[1] |
廖涌. 中国糖尿病的流行病学现状及展望[J]. 重庆医科大学学报,2015, 40(7): 1042-1045.
|
[2] |
Armstrong DG, Boulton A JM, Bus SA. Diabetic Foot Ulcers and Their Recurrence[J]. N Engl J Med, 2017, 376(24): 2367-2375.
|
[3] |
郭茵,张鹏飞. 糖尿病足病的中西医治疗进展[J]. 中国中医药现代远程教育,2016, 14(9): 146-148.
|
[4] |
Cho H, Blatchley MR, Duh EJ et al. Acellular and cellular approaches to improve diabetic wound healing[J]. Adv Drug Deliv Rev, 2019, 146(3): 267-288.
|
[5] |
Ferreira ADF, Gomes DA. Stem Cell Extracellular Vesicles in Skin Repair[J]. Bioengineering (Basel), 2018, 6(1): 4.
|
[6] |
Akers JC, Gonda D, Kim R, et al. Biogenesis of extracellular vesicles (EV): exosomes, microvesicles, retrovirus-like vesicles, and apoptotic bodies[J]. J Neurooncol, 2013, 113(1): 1-11.
|
[7] |
Than U, Guanzon D, Leavesley D, et al. Association of Extracellular Membrane Vesicles with Cutaneous Wound Healing[J]. Int J Mol Sci, 2017, 18(5): 956.
|
[8] |
Khan M, Kishore R. Stem Cell Exosomes: Cell-FreeTherapy for Organ Repair[J]. Methods Mol Biol, 2017, 1553: 315-321.
|
[9] |
Adamiak M, Cheng G, Bobis-Wozowicz S, et al. Induced Pluripotent Stem Cell (iPSC)-Derived Extracellular Vesicles Are Safer and More Effective for Cardiac Repair Than iPSCs[J]. Circ Res, 2018, 122(2): 296-309.
|
[10] |
Singer AJ, Clark RA. Cutaneous wound healing[J]. N Engl J Med, 1999, 341(10): 738-746.
|
[11] |
Olczyk P, Mencner Ł, Komosinska-Vassev K. The role of the extracellular matrix components in cutaneous wound healing[J]. Biomed Res Int, 2014, 2014: 747584.
|
[12] |
Sen CK. Wound healing essentials: Let there be oxygen[J]. Wound Repair Regen, 2009, 17(1): 1-18.
|
[13] |
Giacco F, Brownlee M. Oxidative stress and diabetic complications[J]. Circ Res, 2010, 107(9): 1058-1070.
|
[14] |
Wlaschek M, Scharffetter-Kochanek K. Oxidative stress in chronic venous leg ulcers[J]. Wound Repair Regen, 2005, 13(5): 452-461.
|
[15] |
Walker A, Nissen E, Geiger A. Migratory, metabolic and functional alterations of fibrocytes in type 2 diabetes[J]. IUBMB Life, 2018, 70(11): 1122-1132.
|
[16] |
Taraboletti G, D′Ascenzo S, Borsotti P, et al. Shedding of the matrix metalloproteinases MMP-2, MMP-9, and MT1-MMP as membrane vesicle-associated components by endothelial cells[J]. Am J Pathol, 2002, 160(2): 673-680.
|
[17] |
Del CI, Shrimpton CN, Thiagarajan P, et al. Tissue-factor-bearing microvesicles arise from lipid rafts and fuse with activated platelets to initiate coagulation[J]. Blood, 2005, 106(5): 1604-1611.
|
[18] |
Hao S, Bai O, Yuan J, et al. Dendritic cell-derived exosomes stimulate stronger CD8+ CTL responses and antitumor immunity than tumor cell-derived exosomes[J]. Cell Mol Immunol, 2006, 3(3): 205-211.
|
[19] |
Batista BS, Eng WS, Pilobello KT, et al. Identification of a conserved glycan signature for microvesicles[J]. J Proteome Res, 2011, 10(10): 4624-4633.
|
[20] |
Subra C, Laulagnier K, Perret B, et al. Exosome lipidomics unravels lipid sorting at the level of multivesicular bodies[J]. Biochimie, 2007, 89(2): 205-212.
|
[21] |
Trajkovic K, Hsu C, Chiantia S, et al. Ceramide triggers budding of exosome vesicles into multivesicular endosomes[J]. Science, 2008, 319(5867): 1244-1247.
|
[22] |
Hunter MP, Ismail N, Zhang X, et al. Detection of microRNA expression in human peripheral blood microvesicles[J]. PLoS One, 2008, 3(11): e3694.
|
[23] |
Liang X, Zhang L, Wang S, et al. Exosomes secreted by mesenchymal stem cells promote endothelial cell angiogenesis by transferring miR-125a[J]. J Cell Sci, 2016, 129(11): 2182-2189.
|
[24] |
Skog J, Würdinger T, van Rijn S, et al. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers[J]. Nat Cell Biol, 2008, 10(12): 1470-1476.
|
[25] |
Herrera MB, Fonsato V, Gatti S, et al. Human liver stem cell-derived microvesicles accelerate hepatic regeneration in hepatectomized rats[J]. J Cell Mol Med, 2010, 14(6B): 1605-1618.
|
[26] |
Deregibus MC, Cantaluppi V, Calogero R, et al. Endothelial progenitor cell derived microvesicles activate an angiogenic program in endothelial cells by a horizontal transfer of mRNA[J]. Blood, 2007, 110(7): 2440-2448.
