切换至 "中华医学电子期刊资源库"

中华损伤与修复杂志(电子版) ›› 2021, Vol. 16 ›› Issue (02) : 166 -169. doi: 10.3877/cma.j.issn.1673-9450.2021.02.015

所属专题: 文献

综述

穿皮骨整合截肢假体与上皮细胞生长迁移的研究进展
王晟1, 许卓然2, 夏德萌1, 李磊1, 许硕贵1,()   
  1. 1. 200433 上海,海军军医大学第一附属医院急诊科
    2. 510515 广州,南方医科大学第一临床医学院口腔医学系
  • 收稿日期:2021-01-12 出版日期:2021-04-01
  • 通信作者: 许硕贵
  • 基金资助:
    国家自然科学基金资助项目(81571887)

Research progress of intraosseous transcutaneous amputation prostheses and epithelial cells grow and migrate

Sheng Wang1, Zhuoran Xu2, Demeng Xia1, Lei Li1, Shuogui Xu1,()   

  1. 1. Department of Emergency, First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
    2. Department of Stomatology, First Clinical Medical College of Southern Medical University, Guangzhou 510515, China
  • Received:2021-01-12 Published:2021-04-01
  • Corresponding author: Shuogui Xu
引用本文:

王晟, 许卓然, 夏德萌, 李磊, 许硕贵. 穿皮骨整合截肢假体与上皮细胞生长迁移的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2021, 16(02): 166-169.

Sheng Wang, Zhuoran Xu, Demeng Xia, Lei Li, Shuogui Xu. Research progress of intraosseous transcutaneous amputation prostheses and epithelial cells grow and migrate[J/OL]. Chinese Journal of Injury Repair and Wound Healing(Electronic Edition), 2021, 16(02): 166-169.

穿皮骨整合截肢假体(ITAP)作为近年来临床上应用的一项新兴技术,对于减少患者截肢修复术的术后并发症具有重要意义。然而上皮组织的生长受限制约了该技术的临床应用,目前,通过假体的选择与改进,生物分子的使用等干预措施能够有助于解决这一问题。本文就ITAP中促进上皮生长、干预上皮迁移行为2个方面的研究进展作一综述,为ITAP手术的改进提供参考。

As a new technology in clinic in recent years, intraosseous transcutaneous amputation prosthesis (ITAP) has a profound effect on reducing the postoperative complications of patients with Amputation. However, the growth restriction of epithelial tissue limits the using of this technique. Currently, intervening measures such as the selection and improvement of prosthetic and the use of biological molecules can help to solve this problem. In this paper, the article reviews the aspects of promoting epithelial growth and intervening epithelial migration in ITAP, so as to provide reference for the improvement of ITAP surgery.

