切换至 "中华医学电子期刊资源库"

中华损伤与修复杂志(电子版) ›› 2020, Vol. 15 ›› Issue (05) : 397 -402. doi: 10.3877/cma.j.issn.1673-9450.2020.05.013

所属专题: 文献

综述

细胞外囊泡在糖尿病创面修复中的作用机制及应用
冯景浩1, 陈雅南1, 袁鸣洲1, 陈蕾1,()   
  1. 1. 510080 广州,中山大学附属第一医院烧伤外科
  • 收稿日期:2020-07-20 出版日期:2020-10-01
  • 通信作者: 陈蕾
  • 基金资助:
    广东省自然科学基金资助项目(2020B1515020049); 国家自然科学基金面上项目(81971856)

Mechanism and application of extracellular vesicles in diabetic wound repair

Jinghao Feng1, Yanan Chen1, Mingzhou Yuan1, Lei Chen1,()   

  1. 1. Department of Burn Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
  • Received:2020-07-20 Published:2020-10-01
  • Corresponding author: Lei Chen
  • About author:
    Corresponding author: Chen Lei, Email:
引用本文:

冯景浩, 陈雅南, 袁鸣洲, 陈蕾. 细胞外囊泡在糖尿病创面修复中的作用机制及应用[J]. 中华损伤与修复杂志(电子版), 2020, 15(05): 397-402.

Jinghao Feng, Yanan Chen, Mingzhou Yuan, Lei Chen. Mechanism and application of extracellular vesicles in diabetic wound repair[J]. Chinese Journal of Injury Repair and Wound Healing(Electronic Edition), 2020, 15(05): 397-402.

随着糖尿病发病率逐年增高,糖尿病相关创面带来的社会经济负担日益加重。尽管在过去的几十年里,可选用的治疗方案逐渐增多,开发具有良好的治疗能效的新方法、新材料,从而实现糖尿病创面尤其是难愈创面的快速、高质量修复,仍具有重大的临床意义和市场价值。细胞外囊泡(EV)在"去细胞的干细胞治疗"手段中备受关注,有望为糖尿病创面的治疗提供新方法。本文回顾其在糖尿病创面愈合中的作用,特别是对炎症反应、细胞增殖、迁移、血管生成、胶原生成和细胞外基质重构方面的影响,以期为解决糖尿病患者创面修复问题提供新的思路和方法。

As the incidence of diabetes increases year by year, the social and economic burden of diabetes-related wounds is increasing.Although the number of treatment options has been increasing in the past few decades, the development of new methods and materials with good therapeutic energy efficiency, so as to achieve rapid and high-quality repair of diabetic wounds, especially refractory wounds, is still of great clinical significance and market value.Extracellular vesicles have attracted much attention in "decellular stem cell therapy" and are expected to provide a new method for the treatment of diabetic wounds. This paper reviews its role in wound healing in diabetes, especially its effects on inflammatory response, cell proliferation, migration, angiogenesis, collagen generation and extracellular matrix remodeling, in order to provide new ideas and methods for wound healing in diabetic patients.