|
[27] |
袁佳沁,宋福晨,朱美冬,等. 外泌体在糖尿病性溃疡中作用机制及应用的研究进展[J]. 实用临床医药杂志,2019, 23(20): 1-5.
|
[28] |
Kim H, Wang SY, Kwak G, et al. Exosome-Guided Phenotypic Switch of M1 to M2 Macrophages for Cutaneous Wound Healing[J]. Adv Sci (Weinh), 2019, 6(20): 1900513.
|
[29] |
Li X, Liu L, Yang J, et al. Exosome Derived From Human Umbilical Cord Mesenchymal Stem Cell Mediates MiR-181c Attenuating Burn-induced Excessive Inflammation[J]. EBioMedicine, 2016, 8: 72-82.
|
[30] |
Dalirfardouei R, Jamialahmadi K, Jafarian AH, et al. Promising effects of exosomes isolated from menstrual blood-derived mesenchymal stem cell on wound-healing process in diabetic mouse model[J]. J Tissue Eng Regen Med, 2019, 13(4): 555-568.
|
[31] |
Ti D, Hao H, Tong C, et al. LPS-preconditioned mesenchymal stromal cells modify macrophage polarization for resolution of chronic inflammation via exosome-shuttled let-7b[J]. J Transl Med, 2015, 13: 308.
|
[32] |
Shabbir A, Cox A, Rodriguez-Menocal L, et al. Mesenchymal Stem Cell Exosomes Induce Proliferation and Migration of Normal and Chronic Wound Fibroblasts, and Enhance Angiogenesis In Vitro[J]. Stem Cells Dev, 2015, 24(14): 1635-1647.
|
[33] |
Jeong D, Jo W, Yoon J, et al. Nanovesicles engineered from ES cells for enhanced cell proliferation[J]. Biomaterials, 2014, 35(34): 9302-9310.
|
[34] |
Zhang J, Chen C, Hu B, et al. Exosomes Derived from Human Endothelial Progenitor Cells Accelerate Cutaneous Wound Healing by Promoting Angiogenesis Through Erk1/2 Signaling[J]. Int J Biol Sci, 2016, 12(12): 1472-1487.
|
[35] |
Singer AJ, Clark RA. Cutaneous wound healing[J]. N Engl J Med, 1999, 341(10): 738-746.
|
[36] |
Ngora H, Galli UM, Miyazaki K, et al. Membrane-bound and exosomal metastasis-associated C4.4A promotes migration by associating with the α(6)β(4) integrin and MT1-MMP[J]. Neoplasia, 2012, 14(2): 95-107.
|
[37] |
Zhang J, Guan J, Niu X, et al. Exosomes released from human induced pluripotent stem cells-derived MSCs facilitate cutaneous wound healing by promoting collagen synthesis and angiogenesis[J]. J Transl Med, 2015, 13: 49.
|
[38] |
Bhatwadekar AD, Glenn JV, Curtis TM, et al. Retinal Endothelial Cell Apoptosis Stimulates Recruitment of Endothelial Progenitor Cells[J]. Invest Ophthalmol Vis Sci, 2009, 50(10): 4967-4973.
|
[39] |
Cheng CF, Fan J, Fedesco M, et al. Transforming growth factor alpha (TGFalpha)-stimulated secretion of HSP90alpha: using the receptor LRP-1/CD91 to promote human skin cell migration against a TGFbeta-rich environment during wound healing[J]. Mol Cell Biol, 2008, 28(10): 3344-3358.
|
[40] |
Pearl LH, Prodromou C. Structure and in vivo function of Hsp90[J]. Curr Opin Struct Biol, 2000, 10(1): 46-51.
|
[41] |
Hu L, Wang J, Zhou X, et al. Exosomes derived from human adipose mensenchymal stem cells accelerates cutaneous wound healing via optimizing the characteristics of fibroblasts[J]. Sci Rep, 2016, 6: 32993.
|
[42] |
Li X, Jiang C, Zhao J. Human endothelial progenitor cells-derived exosomes accelerate cutaneous wound healing in diabetic rats by promoting endothelial function[J]. J Diabetes Complications, 2016, 30(6): 986-992.
|
[43] |
Li X, Chen C, Wei L, et al. Exosomes derived from endothelial progenitor cells attenuate vascular repair and accelerate reendothelialization by enhancing endothelial function[J]. Cytotherapy, 2016, 18(2): 253-262.
|
[44] |
Zhang J, Chen C, Hu B, et al. Exosomes Derived from Human Endothelial Progenitor Cells Accelerate Cutaneous Wound Healing by Promoting Angiogenesis Through Erk1/2 Signaling[J]. Int J Biol Sci, 2016, 12(12): 1472-1487.
|
[45] |
de Jong OG, van Balkom BW, Gremmels H, et al. Exosomes from hypoxic endothelial cells have increased collagen crosslinking activity through up-regulation of lysyl oxidase-like 2[J]. J Cell Mol Med, 2016, 20(2): 342-350.
|
[46] |
Huleihel L, Hussey GS, Naranjo JD, et al. Matrix-bound nanovesicles within ECM bioscaffolds[J]. Sci Adv, 2016, 2(6): e1600502.
|
[47] |
Pan JH, Zhou H, Zhao XX, et al. Role of exosomes and exosomal microRNAs in hepatocellular carcinoma: Potential in diagnosis and antitumour treatments (Review)[J]. Int J Mol Med, 2018, 41(4): 1809-1816.
|
[48] |
Hu L, Wickline SA, Hood JL. Magnetic resonance imaging of melanoma exosomes in lymph nodes[J]. Magn Reson Med, 2015, 74(1): 266-271.
|