[1]
Unwin N. Epidemiology of lower extremity amputation in centres in Europe, North America and East Asia[J]. Br J Surg, 2000, 87(3): 328-337.
[2]
Jeyapalina S, Beck JP, Bachus KN, et al. Efficacy of a porous-structured titanium subdermal barrier for preventing infection in percutaneous osseointegrated prostheses[J]. J Orthop Res, 2012, 30(8): 1304-1311.
[3]
Pendegrass CJ, Lancashire HT, Fontaine C, et al. Intraosseous ranscutaneous amputation prostheses versus dental implants: a comparison between keratinocyte and gingival epithelial cell adhesion in vitro[J]. Eur Cell Mater, 2015, 29: 237-249.
[4]
Pendegrass CJ, Middleton CA, Gordon D, et al. Measuring the strength of dermal fibroblast attachment to functionalized titanium alloys in vitro[J]. J Biomed Mater Res A, 2010, 92(3): 1028-1037.
[5]
Chimutengwende-Gordon M, Pendegrass C, Blunn G. The in vivo effect of a porous titanium alloy flange with hydroxyapatite, silver and fibronectin coatings on soft-tissue integration of intraosseous transcutaneous amputation prostheses[J]. Bone Joint J, 2017, 99-B(3): 393-400.
[6]
Xu J, Weng XJ, Wang X, et al. Potential use of porous titanium-niobium alloy in orthopedic implants: preparation and experimental study of its biocompatibility in vitro[J]. PLoS One, 2013, 8(11): e79289.
[7]
Fukano Y, Knowles NG, Usui ML, et al. Characterization of an in vitro model for evaluating the interface between skin and percutaneous biomaterials[J]. Wound Repair Regen, 2006, 14(4): 484-491.
[8]
Farrell BJ, Prilutsky BI, Ritter JM, et al. Effects of pore size, implantation time, and nano-surface properties on rat skin ingrowth into percutaneous porous titanium implants[J]. J Biomed Mater Res A, 2014, 102(5): 1305-1315.
[9]
Brunette DM, Chehroudi B. The effects of the surface topography of micromachined titanium substrata on cell behavior in vitro and in vivo[J]. J Biomech Eng, 1999, 121(1): 49-57.
[10]
Nyan M, Hao J, Miyahara T, et al. Accelerated and enhanced bone formation on novel simvastatin-loaded porous titanium oxide surfaces[J]. Clin Implant Dent Relat Res, 2014, 16(5): 675-683.
[11]
Chen GJ, Wang Z, Bai H, et al. A preliminary study on investigating the attachment of soft tissue onto micro-arc oxidized titanium alloy implants[J]. Biomed Mater, 2009, 4(1): 015017.
[12]
Liu GG, Zhao GX, Zhou W, et al. In situ bond modulation of graphitic carbon nitride to construct p-n homojunctions for enhanced photocatalytic hydrogen production[J]. Adv Funct Mater, 2016, 26(37): 6822-6829.
[13]
Dunn DS, Raghavan S, Volz RG. Gentamicin sulfate attachment and release from anodized Ti-6A1-4V orthopedic materials[J]. J Biomed Mater Res, 1993, 27(7): 895-900.
[14]
Chimutengwende-Gordon M, Pendegrass C, Blunn G. Enhancing the soft tissue seal around intraosseous transcutaneous amputation prostheses using silanized fibronectin titanium alloy[J]. Biomed Mater, 2011, 6(2): 025008.
[15]
Lamolle SF, Monjo M, Lyngstadaas SP, et al. Titanium implant surface modification by cathodic reduction in hydrofluoric acid: surface characterization and in vivo performance[J]. J Biomed Mater Res A, 2009, 88(3): 581-588.
[16]
Narayanan R, Mukherjee P, Seshadri SK. Synthesis, corrosion and wear of anodic oxide coatings on Ti-6Al-4V[J]. J Mater Sci Mater Med, 2007, 18(5): 779-786.
[17]
Chehroudi B, Gould TR, Brunette DM. The role of connective tissue in inhibiting epithelial downgrowth on titanium-coated percutaneous implants[J]. J Biomed Mater Res, 1992, 26(4): 493-515.
[18]
Chehroudi B, Gould TR, Brunette DM. Effects of a grooved titanium-coated implant surface on epithelial cell behavior in vitro and in vivo[J]. J Biomed Mater Res, 1989, 23(9): 1067-1085.
[19]
Shin Y, Akao M. Tissue reactions to various percutaneous materials with different surface properties and structures[J]. Artif Organs, 1997, 21(9): 995-1001.
[20]
Ghani Y, Coathup MJ, Hing KA, et al. Development of a hydroxyapatite coating containing silver for the prevention of peri-prosthetic infection[J]. J Orthop Res, 2012, 30(3): 356-363.
[21]
Brennan SA, Ní Fhoghlú C, Devitt BM, et al. Silver nanoparticles and their orthopaedic applications[J]. Bone Joint J, 2015, 97-B(5): 582-589.
[22]
陈国景,王臻,袁伟, 等. 钛合金经皮植入式假肢骨内固定植入体表面经生物陶瓷改性后与骨整合的研究[J]. 科学技术与工程, 2008, 8(4): 897-901.
[23]
Chimutengwende-Gordon M, Pendegrass C, Bayston R, et al. Preventing infection of osseointegrated transcutaneous implants: Incorporation of silver into preconditioned fibronectin-functionalized hydroxyapatite coatings suppresses Staphylococcus aureus colonization while promoting viable fibroblast growth in vitro[J]. Biointerphases, 2014, 9(3): 031010.
[24]