[1]
廖涌. 中国糖尿病的流行病学现状及展望[J]. 重庆医科大学学报,2015, 40(7): 1042-1045.
[2]
Armstrong DG, Boulton A JM, Bus SA. Diabetic Foot Ulcers and Their Recurrence[J]. N Engl J Med, 2017, 376(24): 2367-2375.
[3]
郭茵,张鹏飞. 糖尿病足病的中西医治疗进展[J]. 中国中医药现代远程教育,2016, 14(9): 146-148.
[4]
Cho H, Blatchley MR, Duh EJ et al. Acellular and cellular approaches to improve diabetic wound healing[J]. Adv Drug Deliv Rev, 2019, 146(3): 267-288.
[5]
Ferreira ADF, Gomes DA. Stem Cell Extracellular Vesicles in Skin Repair[J]. Bioengineering (Basel), 2018, 6(1): 4.
[6]
Akers JC, Gonda D, Kim R, et al. Biogenesis of extracellular vesicles (EV): exosomes, microvesicles, retrovirus-like vesicles, and apoptotic bodies[J]. J Neurooncol, 2013, 113(1): 1-11.
[7]
Than U, Guanzon D, Leavesley D, et al. Association of Extracellular Membrane Vesicles with Cutaneous Wound Healing[J]. Int J Mol Sci, 2017, 18(5): 956.
[8]
Khan M, Kishore R. Stem Cell Exosomes: Cell-FreeTherapy for Organ Repair[J]. Methods Mol Biol, 2017, 1553: 315-321.
[9]
Adamiak M, Cheng G, Bobis-Wozowicz S, et al. Induced Pluripotent Stem Cell (iPSC)-Derived Extracellular Vesicles Are Safer and More Effective for Cardiac Repair Than iPSCs[J]. Circ Res, 2018, 122(2): 296-309.
[10]
Singer AJ, Clark RA. Cutaneous wound healing[J]. N Engl J Med, 1999, 341(10): 738-746.
[11]
Olczyk P, Mencner Ł, Komosinska-Vassev K. The role of the extracellular matrix components in cutaneous wound healing[J]. Biomed Res Int, 2014, 2014: 747584.
[12]
Sen CK. Wound healing essentials: Let there be oxygen[J]. Wound Repair Regen, 2009, 17(1): 1-18.
[13]
Giacco F, Brownlee M. Oxidative stress and diabetic complications[J]. Circ Res, 2010, 107(9): 1058-1070.
[14]
Wlaschek M, Scharffetter-Kochanek K. Oxidative stress in chronic venous leg ulcers[J]. Wound Repair Regen, 2005, 13(5): 452-461.
[15]
Walker A, Nissen E, Geiger A. Migratory, metabolic and functional alterations of fibrocytes in type 2 diabetes[J]. IUBMB Life, 2018, 70(11): 1122-1132.
[16]
Taraboletti G, D′Ascenzo S, Borsotti P, et al. Shedding of the matrix metalloproteinases MMP-2, MMP-9, and MT1-MMP as membrane vesicle-associated components by endothelial cells[J]. Am J Pathol, 2002, 160(2): 673-680.
[17]
Del CI, Shrimpton CN, Thiagarajan P, et al. Tissue-factor-bearing microvesicles arise from lipid rafts and fuse with activated platelets to initiate coagulation[J]. Blood, 2005, 106(5): 1604-1611.
[18]
Hao S, Bai O, Yuan J, et al. Dendritic cell-derived exosomes stimulate stronger CD8+ CTL responses and antitumor immunity than tumor cell-derived exosomes[J]. Cell Mol Immunol, 2006, 3(3): 205-211.
[19]
Batista BS, Eng WS, Pilobello KT, et al. Identification of a conserved glycan signature for microvesicles[J]. J Proteome Res, 2011, 10(10): 4624-4633.
[20]
Subra C, Laulagnier K, Perret B, et al. Exosome lipidomics unravels lipid sorting at the level of multivesicular bodies[J]. Biochimie, 2007, 89(2): 205-212.
[21]
Trajkovic K, Hsu C, Chiantia S, et al. Ceramide triggers budding of exosome vesicles into multivesicular endosomes[J]. Science, 2008, 319(5867): 1244-1247.
[22]
