切换至 "中华医学电子期刊资源库"

中华损伤与修复杂志(电子版) ›› 2020, Vol. 15 ›› Issue (04) : 322 -325. doi: 10.3877/cma.j.issn.1673-9450.2020.04.018

所属专题: 文献

综述

皮肤创面无瘢痕愈合的研究进展
张之迅1, 李海航2, 朱世辉2,()   
  1. 1. 046011 长治,解放军92187部队医院
    2. 200433 上海,海军军医大学第一附属医院烧伤外科,全军烧伤研究所
  • 收稿日期:2020-06-09 出版日期:2020-08-01
  • 通信作者: 朱世辉
  • 基金资助:
    国家重点研发计划资助项目(2019YFA0110600,2019YFA0110603); 军队后勤项目(AWS18C001)

Advance research on scar-free healing of skin wounds

Zhixun Zhang1, Haihang Li2, Shihui Zhu2,()   

  1. 1. PLA 92187 Force, Changzhi 046011, China
    2. Department of Burn Surgery, Burn Institute of PLA, First Affiliated Hospital, Naval Military Medical University, Shanghai 200433, China
  • Received:2020-06-09 Published:2020-08-01
  • Corresponding author: Shihui Zhu
  • About author:
    Corresponding author: Zhu Shihui, Email:
引用本文:

张之迅, 李海航, 朱世辉. 皮肤创面无瘢痕愈合的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2020, 15(04): 322-325.

Zhixun Zhang, Haihang Li, Shihui Zhu. Advance research on scar-free healing of skin wounds[J/OL]. Chinese Journal of Injury Repair and Wound Healing(Electronic Edition), 2020, 15(04): 322-325.

皮肤作为表层的防御器官,大部分动物的皮肤受损后均以瘢痕修复的形式完成创面愈合。与此相反,部分物种具有再生皮肤而不形成瘢痕组织的独特能力,甚至存在能够再生皮肤附件的哺乳动物,其主要机制与细胞因子、免疫反应和细胞外基质(ECM)重塑有关。本文分析了具有无瘢痕创面愈合再生能力的物种的最新研究进展,并对无瘢痕创面愈合特征进行综述。

The skin acts as a defensive organ of the surface layer, and most animals have their wounds healed in the form of scar repair. In contrast, some species have the unique ability to regenerate skin without forming scar tissue, and even some mammals that are capable of regenerating skin attachments. The main mechanisms are related to cytokines, immune response and extracellular matrix (ECM) remodeling. This paper reviews the latest research progress of species with the ability to regenerate scar-free wound healing and reviews the characteristics of scar-free wound healing.

