切换至 "中华医学电子期刊资源库"

中华损伤与修复杂志(电子版) ›› 2021, Vol. 16 ›› Issue (02) : 166 -169. doi: 10.3877/cma.j.issn.1673-9450.2021.02.015

所属专题: 文献

综述

穿皮骨整合截肢假体与上皮细胞生长迁移的研究进展
王晟1, 许卓然2, 夏德萌1, 李磊1, 许硕贵1,()   
  1. 1. 200433 上海,海军军医大学第一附属医院急诊科
    2. 510515 广州,南方医科大学第一临床医学院口腔医学系
  • 收稿日期:2021-01-12 出版日期:2021-04-01
  • 通信作者: 许硕贵
  • 基金资助:
    国家自然科学基金资助项目(81571887)

Research progress of intraosseous transcutaneous amputation prostheses and epithelial cells grow and migrate

Sheng Wang1, Zhuoran Xu2, Demeng Xia1, Lei Li1, Shuogui Xu1,()   

  1. 1. Department of Emergency, First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
    2. Department of Stomatology, First Clinical Medical College of Southern Medical University, Guangzhou 510515, China
  • Received:2021-01-12 Published:2021-04-01
  • Corresponding author: Shuogui Xu
引用本文:

王晟, 许卓然, 夏德萌, 李磊, 许硕贵. 穿皮骨整合截肢假体与上皮细胞生长迁移的研究进展[J]. 中华损伤与修复杂志(电子版), 2021, 16(02): 166-169.

Sheng Wang, Zhuoran Xu, Demeng Xia, Lei Li, Shuogui Xu. Research progress of intraosseous transcutaneous amputation prostheses and epithelial cells grow and migrate[J]. Chinese Journal of Injury Repair and Wound Healing(Electronic Edition), 2021, 16(02): 166-169.

穿皮骨整合截肢假体(ITAP)作为近年来临床上应用的一项新兴技术,对于减少患者截肢修复术的术后并发症具有重要意义。然而上皮组织的生长受限制约了该技术的临床应用,目前,通过假体的选择与改进,生物分子的使用等干预措施能够有助于解决这一问题。本文就ITAP中促进上皮生长、干预上皮迁移行为2个方面的研究进展作一综述,为ITAP手术的改进提供参考。

As a new technology in clinic in recent years, intraosseous transcutaneous amputation prosthesis (ITAP) has a profound effect on reducing the postoperative complications of patients with Amputation. However, the growth restriction of epithelial tissue limits the using of this technique. Currently, intervening measures such as the selection and improvement of prosthetic and the use of biological molecules can help to solve this problem. In this paper, the article reviews the aspects of promoting epithelial growth and intervening epithelial migration in ITAP, so as to provide reference for the improvement of ITAP surgery.

