切换至 "中华医学电子期刊资源库"

中华损伤与修复杂志(电子版) ›› 2024, Vol. 19 ›› Issue (06) : 550 -553. doi: 10.3877/cma.j.issn.1673-9450.2024.06.018

综述

间充质干细胞源性外泌体在改善病理性瘢痕中作用的研究进展
宋勤琴1, 李双汝1, 李林1, 杜鹃1, 刘继松1,()   
  1. 1.233000 蚌埠医科大学附属蚌埠市第三人民医院烧伤整形科
  • 收稿日期:2024-04-29 出版日期:2024-12-01
  • 通信作者: 刘继松
  • 基金资助:
    安徽省高等学校科学研究项目(2024AH051206)蚌埠市卫生健康委科研项目(BBWK2323A101)蚌埠市科技创新指导类项目(BBKC2023a118)

Research progress on the role of stem cell-derived exosomes in improving pathological cicatrix

Qinqin Song1, Shuangru Li1, Lin Li1, Juan Du1, Jisong Liu1,()   

  1. 1.Department of Burns and Plastic Surgery,the Third People's Hospital of Bengbu Affiliated to Bengbu Medical University,Bengbu 233000,China
  • Received:2024-04-29 Published:2024-12-01
  • Corresponding author: Jisong Liu
引用本文:

宋勤琴, 李双汝, 李林, 杜鹃, 刘继松. 间充质干细胞源性外泌体在改善病理性瘢痕中作用的研究进展[J]. 中华损伤与修复杂志(电子版), 2024, 19(06): 550-553.

Qinqin Song, Shuangru Li, Lin Li, Juan Du, Jisong Liu. Research progress on the role of stem cell-derived exosomes in improving pathological cicatrix[J]. Chinese Journal of Injury Repair and Wound Healing(Electronic Edition), 2024, 19(06): 550-553.

病理性瘢痕是整形外科的一种常见疾病,通常分为增生性瘢痕和瘢痕疙瘩,其形成可能导致皮肤组织的增生和纤维化。 病理性瘢痕的形成是一个极其复杂的过程,主要是由于细胞外基质(ECM)在伤口愈合过程中过度沉积。 病理性瘢痕由于外观畸形、瘙痒、疼痛和运动障碍而导致患者生活质量和心理健康受损,但目前还没有明确消除瘢痕的治疗方法。 研究发现间充质干细胞来源的外泌体在病理性瘢痕形成和发展中具有潜在影响。 本文就间充质干细胞源性外泌体在抗炎、促进血管生成、调节基质重塑等方面改善病理性瘢痕的作用机制,以及当前面临的挑战和未来的发展作一综述。

Pathological cicatrix is common in plastic surgery and is usually categorized as hypertrophic scarring and keloids,the formation of which may result in hyperplasia and fibrosis of skin tissue.However, the formation of pathological scarring is an extremely complex process, mainly due to the excessive deposition of extracellular matrix (ECM) during wound healing.Pathological cicatrix leads to impaired quality of life and psychological well-being due to cosmetic deformities, itching, pain, and dyskinesia, but there are no definitive treatments to eliminate cicatrix.Stem cell-derived exosomes have potential influence as novel extracellular vesicles in scar formation and development.This paper is a review of the research progress of stem cell-derived exosomes in pathological cicatrix, including the mechanism of action in antiinflammatory effects, promotion of angiogenesis, and regulation of matrix remodeling for improving pathological cicatrix, as well as the current challenges and future directions.