Hunter MP, Ismail N, Zhang X, et al. Detection of microRNA expression in human peripheral blood microvesicles[J]. PLoS One, 2008, 3(11): e3694.
[23]
Liang X, Zhang L, Wang S, et al. Exosomes secreted by mesenchymal stem cells promote endothelial cell angiogenesis by transferring miR-125a[J]. J Cell Sci, 2016, 129(11): 2182-2189.
[24]
Skog J, Würdinger T, van Rijn S, et al. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers[J]. Nat Cell Biol, 2008, 10(12): 1470-1476.
[25]
Herrera MB, Fonsato V, Gatti S, et al. Human liver stem cell-derived microvesicles accelerate hepatic regeneration in hepatectomized rats[J]. J Cell Mol Med, 2010, 14(6B): 1605-1618.
[26]
Deregibus MC, Cantaluppi V, Calogero R, et al. Endothelial progenitor cell derived microvesicles activate an angiogenic program in endothelial cells by a horizontal transfer of mRNA[J]. Blood, 2007, 110(7): 2440-2448.
[27]
袁佳沁,宋福晨,朱美冬,等. 外泌体在糖尿病性溃疡中作用机制及应用的研究进展[J]. 实用临床医药杂志,2019, 23(20): 1-5.
[28]
Kim H, Wang SY, Kwak G, et al. Exosome-Guided Phenotypic Switch of M1 to M2 Macrophages for Cutaneous Wound Healing[J]. Adv Sci (Weinh), 2019, 6(20): 1900513.
[29]
Li X, Liu L, Yang J, et al. Exosome Derived From Human Umbilical Cord Mesenchymal Stem Cell Mediates MiR-181c Attenuating Burn-induced Excessive Inflammation[J]. EBioMedicine, 2016, 8: 72-82.
[30]
Dalirfardouei R, Jamialahmadi K, Jafarian AH, et al. Promising effects of exosomes isolated from menstrual blood-derived mesenchymal stem cell on wound-healing process in diabetic mouse model[J]. J Tissue Eng Regen Med, 2019, 13(4): 555-568.
[31]
Ti D, Hao H, Tong C, et al. LPS-preconditioned mesenchymal stromal cells modify macrophage polarization for resolution of chronic inflammation via exosome-shuttled let-7b[J]. J Transl Med, 2015, 13: 308.
[32]
Shabbir A, Cox A, Rodriguez-Menocal L, et al. Mesenchymal Stem Cell Exosomes Induce Proliferation and Migration of Normal and Chronic Wound Fibroblasts, and Enhance Angiogenesis In Vitro[J]. Stem Cells Dev, 2015, 24(14): 1635-1647.
[33]
Jeong D, Jo W, Yoon J, et al. Nanovesicles engineered from ES cells for enhanced cell proliferation[J]. Biomaterials, 2014, 35(34): 9302-9310.
[34]
Zhang J, Chen C, Hu B, et al. Exosomes Derived from Human Endothelial Progenitor Cells Accelerate Cutaneous Wound Healing by Promoting Angiogenesis Through Erk1/2 Signaling[J]. Int J Biol Sci, 2016, 12(12): 1472-1487.
[35]
Singer AJ, Clark RA. Cutaneous wound healing[J]. N Engl J Med, 1999, 341(10): 738-746.
[36]
Ngora H, Galli UM, Miyazaki K, et al. Membrane-bound and exosomal metastasis-associated C4.4A promotes migration by associating with the α(6)β(4) integrin and MT1-MMP[J]. Neoplasia, 2012, 14(2): 95-107.
[37]
Zhang J, Guan J, Niu X, et al. Exosomes released from human induced pluripotent stem cells-derived MSCs facilitate cutaneous wound healing by promoting collagen synthesis and angiogenesis[J]. J Transl Med, 2015, 13: 49.
[38]
Bhatwadekar AD, Glenn JV, Curtis TM, et al. Retinal Endothelial Cell Apoptosis Stimulates Recruitment of Endothelial Progenitor Cells[J]. Invest Ophthalmol Vis Sci, 2009, 50(10): 4967-4973.
[39]