[1]
Unwin N. Epidemiology of lower extremity amputation in centres in Europe, North America and East Asia[J]. Br J Surg, 2000, 87(3): 328-337.
[2]
Jeyapalina S, Beck JP, Bachus KN, et al. Efficacy of a porous-structured titanium subdermal barrier for preventing infection in percutaneous osseointegrated prostheses[J]. J Orthop Res, 2012, 30(8): 1304-1311.
[3]
Pendegrass CJ, Lancashire HT, Fontaine C, et al. Intraosseous ranscutaneous amputation prostheses versus dental implants: a comparison between keratinocyte and gingival epithelial cell adhesion in vitro[J]. Eur Cell Mater, 2015, 29: 237-249.
[4]
Pendegrass CJ, Middleton CA, Gordon D, et al. Measuring the strength of dermal fibroblast attachment to functionalized titanium alloys in vitro[J]. J Biomed Mater Res A, 2010, 92(3): 1028-1037.
[5]
Chimutengwende-Gordon M, Pendegrass C, Blunn G. The in vivo effect of a porous titanium alloy flange with hydroxyapatite, silver and fibronectin coatings on soft-tissue integration of intraosseous transcutaneous amputation prostheses[J]. Bone Joint J, 2017, 99-B(3): 393-400.
[6]
Xu J, Weng XJ, Wang X, et al. Potential use of porous titanium-niobium alloy in orthopedic implants: preparation and experimental study of its biocompatibility in vitro[J]. PLoS One, 2013, 8(11): e79289.
[7]
Fukano Y, Knowles NG, Usui ML, et al. Characterization of an in vitro model for evaluating the interface between skin and percutaneous biomaterials[J]. Wound Repair Regen, 2006, 14(4): 484-491.
[8]
Farrell BJ, Prilutsky BI, Ritter JM, et al. Effects of pore size, implantation time, and nano-surface properties on rat skin ingrowth into percutaneous porous titanium implants[J]. J Biomed Mater Res A, 2014, 102(5): 1305-1315.
[9]
Brunette DM, Chehroudi B. The effects of the surface topography of micromachined titanium substrata on cell behavior in vitro and in vivo[J]. J Biomech Eng, 1999, 121(1): 49-57.
[10]
Nyan M, Hao J, Miyahara T, et al. Accelerated and enhanced bone formation on novel simvastatin-loaded porous titanium oxide surfaces[J]. Clin Implant Dent Relat Res, 2014, 16(5): 675-683.
[11]
Chen GJ, Wang Z, Bai H, et al. A preliminary study on investigating the attachment of soft tissue onto micro-arc oxidized titanium alloy implants[J]. Biomed Mater, 2009, 4(1): 015017.
[12]
Liu GG, Zhao GX, Zhou W, et al. In situ bond modulation of graphitic carbon nitride to construct p-n homojunctions for enhanced photocatalytic hydrogen production[J]. Adv Funct Mater, 2016, 26(37): 6822-6829.
[13]
Dunn DS, Raghavan S, Volz RG. Gentamicin sulfate attachment and release from anodized Ti-6A1-4V orthopedic materials[J]. J Biomed Mater Res, 1993, 27(7): 895-900.
[14]
Chimutengwende-Gordon M, Pendegrass C, Blunn G. Enhancing the soft tissue seal around intraosseous transcutaneous amputation prostheses using silanized fibronectin titanium alloy[J]. Biomed Mater, 2011, 6(2): 025008.
[15]
Lamolle SF, Monjo M, Lyngstadaas SP, et al. Titanium implant surface modification by cathodic reduction in hydrofluoric acid: surface characterization and in vivo performance[J]. J Biomed Mater Res A, 2009, 88(3): 581-588.
[16]
Narayanan R, Mukherjee P, Seshadri SK. Synthesis, corrosion and wear of anodic oxide coatings on Ti-6Al-4V[J]. J Mater Sci Mater Med, 2007, 18(5): 779-786.
[17]
Chehroudi B, Gould TR, Brunette DM. The role of connective tissue in inhibiting epithelial downgrowth on titanium-coated percutaneous implants[J]. J Biomed Mater Res, 1992, 26(4): 493-515.
[18]
Chehroudi B, Gould TR, Brunette DM. Effects of a grooved titanium-coated implant surface on epithelial cell behavior in vitro and in vivo[J]. J Biomed Mater Res, 1989, 23(9): 1067-1085.
[19]
Shin Y, Akao M. Tissue reactions to various percutaneous materials with different surface properties and structures[J]. Artif Organs, 1997, 21(9): 995-1001.
[20]
Ghani Y, Coathup MJ, Hing KA, et al. Development of a hydroxyapatite coating containing silver for the prevention of peri-prosthetic infection[J]. J Orthop Res, 2012, 30(3): 356-363.
[21]
Brennan SA, Ní Fhoghlú C, Devitt BM, et al. Silver nanoparticles and their orthopaedic applications[J]. Bone Joint J, 2015, 97-B(5): 582-589.
[22]
陈国景,王臻,袁伟, 等. 钛合金经皮植入式假肢骨内固定植入体表面经生物陶瓷改性后与骨整合的研究[J]. 科学技术与工程, 2008, 8(4): 897-901.
[23]
Chimutengwende-Gordon M, Pendegrass C, Bayston R, et al. Preventing infection of osseointegrated transcutaneous implants: Incorporation of silver into preconditioned fibronectin-functionalized hydroxyapatite coatings suppresses Staphylococcus aureus colonization while promoting viable fibroblast growth in vitro[J]. Biointerphases, 2014, 9(3): 031010.