Pendegrass CJ, Tucker B, Patel S, et al. The effect of adherens junction components on keratinocyte adhesion in vitro: potential implications for sealing the skin-implant interface of intraosseous transcutaneous amputation prostheses[J]. J Biomed Mater Res A, 2012, 100(12): 3463-3471.
[25]
Dudek NL, Marks MB, Marshall SC, et al. Dermatologic conditions associated with use of a lower-extremity prosthesis[J]. Arch Phys Med Rehabil, 2005, 86(4): 659-663.
[26]
Pendegrass CJ, Lancashire HT, Fontaine C, et al. Intraosseous transcutaneous amputation prostheses versus dental implants: a comparison between keratinocyte and gingival epithelial cell adhesion in vitro[J]. Eur Cell Mater, 2015, 29: 237-249.
[27]
Kirchhof K, Groth T. Surface modification of biomaterials to control adhesion of cells[J]. Clin Hemorheol Microcirc, 2008, 39(1/4): 247-251.
[28]
Sousa SR, Moradas-Ferreira P, Barbosa MA. TiO2 type influences fibronectin adsorption[J]. J Mater Sci Mater Med, 2005, 16(12): 1173-1178.
[29]
Jian X, Huang W, Wu D, et al. Effect of Fibronectin-Coated Micro-Grooved Titanium Surface on Alignment, Adhesion, and Proliferation of Human Gingival Fibroblasts[J]. Med Sci Monit, 2017, 23: 4749-4759.
[30]
Bates C, Marino V, Fazzalari NL, et al. Soft tissue attachment to titanium implants coated with growth factors[J]. Clin Implant Dent Relat Res, 2013, 15(1): 53-63.
[31]
Maeno M, Lee C, Kim DM, et al. Function of Platelet-Induced Epithelial Attachment at Titanium Surfaces Inhibits Microbial Colonization[J]. J Dent Res, 2017, 96(6): 633-639.
[32]
Yurchenco PD. Basement membranes: cell scaffoldings and signaling platforms[J]. Cold Spring Harb Perspect Biol, 2011, 3(2): a004911.
[33]
Snyder MC, Moore GF, Johnson PJ. The use of full-thickness skin grafts for the skin-abutment interface around bone-anchored hearing aids[J]. Otol Neurotol, 2003, 24(2): 255-258.
[34]
Pendegrass CJ, Goodship AE, Blunn GW. Development of a soft tissue seal around bone-anchored transcutaneous amputation prostheses[J]. Biomaterials, 2006, 27(23): 4183-4191.
[35]
Tjellström A. Osseointegrated implants for replacement of absent or defective ears[J]. Clin Plast Surg, 1990, 17(2): 355-366.
[36]
Isackson D, McGill LD, Bachus KN. Percutaneous implants with porous titanium dermal barriers: an in vivo evaluation of infection risk[J]. Med Eng Phys, 2011, 33(4): 418-426.
[37]
Mitchell SJ, Jeyapalina S, Nichols FR, et al. Negative pressure wound therapy limits downgrowth in percutaneous devices[J]. Wound Repair Regen, 2016, 24(1): 35-44.
[38]
Adell R, Lekholm U, Rockler B, et al. A 15-year study of osseointegrated implants in the treatment of the edentulous jaw[J]. Int J Oral Surg, 1981, 10(6): 387-416.
[39]
Chehroudi B, Gould TR, Brunette DM. The role of connective tissue in inhibiting epithelial downgrowth on titanium-coated percutaneous implants[J]. J Biomed Mater Res, 1992, 26(4): 493-515.
[1] 刘晨鹭, 刘洁, 张帆, 严彩英, 陈倩, 陈双庆. 增强MRI 影像组学特征生境分析在预测乳腺癌HER-2 表达状态中的应用[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 339-345.
[2] 张国锋, 屈欣荣, 李艳, 张春, 刘蕾. 基于空芯针穿刺活组织检查的乳腺纤维上皮性肿瘤患者治疗策略[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(05): 264-268.
[3] 黄福, 王黔, 金相任, 唐云川. VEGFR2、miR-27a-5p在胃癌组织中的表达与临床病理参数及预后的关系研究[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(05): 558-561.
[4] 仲福顺, 余露, 范晓礼, 叶啟发. 肝移植治疗肝上皮样血管内皮瘤一例[J/OL]. 中华移植杂志(电子版), 2024, 18(05): 293-297.
[5] 胡思平, 熊性宇, 徐航, 杨璐. 衰老相关分泌表型因子在前列腺癌发生发展中的作用机制[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(05): 425-434.
[6] 宋小飞, 巫嘉文, 孙阳. 输尿管开口周围膀胱黏膜预离断联合早期膀胱灌注化疗在上尿路尿路上皮癌根治术中的应用[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(05): 479-484.
[7] 郑俊, 吴杰英, 谭海波, 郑安全, 李腾成. EGFR-MEK-TZ三联合分子的构建及其对去势抵抗性前列腺癌细胞增殖与凋亡的影响[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(05): 503-508.
[8] 朱佳琳, 方向, 贵诗雨, 黄丹, 周小雨, 郭文恺. 大鼠切口疝腹膜前间隙补片修补术后血清中VEGF 和Ang-1 的表达情况[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(06): 703-707.
[9] 张敏龙, 杨翠平, 王博, 崔云杰, 金发光. MiR-200b-3p 通过抑制HIF-1α 表达减轻海水吸入诱导的肺水肿作用及机制[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 696-700.
[10] 赖淼, 景鑫, 李桂珍, 李怡. 非小细胞肺癌EGFR 突变亚型的临床病理和预后意义[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 731-737.
[11] 刘先勇, 秦东梅, 张若梅, 李俊娇, 孟春芹, 邬明歆, 王玉红, 赵新鲜, 徐瑞联, 洪文文, 马玲, 仇玮, 周宇. Her2/Hes1在肠型胃癌Correa级联反应3个病理阶段中的表达及意义[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 321-327.
[12] 雷永琪, 刘新阳, 杨黎渝, 铁学宏, 俞星新, 耿志达, 刘雨, 陈政良, 惠鹏, 梁英健. 肝脏血管周上皮样细胞肿瘤合并贫血一例并文献复习[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(05): 710-718.
[13] 商倩, 罗静, 卓振山, 苗园园, 吴静, 廖振林. 通腑泻浊法联合生长抑素对内镜逆行胰胆管造影治疗的急性胆源性胰腺炎患者预后的影响[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(05): 437-441.
[14] 孙双权, 孙玮玮, 王勇, 方道成, 温晖. 肾脏混合性上皮和间质肿瘤一例[J/OL]. 中华临床医师杂志(电子版), 2024, 18(05): 512-515.
[15] 闫战涛, 王辉, 周梓迪, 史勇强, 陈铜兵. 胃淋巴上皮瘤样癌三级淋巴结构特征及其与预后的相关性[J/OL]. 中华临床医师杂志(电子版), 2024, 18(05): 455-461.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?