Cheng CF, Fan J, Fedesco M, et al. Transforming growth factor alpha (TGFalpha)-stimulated secretion of HSP90alpha: using the receptor LRP-1/CD91 to promote human skin cell migration against a TGFbeta-rich environment during wound healing[J]. Mol Cell Biol, 2008, 28(10): 3344-3358.
[40]
Pearl LH, Prodromou C. Structure and in vivo function of Hsp90[J]. Curr Opin Struct Biol, 2000, 10(1): 46-51.
[41]
Hu L, Wang J, Zhou X, et al. Exosomes derived from human adipose mensenchymal stem cells accelerates cutaneous wound healing via optimizing the characteristics of fibroblasts[J]. Sci Rep, 2016, 6: 32993.
[42]
Li X, Jiang C, Zhao J. Human endothelial progenitor cells-derived exosomes accelerate cutaneous wound healing in diabetic rats by promoting endothelial function[J]. J Diabetes Complications, 2016, 30(6): 986-992.
[43]
Li X, Chen C, Wei L, et al. Exosomes derived from endothelial progenitor cells attenuate vascular repair and accelerate reendothelialization by enhancing endothelial function[J]. Cytotherapy, 2016, 18(2): 253-262.
[44]
Zhang J, Chen C, Hu B, et al. Exosomes Derived from Human Endothelial Progenitor Cells Accelerate Cutaneous Wound Healing by Promoting Angiogenesis Through Erk1/2 Signaling[J]. Int J Biol Sci, 2016, 12(12): 1472-1487.
[45]
de Jong OG, van Balkom BW, Gremmels H, et al. Exosomes from hypoxic endothelial cells have increased collagen crosslinking activity through up-regulation of lysyl oxidase-like 2[J]. J Cell Mol Med, 2016, 20(2): 342-350.
[46]
Huleihel L, Hussey GS, Naranjo JD, et al. Matrix-bound nanovesicles within ECM bioscaffolds[J]. Sci Adv, 2016, 2(6): e1600502.
[47]
Pan JH, Zhou H, Zhao XX, et al. Role of exosomes and exosomal microRNAs in hepatocellular carcinoma: Potential in diagnosis and antitumour treatments (Review)[J]. Int J Mol Med, 2018, 41(4): 1809-1816.
[48]
Hu L, Wickline SA, Hood JL. Magnetic resonance imaging of melanoma exosomes in lymph nodes[J]. Magn Reson Med, 2015, 74(1): 266-271.
[1] 代雯荣, 赵丽娟, 李智慧. 细胞外囊泡对胚胎着床影响的研究进展[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 616-620.
[2] 张燕, 粟闵, 陈婷婷, 程会贤, 陈名园, 王巍. 合体细胞滋养层细胞外囊泡阻止母体恶性肿瘤侵袭及转移至胎儿相关机制研究[J]. 中华妇幼临床医学杂志(电子版), 2022, 18(01): 40-46.
[3] 王邦郁, 陈晓鹏, 唐国军, 王佳妮. 尿液细胞外囊泡circRNA分类器对高级别前列腺癌诊断价值的初步研究[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(04): 339-342.
[4] 赵家莹, 王剑, 阳韬. 间充质干细胞及其胞外囊泡来源的miRNA免疫调节作用研究进展[J]. 中华肺部疾病杂志(电子版), 2022, 15(02): 279-282.
[5] 刘小燕, 龙乾发, 席俊秀, 杜明皓, 黄晓欢. 细胞外囊泡介导的胶质细胞交互作用对神经炎症的调节意义及研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 235-241.
[6] 周志鸿, 彭立辉. 间充质干细胞来源的细胞外囊泡治疗创伤性脑损伤的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2021, 11(04): 251-255.
[7] 张志远, 侯艳萍, 邹翔宇, 周瑾, 邢晓宇, 琚官群, 钟量, 孙杰. 人脐带间充质干细胞微囊减轻小鼠急性肾损伤的研究[J]. 中华细胞与干细胞杂志(电子版), 2018, 08(05): 264-271.
[8] 陆梦婷, 包嘉欣, 曹长春. 细胞外囊泡在急性肾损伤中的作用研究进展[J]. 中华肾病研究电子杂志, 2022, 11(03): 167-171.
[9] 王皓飞, 黄英姿. 细胞外囊泡在急性呼吸窘迫综合征中潜在作用的研究进展[J]. 中华重症医学电子杂志, 2021, 07(02): 174-179.
[10] 刘旭, 薛明, 邱海波. 肺上皮细胞与巨噬细胞来源的胞外囊泡在肺部炎症及损伤中的作用[J]. 中华重症医学电子杂志, 2020, 06(02): 211-214.
[11] 郭芳芳, 李珉珉. 狼疮肾炎无创生物标志物的研究进展[J]. 中华诊断学电子杂志, 2023, 11(04): 271-275.
[12] 王军丽, 张文平. 细胞外囊泡在Barrett食管及食管腺癌诊断和发病中的研究进展[J]. 中华诊断学电子杂志, 2021, 09(03): 207-210.
阅读次数
全文


摘要