[24]
Pendegrass CJ, Tucker B, Patel S, et al. The effect of adherens junction components on keratinocyte adhesion in vitro: potential implications for sealing the skin-implant interface of intraosseous transcutaneous amputation prostheses[J]. J Biomed Mater Res A, 2012, 100(12): 3463-3471.
[25]
Dudek NL, Marks MB, Marshall SC, et al. Dermatologic conditions associated with use of a lower-extremity prosthesis[J]. Arch Phys Med Rehabil, 2005, 86(4): 659-663.
[26]
Pendegrass CJ, Lancashire HT, Fontaine C, et al. Intraosseous transcutaneous amputation prostheses versus dental implants: a comparison between keratinocyte and gingival epithelial cell adhesion in vitro[J]. Eur Cell Mater, 2015, 29: 237-249.
[27]
Kirchhof K, Groth T. Surface modification of biomaterials to control adhesion of cells[J]. Clin Hemorheol Microcirc, 2008, 39(1/4): 247-251.
[28]
Sousa SR, Moradas-Ferreira P, Barbosa MA. TiO2 type influences fibronectin adsorption[J]. J Mater Sci Mater Med, 2005, 16(12): 1173-1178.
[29]
Jian X, Huang W, Wu D, et al. Effect of Fibronectin-Coated Micro-Grooved Titanium Surface on Alignment, Adhesion, and Proliferation of Human Gingival Fibroblasts[J]. Med Sci Monit, 2017, 23: 4749-4759.
[30]
Bates C, Marino V, Fazzalari NL, et al. Soft tissue attachment to titanium implants coated with growth factors[J]. Clin Implant Dent Relat Res, 2013, 15(1): 53-63.
[31]
Maeno M, Lee C, Kim DM, et al. Function of Platelet-Induced Epithelial Attachment at Titanium Surfaces Inhibits Microbial Colonization[J]. J Dent Res, 2017, 96(6): 633-639.
[32]
Yurchenco PD. Basement membranes: cell scaffoldings and signaling platforms[J]. Cold Spring Harb Perspect Biol, 2011, 3(2): a004911.
[33]
Snyder MC, Moore GF, Johnson PJ. The use of full-thickness skin grafts for the skin-abutment interface around bone-anchored hearing aids[J]. Otol Neurotol, 2003, 24(2): 255-258.
[34]
Pendegrass CJ, Goodship AE, Blunn GW. Development of a soft tissue seal around bone-anchored transcutaneous amputation prostheses[J]. Biomaterials, 2006, 27(23): 4183-4191.
[35]
Tjellström A. Osseointegrated implants for replacement of absent or defective ears[J]. Clin Plast Surg, 1990, 17(2): 355-366.
[36]
Isackson D, McGill LD, Bachus KN. Percutaneous implants with porous titanium dermal barriers: an in vivo evaluation of infection risk[J]. Med Eng Phys, 2011, 33(4): 418-426.
[37]
Mitchell SJ, Jeyapalina S, Nichols FR, et al. Negative pressure wound therapy limits downgrowth in percutaneous devices[J]. Wound Repair Regen, 2016, 24(1): 35-44.
[38]
Adell R, Lekholm U, Rockler B, et al. A 15-year study of osseointegrated implants in the treatment of the edentulous jaw[J]. Int J Oral Surg, 1981, 10(6): 387-416.
[39]
Chehroudi B, Gould TR, Brunette DM. The role of connective tissue in inhibiting epithelial downgrowth on titanium-coated percutaneous implants[J]. J Biomed Mater Res, 1992, 26(4): 493-515.
[1] 冯雪园, 韩萌萌, 马宁. 乳腺原发上皮样血管内皮瘤一例[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 378-380.
[2] 欧阳剑锋, 李炳权, 叶永恒, 胡少宇, 向阳. 关节镜联合富血小板血浆治疗粘连性肩周炎的疗效[J]. 中华关节外科杂志(电子版), 2023, 17(06): 765-772.
[3] 李硕, 尹希, 祁连港, 王丽, 刘宗宝. 浓缩生长因子在促进失神经皮瓣术后神经再生的应用前景[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 547-551.
[4] 宫镇江, 王守一, 姚超, 庞永志, 崔婧. sticky bone混合浓缩生长因子应用于水平骨增量患者的临床效果研究[J]. 中华口腔医学研究杂志(电子版), 2023, 17(06): 430-435.
[5] 曹长青, 郭新艳, 高源, 张存, 唐海利, 樊东, 杨小军, 张松, 赵华栋. 肿瘤微环境参与介导HER2阳性乳腺癌曲妥珠单抗耐药的研究进展[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 90-95.
[6] 张生军, 赵阿静, 李守博, 郝祥宏, 刘敏丽. 高糖通过HGF/c-met通路促进结直肠癌侵袭和迁移的实验研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 21-24.
[7] 冯冰, 邹秋果, 梁振波, 卢艳明, 曾奕, 吴淑苗. 老年非特殊型浸润性乳腺癌超声征象与分子生物学指标的临床研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 48-51.
[8] 汪洋, 李志鹏, 王可兵. 上尿路尿路上皮癌术后预防性膀胱灌注化疗的研究进展[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(06): 649-652.
[9] 康海, 谭武宾, 周松, 毛正, 米泽振, 李铁求. 膀胱癌根治术后阴茎转移一例报告[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(05): 523-525.
[10] 余俊豪, 麻立. 经腹全腹腔镜上尿路尿路上皮癌根治术在临床中的应用[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(05): 529-532.
[11] 郭晓磊, 李晓云, 孙嘉怿, 金乐, 郭亚娟, 史新立. 含生长因子骨移植材料的研究进展和监管现状[J]. 中华老年骨科与康复电子杂志, 2023, 09(06): 373-378.
[12] 侯超, 潘美辰, 吴文明, 黄兴广, 李翔, 程凌雪, 朱玉轩, 李文波. 早期食管癌及上皮内瘤变内镜黏膜下剥离术后食管狭窄的危险因素[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 383-387.
[13] 岳瑞雪, 孔令欣, 郝鑫, 杨进强, 韩猛, 崔国忠, 王建军, 张志生, 孔凡庭, 张维, 何文博, 李现桥, 周新平, 徐东宏, 胡崇珠. 乳腺癌HER2蛋白表达水平预测新辅助治疗疗效的真实世界研究[J]. 中华临床医师杂志(电子版), 2023, 17(07): 765-770.
[14] 陈柯豫, 黄艳齐, 张玲利. 同时性多发早期食管癌及高级别上皮内瘤变的危险因素分析[J]. 中华临床医师杂志(电子版), 2023, 17(05): 524-528.
[15] 陈雪芬, 邓静敏. 国内外179例原发性肺淋巴上皮瘤样癌的文献复习[J]. 中华临床医师杂志(电子版), 2023, 17(05): 551-556.
阅读次数
全文


摘要