[1]
Lv K, Xia Z.Chinese consensus panel on the prevention and treatment of scars.Chinese expert consensus on clinical prevention and treatment of scar[J].Burns Trauma,2018,6:27.
[2]
Ogawa R,Dohi T,Tosa M,et al.The latest strategy for keloid and hypertrophic scar prevention and treatment: the nippon medical school (nms) protocol[J].J Nippon Med Sch,2021,88(1):2-9.
[3]
沈江涌,贺茜,唐玉婷,等.铁死亡诱导剂RAS 合成致死分子3抑制病理性瘢痕成纤维细胞的纤维化[J].中国组织工程研究,2024,28(8): 1168-1173.
[4]
Chung BY, Kim HB, Jung MJ, et al.Post-burn pruritus[J].Int J Mol Sci, 2020,21(11):3880.
[5]
Ogawa R.Keloid and hypertrophic scars are the result of chronic inflammation in the reticular dermis[J].Int J Mol Sci,2017,18(3):606.
[6]
Wang ZC,Zhao WY,Cao Y,et al.The roles of inflammation in keloid and hypertrophic scars[J].Front Immunol,2020,11:603187.
[7]
Rippa AL, Kalabusheva EP, Vorotelyak EA.Regeneration of dermis: scarring and cells involved[J].2019,8(6):607.
[8]
Hinz B.The role of myofibroblasts in wound healing[J].Curr Res Transl Med,2016,64(4):171-177.
[9]
Zhu Z,Hou Q,Li M,et al.Molecular mechanism of myofibroblast formation and strategies for clinical drugs treatments in hypertrophic scars[J].J Cell Physiol,2020,235(5): 4109-4119.
[10]
Keskin ES,Keskin ER,Öztürk MB,et al.The effect of MMP-1 on wound healing and scar formation[J].Aesthetic Plast Surg,2021, 45(6): 2973-2979.
[11]
史春田,毛姝然,彭译萱,等.他莫昔芬抑制TGF-β/Smad 通路减轻人皮肤成纤维细胞病理性增生[J].基础医学与临床,2022,42(9): 1367-1373.
[12]
Kalluri R,Lebleu VS.The biology, function, and biomedical applications of exosomes[J].2020,367(6478):EAAU6977.
[13]
Pegtel DM,Gould SJ.Exosomes[J].Annu Rev Biochem,2019,88:487-514.
[14]
Chen CY,Rao SS, Ren L,et al.Exosomal DMBT1 from human urine-derived stem cells facilitates diabetic wound repair by promoting angiogenesis[J].Theranostics,2018,8(6):1607-1623.
[15]
Hong P, Yang H, Wu Y, et al.The functions and clinical application potential of exosomes derived from adipose mesenchymal stem cells: a comprehensive review[J].Stem Cell Res Ther, 2019, 10(1):242.
[16]
Zhou C,Zhang B,Yang Y,et al.Stem cell-derived exosomes:emerging therapeutic opportunities for wound healing[J].Stem Cell Res Ther,2023,14(1):107.
[17]
Li J,Huang Y,Sun H,et al.Mechanism of mesenchymal stem cells and exosomes in the treatment of age-related diseases[J].Front Immunol, 2023,14:1181308.
[18]
Kao CY, Papoutsakis ET.Extracellular vesicles: exosomes,microparticles, their parts, and their targets to enable their biomanufacturing and clinical applications [ J].Curr Opin Biotechnol, 2019,60:89-98.
[19]
Yuan R,Dai X,Li Y,et al.Exosomes from miR-29a-modified adipose-derived mesenchymal stem cells reduce excessive scar formation by inhibiting TGF-β2/Smad3 signaling[J].Molecular Medicine Reports,2021,24(5):758.
[20]
Baron JM,Glatz M,Proksch E.Optimal support of wound healing:new insights[J].Dermatology,2020,236(6):593-600.
[21]
Moretti L,Stalfort J,Barker TH,et al.The interplay of fibroblasts,the extracellular matrix, and inflammation in scar formation[J].J Biol Chem,2022,298(2):101530.
[22]
Hesketh M,Sahin KB,West ZE,et al.Macrophage phenotypes regulate scar formation and chronic wound healing[J].Int J Mol Sci, 2017, 18(7):1545.
[23]
Das A, Sinha M, Datta S, et al.Monocyte and macrophage plasticity in tissue repair and regeneration [J].American J Pathology,2015,185(10):2596-2606.
[24]
Guo J, Qiu X, Zhang L,et al.Smurf1 regulates macrophage proliferation, apoptosis and migration via JNK and p38 MAPK signaling pathways[J].Mol Immunol,2018, 97:20-26.
[25]
Heo JS, Choi Y, Kim HO.Adipose-derived mesenchymal stem cells promote m2 macrophage phenotype through exosomes[J].Stem Cells Int,2019, 2019:7921760.
[26]
He X,Dong Z,Cao Y,et al.MSC-derived exosome promotes m2 polarization and enhances cutaneous wound healing[J].Stem Cells Int, 2019, 2019:7132708.
[27]
Wik JA,Skålhegg BS.T cell metabolism in infection[J].Front Immunol, 2022, 13:840610.
[28]
Blazquez R, Sanchez-Margallo FM, De La Rosa O, et al.Immunomodulatory potential of human adipose mesenchymal stem cells derived exosomes on in vitro stimulated T cells[J].Front Immunol,2014,5:556.
[29]
Khare D,Or R,Resnick I,et al.Mesenchymal stromal cell-derived exosomes affect mrna expression and function of B-lymphocytes[J].Front Immunol,2018,9:3053.
[30]
Horiuchi Y.Importance of mast cell activation control for preventing scar formation in severe acne[J].J Clin Aesthet Dermatol,2023, 16(3):30-31.
[31]
Cho KA,Cha JE,Kim J,et al.Mesenchymal stem cell-derived exosomes attenuate tlr7-mediated mast cell activation[J].Tissue Eng Regen Med,2022,19(1):117-129.
[32]
Cho BS,Kim JO,Ha DH,et al.Exosomes derived from human adipose tissue-derived mesenchymal stem cells alleviate atopic dermatitis[J].Stem Cell Res Ther,2018,9(1):187.
[33]
Born LJ, Chang KH, Shoureshi P, et al.HOTAIR-loaded mesenchymal stem/stromal cell extracellular vesicles enhance angiogenesis and wound healing[J].Adv Healthc Mater,2022,11(5):E2002070.
[34]
Dudley AC,Griffioen AW.Pathological angiogenesis:mechanisms and therapeutic strategies[J].Angiogenesis,2023,26(3):313-347.
[35]
Ackermann M, Pabst AM, Houdek JP, et al.Priming with proangiogenic growth factors and endothelial progenitor cells improves revascularization in linear diabetic wounds[J].Int J Mol Med,2014, 33(4):833-839.
[36]
Zhang J,Chen C,Hu B,et al.Exosomes derived from human endothelial progenitor cells accelerate cutaneous wound healing by promoting angiogenesis through ERK1/2 signaling[J].Int J Biol Sci,2016, 12(12):1472-1487.
[37]
Kane NM,Thrasher AJ,Angelini GD, et al.Concise review:microRNAs as modulators of stem cells and angiogenesis[J].Stem Cells,2014, 32(5):1074-1082.
[38]
Liang X, Zhang L, Wang S, et al.Exosomes secreted by mesenchymal stem cells promote endothelial cell angiogenesis by transferring miR-125a[J].J Cell Sci,2016,129(11):2182-2189.
[39]
Wilgus TA.Vascular endothelial growth factor and cutaneous scarring[J].Adv Wound Care(New Rochelle),2019,8(12):671-678.
[40]
White MJV,Briquez PS,White DAV,et al.VEGF-A, PDGF-BB and HB-EGF engineered for promiscuous super affinity to the extracellular matrix improve wound healing in a model of type 1 diabetes[J].Npj Regen Med, 2021,6(1):76.
[41]