[1]
金剑,马兵,夏照帆. 病理性瘢痕形成相关信号通路的研究进展[J]. 中华烧伤杂志,2017, 33(3): 152-155.
[2]
吕国忠. 生物活性材料与瘢痕防治[J/CD]. 中华损伤与修复杂志(电子版), 2020, 15(2): 160.
[3]
Mascré G, Dekoninck S, Drogat B, et al. Distinct contribution of stem and progenitor cells to epidermal maintenance[J]. Nature, 2012, 489(7415): 257-262.
[4]
Sorenson R, Clark Brelje T. Atlas of Human Histology. A guide to microscopic structure of cells, tissues and organs[M]. United States: Lea & Febiger, Philadelphi, 2014: 181-192.
[5]
Tadeu AM, Horsley V. Notch signaling represses p63 expression in the developing surface ectoderm[J]. Developmen, 2013, 140(18): 3777-3786.
[6]
Okuyama R, Ogawa E, Nagoshi H, et al. p53 homologue, p51/p63, maintains the immaturity of keratinocyte stem cells by inhibiting Notch1 activity[J]. Oncogene, 2007, 26(31): 4478-4488.
[7]
Montes GS, Junqueira LC. Biology of collagen[J]. Rev Can Biol Exp, 1982, 41(2): 143-156.
[8]
Uitto J, Booth BA, Polak KL. Collagen biosynthesis by human skin fibroblasts. Ⅱ. Isolation and further characterization of type I and type Ⅲ procollagens synthesized in culture[J]. Biochim Biophys Acta, 1980, 624(2): 545-561.
[9]
Van Exan RJ, Hardy MH. The differentiation of the dermis in the laboratory mouse[J]. Am J Anat, 1984, 169(2): 149-164.
[10]
Reinke JM, Sorg H. Wound repair and regeneration[J]. Eur Surg Res, 2012, 49(1): 35-43.
[11]
Erickson JR, Echeverri K. Learning from regeneration research organisms: The circuitous road to scar free wound healing[J]. Dev Biol, 2018, 433(2): 144-154.
[12]
Takeo M, Lee W, Ito M. Wound healing and skin regeneration[J]. Cold Spring Harb Perspect Med, 2015, 5(1): a023267.
[13]
Yates CC, Hebda P, Wells A. Skin wound healing and scarring: fetal wounds and regenerative restitution[J]. Birth Defects Res C Embryo Today, 2012, 96(4): 325-333.
[14]
Almine JF, Wise SG, Weiss AS. Elastin signaling in wound repair[J]. Birth Defects Res C Embryo Today, 2012, 96(3): 248-257.
[15]
Penn JW, Grobbelaar AO, Rolfe KJ. The role of the TGF-β family in wound healing, burns and scarring: a review[J]. Int J Burns Trauma, 2012, 2(1): 18-28.
[16]
Stuart K, Paderi J, Snyder PW, et al. Collagen-binding peptidoglycans inhibit MMP mediated collagen degradation and reduce dermal scarring[J]. PLoS One, 2011, 6(7): e22139.
[17]
Bellemare J, Roberge CJ, Bergeron D, et al. Epidermis promotes dermal fibrosis: role in the pathogenesis of hypertrophic scars[J]. J Pathol, 2005, 206(1): 1-8.
[18]
LeBert DC, Squirrell JM, Rindy J, et al. Matrix metalloproteinase 9 modulates collagen matrices and wound repair[J]. Development, 2015, 142(12): 2136-2146.
[19]
Martin P, Nunan R. Cellular and molecular mechanisms of repair in acute and chronic wound healing[J]. Br J Dermatol, 2015, 173(2): 370-378.
[20]
Montes GS, Junqueira LC. Biology of collagen[J]. Rev Can Biol Exp, 1982, 41(2): 143-156.
[21]
van Zuijlen PP, Ruurda JJ, van Veen HA, et al. Collagen morphology in human skin and scar tissue: no adaptations in response to mechanical loading at joints[J]. Burns, 2003, 29(5): 423-431.
[22]
Kishi K, Okabe K, Shimizu R, et al. Fetal skin possesses the ability to regenerate completely: complete regeneration of skin[J]. Keio J Med, 2012, 61(4): 101-108.
[23]
Syed F, Ahmadi E, Iqbal SA, et al. Fibroblasts from the growing margin of keloid scars produce higher levels of collagen I and Ⅲ compared with intralesional and extralesional sites: clinical implications for lesional site-directed therapy[J]. Br J Dermatol, 2011, 164(1): 83-96.
[24]
Penn JW, Grobbelaar AO, Rolfe KJ. The role of the TGF-β family in wound healing, burns and scarring: a review[J]. Int J Burns Trauma, 2012, 2(1): 18-28.
[25]
Walraven M1, Gouverneur M, Middelkoop E, et al. Altered TGF-β signaling in fetal fibroblasts: what is known about the underlying mechanisms?[J]. Wound Repair Regen, 2014, 22(1): 3-13.
[26]
Helmo FR, Machado JR, Guimarães CS, et al. Fetal wound healing biomarkers[J]. Dis Markers, 2013, 35(6): 939-944.
[27]
Leavitt T, Hu MS, Marshall CD, et al. Scarless wound healing: finding the right cells and signals[J]. Cell Tissue Res, 2016, 365(3): 483-493.
[28]
Rakers S, Gebert M, Uppalapati S, et al. ′Fish matters′:the relevance of fish skin biology to investigative dermatology[J]. Exp Dermatol, 2010, 19(4): 313-324.
[29]
Richardson R, Hammerschmidt M. The role of Rho kinase (Rock) in re-epithelialization of adult zebrafish skin wounds[J]. Small GTPases, 2018, 9(3): 230-236.
[30]
Bertolotti E, Malagoli D, Franchini A. Skin wound healing in different aged Xenopus laevis[J]. J Morphol, 2013, 274(8): 956-964.
[31]
