切换至 "中华医学电子期刊资源库"

中华损伤与修复杂志(电子版) ›› 2021, Vol. 16 ›› Issue (02) : 162 -165. doi: 10.3877/cma.j.issn.1673-9450.2021.02.014

所属专题: 文献

综述

光生物调节治疗在创面修复领域中的研究进展
李明1, 倪涛1,()   
  1. 1. 200001 上海交通大学医学院附属第九人民医院 整复外科
  • 收稿日期:2021-01-10 出版日期:2021-04-01
  • 通信作者: 倪涛

Advancement of photobiomodulation therapy in wound repair

Ming Li1, Tao Ni1,()   

  1. 1. Department of Plastic and Reconstructive Surgery, Shanghai Ninth People′ Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200001, China
  • Received:2021-01-10 Published:2021-04-01
  • Corresponding author: Tao Ni
引用本文:

李明, 倪涛. 光生物调节治疗在创面修复领域中的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2021, 16(02): 162-165.

Ming Li, Tao Ni. Advancement of photobiomodulation therapy in wound repair[J/OL]. Chinese Journal of Injury Repair and Wound Healing(Electronic Edition), 2021, 16(02): 162-165.

糖尿病等疾病破坏创面正常愈合过程,形成慢性难愈合创面,使患者遭受严重不适与困扰,消耗大量医疗资源。随着光医学的发展,光生物调节治疗(PBMT)在创面修复领域中的应用越来越广泛。PBMT应用弱激光、LED光、广谱光等,在糖尿病创面、烧伤创面、静脉溃疡、压力性溃疡等方面取得了一定疗效,具有广阔应用前景,本文将就PBMT应用于创面修复的进展进行综述。

Diabetes and other diseases disrupt the normal healing process of wounds and form chronic and difficult-to-heal wounds, causing severe discomfort and distress to patients, and consuming large quantities of medical resources. With the development of photomedicine, photobiomodulation therapy (PBMT) has become more and more widely used in the field of wound repair. PBMT uses low-level laser, LED light, broad-spectrum light, etc., and has achieved certain effects in diabetic wounds, burn wounds, venous ulcers, pressure ulcers, etc., which has broad application prospects. This article will review the progress of PBMT in wound repair.

[1]
Rodrigues M, Kosaric N, Bonham CA, et al. Wound Healing: A Cellular Perspective[J]. Physiol Rev, 2019, 99(1): 665-706.
[2]
Wang PH, Huang BS, Horng HC, et al. Wound healing[J]. J Chin Med Assoc, 2018, 81(2): 94-101.
[3]
Han G, Ceilley R. Chronic Wound Healing: A Review of Current Management and Treatments[J]. Adv Ther, 2017, 34(3): 599-610.
[4]
Anders JJ, Arany PR, Baxter GD, et al. Light-Emitting Diode Therapy and Low-Level Light Therapy Are Photobiomodulation Therapy[J]. Photobiomodul Photomed Laser Surg, 2019, 37(2): 63-65.
[5]
Anders JJ, Lanzafame RJ, Arany PR. Low-level light/laser therapy versus photobiomodulation therapy[J]. Photomed Laser Surg, 2015, 33(4): 183-184.
[6]
Finsen N. Om Anvevendelse i Medicinenaf Koncentrerede Kemiske Lysstraaler [M]. Copenhagen: Gyldendalske Boghandels Forlag, 1886: 5-52.
[7]
Grzybowski A, Pietrzak K. From patient to discoverer—Niels Ryberg Finsen (1860-1904)—the founder of phototherapy in dermatology[J]. Clin Dermatol, 2012, 30(4): 451-455.
[8]
Mester E, Szende B, Gärtner P. [The effect of laser beams on the growth of hair in mice][J]. Radiobiol Radiother (Berl), 1968, 9(5): 621-626.
[9]
Zhu Y, Xu G, Yuan J, et al. Light Emitting Diodes based Photoacoustic Imaging and Potential Clinical Applications[J]. Sci Rep, 2018, 8(1): 9885.
[10]
Heiskanen V, Hamblin MR. Photobiomodulation: lasers vs. light emitting diodes?[J]. Photochem Photobiol Sci, 2018, 17(8): 1003-1017.
[11]
Tsai SR, Hamblin MR. Biological effects and medical applications of infrared radiation[J]. J Photochem Photobiol B, 2017, 170: 197-207.
[12]
Karu TI. Mitochondrial signaling in mammalian cells activated by red and near-IR radiation[J]. Photochem Photobiol, 2008, 84(5): 1091-1099.
[13]
Karu TI, Pyatibrat LV, Kolyakov SF, et al. Absorption measurements of a cell monolayer relevant to phototherapy: reduction of cytochrome c oxidase under near IR radiation[J]. J Photochem Photobiol B, 2005, 81(2): 98-106.
[14]
Karu TI, Pyatibrat LV, Kolyakov SF, et al. Absorption measurements of cell monolayers relevant to mechanisms of laser phototherapy: reduction or oxidation of cytochrome c oxidase under laser radiation at 632.8 nm[J]. Photomed Laser Surg, 2008, 26(6): 593-599.
[15]
Halliwell B, Gutteridge JM. The definition and measurement of antioxidants in biological systems[J]. Free Radic Biol Med, 1995, 18(1): 125-126.
[16]
Antunes F, Boveris A, Cadenas E. On the mechanism and biology of cytochrome oxidase inhibition by nitric oxide[J]. Proc Natl Acad Sci U S A, 2004, 101(48): 16774-16779.
[17]
Buscone S, Mardaryev AN, Raafs B, et al. A New Path in Defining Light Parameters for Hair Growth: Discovery and Modulation of Photoreceptors in Human Hair Follicle[J]. Lasers Surg Med, 2017, 49(7): 705-718.
[18]
Becker A, Klapczynski A, Kuch N, et al. Gene expression profiling reveals aryl hydrocarbon receptor as a possible target for photobiomodulation when using blue light[J]. Sci Rep, 2016, 6: 33847.
[19]
Wang YG, Huang YY, Wang Y, et al. Photobiomodulation (blue and green light) encourages osteoblastic-differentiation of human adipose-derived stem cells: role of intracellular calcium and light-gated ion channels[J]. Scientific Reports, 2016, 6: 33719.
[20]
Castellano-Pellicena I, Uzunbajakava NE, Mignon C, et al. Does blue light restore human epidermal barrier function via activation of Opsin during cutaneous wound healing?[J]. Lasers Surg Med, 2019, 51(4): 370-382.
[21]
Arany PR, Cho A, Hunt TD, et al. Photoactivation of endogenous latent transforming growth factor-beta1 directs dental stem cell differentiation for regeneration[J]. Sci Transl Med, 2014, 6(238): 238ra69.
[22]
Jobling ME, Mott JD, Finnegan MT, et al. Isoform-specific activation of latent transforming growth factor beta (LTGF-beta) by reactive oxygen species[J]. Radiat Res, 2006, 166(6): 839-848.
[23]
Fulop AM, Dhimmer S, Deluca JR, et al. A Meta-analysis of the Efficacy of Phototherapy in Tissue Repair[J]. Photomed Laser Surg, 2009, 27(5): 695-702.
[24]
Woodruff LD, