[1] |
Unwin N. Epidemiology of lower extremity amputation in centres in Europe, North America and East Asia[J]. Br J Surg, 2000, 87(3): 328-337.
|
[2] |
Jeyapalina S, Beck JP, Bachus KN, et al. Efficacy of a porous-structured titanium subdermal barrier for preventing infection in percutaneous osseointegrated prostheses[J]. J Orthop Res, 2012, 30(8): 1304-1311.
|
[3] |
Pendegrass CJ, Lancashire HT, Fontaine C, et al. Intraosseous ranscutaneous amputation prostheses versus dental implants: a comparison between keratinocyte and gingival epithelial cell adhesion in vitro[J]. Eur Cell Mater, 2015, 29: 237-249.
|
[4] |
Pendegrass CJ, Middleton CA, Gordon D, et al. Measuring the strength of dermal fibroblast attachment to functionalized titanium alloys in vitro[J]. J Biomed Mater Res A, 2010, 92(3): 1028-1037.
|
[5] |
Chimutengwende-Gordon M, Pendegrass C, Blunn G. The in vivo effect of a porous titanium alloy flange with hydroxyapatite, silver and fibronectin coatings on soft-tissue integration of intraosseous transcutaneous amputation prostheses[J]. Bone Joint J, 2017, 99-B(3): 393-400.
|
[6] |
Xu J, Weng XJ, Wang X, et al. Potential use of porous titanium-niobium alloy in orthopedic implants: preparation and experimental study of its biocompatibility in vitro[J]. PLoS One, 2013, 8(11): e79289.
|
[7] |
Fukano Y, Knowles NG, Usui ML, et al. Characterization of an in vitro model for evaluating the interface between skin and percutaneous biomaterials[J]. Wound Repair Regen, 2006, 14(4): 484-491.
|
[8] |
Farrell BJ, Prilutsky BI, Ritter JM, et al. Effects of pore size, implantation time, and nano-surface properties on rat skin ingrowth into percutaneous porous titanium implants[J]. J Biomed Mater Res A, 2014, 102(5): 1305-1315.
|
[9] |
Brunette DM, Chehroudi B. The effects of the surface topography of micromachined titanium substrata on cell behavior in vitro and in vivo[J]. J Biomech Eng, 1999, 121(1): 49-57.
|
[10] |
Nyan M, Hao J, Miyahara T, et al. Accelerated and enhanced bone formation on novel simvastatin-loaded porous titanium oxide surfaces[J]. Clin Implant Dent Relat Res, 2014, 16(5): 675-683.
|
[11] |
Chen GJ, Wang Z, Bai H, et al. A preliminary study on investigating the attachment of soft tissue onto micro-arc oxidized titanium alloy implants[J]. Biomed Mater, 2009, 4(1): 015017.
|
[12] |
Liu GG, Zhao GX, Zhou W, et al. In situ bond modulation of graphitic carbon nitride to construct p-n homojunctions for enhanced photocatalytic hydrogen production[J]. Adv Funct Mater, 2016, 26(37): 6822-6829.
|
[13] |
Dunn DS, Raghavan S, Volz RG. Gentamicin sulfate attachment and release from anodized Ti-6A1-4V orthopedic materials[J]. J Biomed Mater Res, 1993, 27(7): 895-900.
|
[14] |
Chimutengwende-Gordon M, Pendegrass C, Blunn G. Enhancing the soft tissue seal around intraosseous transcutaneous amputation prostheses using silanized fibronectin titanium alloy[J]. Biomed Mater, 2011, 6(2): 025008.
|
[15] |
Lamolle SF, Monjo M, Lyngstadaas SP, et al. Titanium implant surface modification by cathodic reduction in hydrofluoric acid: surface characterization and in vivo performance[J]. J Biomed Mater Res A, 2009, 88(3): 581-588.
|
[16] |
Narayanan R, Mukherjee P, Seshadri SK. Synthesis, corrosion and wear of anodic oxide coatings on Ti-6Al-4V[J]. J Mater Sci Mater Med, 2007, 18(5): 779-786.
|
[17] |
Chehroudi B, Gould TR, Brunette DM. The role of connective tissue in inhibiting epithelial downgrowth on titanium-coated percutaneous implants[J]. J Biomed Mater Res, 1992, 26(4): 493-515.
|
[18] |
Chehroudi B, Gould TR, Brunette DM. Effects of a grooved titanium-coated implant surface on epithelial cell behavior in vitro and in vivo[J]. J Biomed Mater Res, 1989, 23(9): 1067-1085.
|
[19] |
Shin Y, Akao M. Tissue reactions to various percutaneous materials with different surface properties and structures[J]. Artif Organs, 1997, 21(9): 995-1001.
|
[20] |
Ghani Y, Coathup MJ, Hing KA, et al. Development of a hydroxyapatite coating containing silver for the prevention of peri-prosthetic infection[J]. J Orthop Res, 2012, 30(3): 356-363.
|
[21] |
Brennan SA, Ní Fhoghlú C, Devitt BM, et al. Silver nanoparticles and their orthopaedic applications[J]. Bone Joint J, 2015, 97-B(5): 582-589.
|
[22] |
陈国景,王臻,袁伟, 等. 钛合金经皮植入式假肢骨内固定植入体表面经生物陶瓷改性后与骨整合的研究[J]. 科学技术与工程, 2008, 8(4): 897-901.
|
[23] |
Chimutengwende-Gordon M, Pendegrass C, Bayston R, et al. Preventing infection of osseointegrated transcutaneous implants: Incorporation of silver into preconditioned fibronectin-functionalized hydroxyapatite coatings suppresses Staphylococcus aureus colonization while promoting viable fibroblast growth in vitro[J]. Biointerphases, 2014, 9(3): 031010.
|
[24] |
Pendegrass CJ, Tucker B, Patel S, et al. The effect of adherens junction components on keratinocyte adhesion in vitro: potential implications for sealing the skin-implant interface of intraosseous transcutaneous amputation prostheses[J]. J Biomed Mater Res A, 2012, 100(12): 3463-3471.
|
[25] |
Dudek NL, Marks MB, Marshall SC, et al. Dermatologic conditions associated with use of a lower-extremity prosthesis[J]. Arch Phys Med Rehabil, 2005, 86(4): 659-663.
|
[26] |
Pendegrass CJ, Lancashire HT, Fontaine C, et al. Intraosseous transcutaneous amputation prostheses versus dental implants: a comparison between keratinocyte and gingival epithelial cell adhesion in vitro[J]. Eur Cell Mater, 2015, 29: 237-249.
|
[27] |
Kirchhof K, Groth T. Surface modification of biomaterials to control adhesion of cells[J]. Clin Hemorheol Microcirc, 2008, 39(1/4): 247-251.
|
[28] |
Sousa SR, Moradas-Ferreira P, Barbosa MA. TiO2 type influences fibronectin adsorption[J]. J Mater Sci Mater Med, 2005, 16(12): 1173-1178.
|
[29] |
Jian X, Huang W, Wu D, et al. Effect of Fibronectin-Coated Micro-Grooved Titanium Surface on Alignment, Adhesion, and Proliferation of Human Gingival Fibroblasts[J]. Med Sci Monit, 2017, 23: 4749-4759.
|
[30] |
Bates C, Marino V, Fazzalari NL, et al. Soft tissue attachment to titanium implants coated with growth factors[J]. Clin Implant Dent Relat Res, 2013, 15(1): 53-63.
|
[31] |
Maeno M, Lee C, Kim DM, et al. Function of Platelet-Induced Epithelial Attachment at Titanium Surfaces Inhibits Microbial Colonization[J]. J Dent Res, 2017, 96(6): 633-639.
|
[32] |
Yurchenco PD. Basement membranes: cell scaffoldings and signaling platforms[J]. Cold Spring Harb Perspect Biol, 2011, 3(2): a004911.
|
[33] |
Snyder MC, Moore GF, Johnson PJ. The use of full-thickness skin grafts for the skin-abutment interface around bone-anchored hearing aids[J]. Otol Neurotol, 2003, 24(2): 255-258.
|
[34] |
Pendegrass CJ, Goodship AE, Blunn GW. Development of a soft tissue seal around bone-anchored transcutaneous amputation prostheses[J]. Biomaterials, 2006, 27(23): 4183-4191.
|
[35] |
Tjellström A. Osseointegrated implants for replacement of absent or defective ears[J]. Clin Plast Surg, 1990, 17(2): 355-366.
|
[36] |
Isackson D, McGill LD, Bachus KN. Percutaneous implants with porous titanium dermal barriers: an in vivo evaluation of infection risk[J]. Med Eng Phys, 2011, 33(4): 418-426.
|
[37] |
Mitchell SJ, Jeyapalina S, Nichols FR, et al. Negative pressure wound therapy limits downgrowth in percutaneous devices[J]. Wound Repair Regen, 2016, 24(1): 35-44.
|
[38] |
Adell R, Lekholm U, Rockler B, et al. A 15-year study of osseointegrated implants in the treatment of the edentulous jaw[J]. Int J Oral Surg, 1981, 10(6): 387-416.
|
[39] |
Chehroudi B, Gould TR, Brunette DM. The role of connective tissue in inhibiting epithelial downgrowth on titanium-coated percutaneous implants[J]. J Biomed Mater Res, 1992, 26(4): 493-515.
|