigrinum virus (ATV) infection[J]. BMC Genomics, 2008, 9: 493.
[42]
Seifert AW, Monaghan JR, Voss SR, et al. Skin regeneration in adult axolotls: a blueprint for scar-free healing in vertebrates[J]. PLoS One, 2012, 7(4): e32875.
[43]
Brant JO, Lopez MC, Baker HV, et al. A Comparative Analysis of Gene Expression Profiles during Skin Regeneration in Mus and Acomys[J]. PLoS One, 2015, 10(11): e0142931.
[44]
Govindan J, Iovine MK. Dynamic remodeling of the extra cellular matrix during zebrafish fin regeneration[J]. Gene Expr Patterns, 2015, 19(1/2): 21-29.
[45]
陈郑礼,夏照帆. 酸性成纤维细胞生长因子修复组织损伤的研究进展[J/CD]. 中华损伤与修复杂志(电子版), 2018, 13(1): 61-63.
[46]
刘彤,郑兴锋,李海航,等. 重组人Ⅲ型胶原蛋白水凝胶对猪全层皮肤缺损创面修复的影响[J/CD]. 中华损伤与修复杂志(电子版), 2019, 14(2): 97-102.
[1] 武壮壮, 张晓娟, 史泽洪, 史瑶, 原韶玲. 超声联合乳腺X线摄影及PR、Her-2预测高级别与中低级别乳腺导管原位癌的价值[J]. 中华医学超声杂志(电子版), 2023, 20(06): 631-635.
[2] 伍秋苑, 陈佩贤, 邓裕华, 何添成, 周丹. 肠道微生物在乳腺癌中的研究进展[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 362-365.
[3] 周婉丽, 钱铮, 李喆. 槐耳在乳腺癌免疫治疗中的研究进展[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 369-371.
[4] 朴广昊, 李屹洲, 刘瑞, 赵建民, 王凌峰. 皮肤撕脱伤撕脱皮瓣活力早期评估与修复的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 528-532.
[5] 韩李念, 王君. 放射性皮肤损伤治疗的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 533-537.
[6] 王得晨, 杨康, 杨自杰, 归明彬, 屈莲平, 张小凤, 高峰. 结直肠癌微卫星稳定状态和程序性死亡、吲哚胺2,3-双加氧酶关系的研究进展[J]. 中华普通外科学文献(电子版), 2023, 17(06): 462-465.
[7] 钱龙, 陆晓峰, 王行舟, 杜峻峰, 沈晓菲, 管文贤. 神经系统调控胃肠道肿瘤免疫应答研究进展[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 86-89.
[8] 魏小勇. 原发性肝癌转化治疗焦点问题探讨[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 602-607.
[9] 吴晨瑞, 廖锐, 贺强, 潘龙, 黄平, 曹洪祥, 赵益, 王永琛, 黄俊杰, 孙睿锐. MDT模式下肝动脉灌注化疗联合免疫靶向治疗肝细胞癌多处转移一例[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 713-716.
[10] 关旭, 王锡山. 基于外科与免疫视角思考结直肠癌区域淋巴结处理的功与过[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 448-452.
[11] 胡宝茹, 尚乃舰, 高迪. 中晚期肝细胞癌的DCE-MRI及DWI表现与免疫治疗预后的相关性分析[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 399-403.
[12] 梁文龙, 曹杰, 黄庆, 林泳, 黄红丽, 杨平, 李冠炜, 胡鹤. 信迪利单抗联合瑞戈非尼治疗晚期结直肠癌的疗效与安全性分析[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 409-413.
[13] 岳瑞雪, 孔令欣, 郝鑫, 杨进强, 韩猛, 崔国忠, 王建军, 张志生, 孔凡庭, 张维, 何文博, 李现桥, 周新平, 徐东宏, 胡崇珠. 乳腺癌HER2蛋白表达水平预测新辅助治疗疗效的真实世界研究[J]. 中华临床医师杂志(电子版), 2023, 17(07): 765-770.
[14] 符梅沙, 周玉华, 李慧, 薛春颜. 淋巴细胞免疫治疗对复发性流产患者外周血T淋巴细胞亚群分布与PD1/PD-L1表达的影响及意义[J]. 中华临床医师杂志(电子版), 2023, 17(06): 726-730.
[15] 王丁然, 迟洪滨. 自身免疫甲状腺炎对子宫内膜异位症患者胚胎移植结局的影响[J]. 中华临床医师杂志(电子版), 2023, 17(06): 682-688.
阅读次数
全文


摘要