Hubbi ME, Semenza GL.Regulation of cell proliferation by hypoxia-inducible factors[J].Am J Physiol Cell Physiol,2015,309(12):C775-C782.
[42]
Gonzalez-King H, García NA, Ontoria-Oviedo I, et al.Hypoxia inducible factor-1α potentiates jagged 1-mediated angiogenesis by mesenchymal stem cell-derived exosomes[J].Stem Cells,2017,35(7):1747-1759.
[43]
Zhang M,Zhang S.T cells in fibrosis and fibrotic diseases[J].Frontiers Immunol,2020,11:1142.
[44]
Wang L,Hu L,Zhou X,et al.Exosomes secreted by human adipose mesenchymal stem cells promote scarless cutaneous repair by regulating extracellular matrix remodelling[J].Scientific Rep,2017, 7(1):13321.
[45]
Choi EW,Seo M,Woo EY,et al.Exosomes from human adiposederived stem cells promote proliferation and migration of skin fibroblasts[J].Experimental Dermatology,2018,27(10):1170-1172.
[46]
Li Y,Zhang J,Shi J,et al.Exosomes derived from human adipose mesenchymal stem cells attenuate hypertrophic scar fibrosis by miR-192-5p/IL-17RA/Smad axis [J].Stem Cell Res Ther,2021,12(1):221.
[47]
Cooper DR,Wang C,Patel R,et al.Human adipose-derived stem cell conditioned media and exosomes containing MALAT1 promote human dermal fibroblast migration and ischemic wound healing[J].Adv Wound Care, 2018,7(9):299-308.
[48]
Zhang W, Bai X, Zhao B, et al.Cell-free therapy based on adipose tissue stem cell-derived exosomes promotes wound healing via the PI3K/Akt signaling pathway[J].Exp Cell Res,2018, 370(2):333-342.
[49]
Wang L,Cai Y,Zhang Q,et al.Pharmaceutical activation of NRF2 accelerates diabetic wound healing by exosomes from bone marrow mesenchymal stem cells[J].Int J Stem Cells,2022,15(2):164-172.
[1] 蒲卢兰, 李静佳, 陈宇, 周瑜清, 荣欣欣, 侯令密, 周方方. NF2/YAP信号通路通过FSP1诱导CD24高表达的三阴性乳腺癌细胞铁死亡[J]. 中华乳腺病杂志(电子版), 2024, 18(04): 206-211.
[2] 刘政宏, 袁春銮. 乳腺癌患者血清外泌体中长链非编码RNA BC200的表达及临床意义[J]. 中华乳腺病杂志(电子版), 2024, 18(04): 212-216.
[3] 何甘霖, 陈香侬, 李萍, 甄佳怡, 李京霞, 邹外一, 许多荣. 白血病异基因造血干细胞移植术后股骨坏死的影响因素[J]. 中华关节外科杂志(电子版), 2024, 18(04): 450-456.
[4] 刘昌玲, 张金丽, 张志, 李孝建, 汤文彬, 胡逸萍, 陈宾, 谢晓娜. 负载人脂肪干细胞外泌体的甲基丙烯酰化明胶水凝胶对人皮肤成纤维细胞增殖和迁移的影响[J]. 中华损伤与修复杂志(电子版), 2024, 19(06): 517-525.
[5] 雷子威, 凌萍, 沈纵, 魏晨如, 朱邦晖, 伍国胜, 孙瑜. 类器官肺损伤疾病模型构建及应用的研究进展[J]. 中华损伤与修复杂志(电子版), 2024, 19(06): 531-535.
[6] 关丁丁, 李伟, 孔维诗, 包郁露, 孙瑜. 负载干细胞的光交联蛋白基水凝胶在组织工程中应用的研究进展[J]. 中华损伤与修复杂志(电子版), 2024, 19(05): 447-452.
[7] 曹胜军, 李全, 符雪, 邵天喜, 周延华. 人脂肪间充质干细胞多层膜片对促进裸鼠皮肤缺损愈合的效果观察[J]. 中华损伤与修复杂志(电子版), 2024, 19(04): 341-347.
[8] 刘云, 时月, 郭冬梅, 邱志远, 王丽娟, 冉学红, 李乾鹏. 造血干细胞移植治疗伴有胚系突变的髓系肿瘤患者三例并文献复习[J]. 中华移植杂志(电子版), 2024, 18(04): 230-234.
[9] 蔡定钦, 孙建国, 陈旭. 外泌体非编码RNAs与肺癌放射治疗的研究进展[J]. 中华肺部疾病杂志(电子版), 2024, 17(04): 655-658.
[10] 张磊升. 围产期干细胞临床研究进展[J]. 中华细胞与干细胞杂志(电子版), 2024, 14(05): 320-320.
[11] 陈丽璇, 窦培宁, 肖扬. 干细胞治疗早发性卵巢功能不全的现状及未来展望[J]. 中华细胞与干细胞杂志(电子版), 2024, 14(04): 239-248.
[12] 袁雨涵, 杨盛力. 体液和组织蛋白质组学分析在肝癌早期分子诊断中的研究进展[J]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 883-888.
[13] 王向前, 李清峰, 陈磊, 丘文丹, 姚志成, 李熠, 吴荣焕. 姜黄素抑制肝细胞癌索拉非尼耐药作用及其调控机制[J]. 中华肝脏外科手术学电子杂志, 2024, 13(05): 729-735.
[14] 季鹏程, 鄂一民, 陆晨, 喻春钊. 循环外泌体相关生物标志物在结直肠癌诊断中的研究进展[J]. 中华结直肠疾病电子杂志, 2024, 13(04): 265-273.
[15] 汪鹏飞, 程莹莹, 赵海康. 骨髓间充质干细胞改善神经病理性疼痛的机制探讨[J]. 中华脑科疾病与康复杂志(电子版), 2024, 14(04): 230-234.
阅读次数
全文


摘要