Otsuka-Yamaguchi R, Kawasumi-Kita A, Kudo N, et al. Cells from subcutaneous tissues contribute to scarless skin regeneration in Xenopus laevis froglets[J]. Dev Dyn, 2017, 246(8): 585-597.
[32]
Godwin JW, Rosenthal N. Scar-free wound healing and regeneration in amphibians: immunological influences on regenerative success[J]. Differentiation, 2014, 87(1/2): 66-75.
[33]
Li C, Zhao H, Liu Z, et al. Deer antler--a novel model for studying organ regeneration in mammals[J]. Int J Biochem Cell Biol, 2014, 56: 111-122.
[34]
Peter Bloom, Martina Jager. The injury and subsequent healing of a serious propeller strike to a wild bottle nose dolphin (Tursiops truncatus) resident in cold waters off the Northumberland coast of England[J]. Aquatic Mammals, 1994, 20(2): 59-64.
[35]
Seifert AW, Kiama SG, Seifert MG, et al. Skin shedding and tissue regeneration in African spiny mice (Acomys)[J]. Nature, 2012, 489(7417): 561-565.
[36]
Gawriluk TR, Simkin J, Thompson KL, et al. Comparative analysis of ear-hole closure identifies epimorphic regeneration as a discrete trait in mammals[J]. Nat Commun, 2016, 7: 11164.
[37]
Lévesque M, Villiard E, Roy S. Skin wound healing in axolotls: a scarless process[J]. J Exp Zool B Mol Dev Evol, 2010, 314(8): 684-697.
[38]
Rezvani O, Shabbak E, Aslani A, et al. A randomized, double-blind, placebo-controlled trial to determine the effects of topical insulin on wound healing[J]. Ostomy Wound Manage, 2009, 55(8): 22-28.
[39]
Razzell W, Evans IR, Martin P, et al. Calcium flashes orchestrate the wound inflammatory response through DUOX activation and hydrogen peroxide release[J]. Curr Biol, 2013, 23(5): 424-429.
[40]
Lisse TS, King BL, Rieger S. Comparative transcriptomic profiling of hydrogen peroxide signaling networks in zebrafish and human keratinocytes: Implications toward conservation, migration and wound healing[J]. Sci Rep, 2016, 6: 20328.
[41]
Cotter JD, Storfer A, Page RB, et al. Transcriptional response of mexican axolotls to ambystoma tigrinum virus (ATV) infection[J]. BMC Genomics, 2008, 9: 493.
[42]
Seifert AW, Monaghan JR, Voss SR, et al. Skin regeneration in adult axolotls: a blueprint for scar-free healing in vertebrates[J]. PLoS One, 2012, 7(4): e32875.
[43]
Brant JO, Lopez MC, Baker HV, et al. A Comparative Analysis of Gene Expression Profiles during Skin Regeneration in Mus and Acomys[J]. PLoS One, 2015, 10(11): e0142931.
[44]
Govindan J, Iovine MK. Dynamic remodeling of the extra cellular matrix during zebrafish fin regeneration[J]. Gene Expr Patterns, 2015, 19(1/2): 21-29.
[45]
陈郑礼,夏照帆. 酸性成纤维细胞生长因子修复组织损伤的研究进展[J/CD]. 中华损伤与修复杂志(电子版), 2018, 13(1): 61-63.
[46]
刘彤,郑兴锋,李海航,等. 重组人Ⅲ型胶原蛋白水凝胶对猪全层皮肤缺损创面修复的影响[J/CD]. 中华损伤与修复杂志(电子版), 2019, 14(2): 97-102.
[1] 戴睿, 张亮, 陈浏阳, 张永博, 吴丕根, 孙华, 杨盛, 孟博. 肠道菌群与椎间盘退行性变相关性的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 546-549.
[2] 宋勤琴, 李双汝, 李林, 杜鹃, 刘继松. 间充质干细胞源性外泌体在改善病理性瘢痕中作用的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 550-553.
[3] 张洁, 罗小霞, 余鸿. 系统性免疫炎症指数对急性胰腺炎患者并发器官功能损伤的预测价值[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 68-71.
[4] 梁孟杰, 朱欢欢, 王行舟, 江航, 艾世超, 孙锋, 宋鹏, 王萌, 刘颂, 夏雪峰, 杜峻峰, 傅双, 陆晓峰, 沈晓菲, 管文贤. 联合免疫治疗的胃癌转化治疗患者预后及术后并发症分析[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 619-623.
[5] 张志兆, 王睿, 郜苹苹, 王成方, 王成, 齐晓伟. DNMT3B与乳腺癌预后的关系及其生物学机制[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 624-629.
[6] 赖全友, 高远, 汪建林, 屈士斌, 魏丹, 彭伟. 三维重建技术结合腹腔镜精准肝切除术对肝癌患者术后CD4+、CD8+及免疫球蛋白水平的影响[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 651-654.
[7] 傅红兴, 王植楷, 谢贵林, 蔡娟娟, 杨威, 严盛. 间充质干细胞促进胰岛移植效果的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 351-360.
[8] 中华医学会器官移植学分会. 肝移植术后缺血性胆道病变诊断与治疗中国实践指南[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 739-748.
[9] 陈伟杰, 何小东. 胆囊癌免疫靶向治疗进展[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 763-768.
[10] 魏志鸿, 刘建勇, 吴小雅, 杨芳, 吕立志, 江艺, 蔡秋程. 肝移植术后急性移植物抗宿主病的诊治(附四例报告)[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 846-851.
[11] 张龙, 孙善柯, 徐伟, 李文柱, 李俊达, 池涌泉, 何广胜, 成峰, 王学浩, 饶建华. 腹腔镜脾切除治疗血液系统疾病的临床疗效分析[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 870-875.
[12] 董佳, 王坤, 张莉. 预后营养指数结合免疫球蛋白、血糖及甲胎蛋白对HBV 相关慢加急性肝衰竭患者治疗后预后不良的预测价值[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 555-559.
[13] 谭瑞义. 小细胞骨肉瘤诊断及治疗研究现状与进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 781-784.
[14] 陈慧, 邹祖鹏, 周田田, 张艺丹, 张海萍. 皮肤镜对头皮红斑性皮肤病辅助鉴别诊断的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 692-698.
[15] 王昌前, 林婷婷, 宁雨露, 王颖杰, 谭文勇. 光免疫治疗在肿瘤领域的临床应用新进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(06): 575-583.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?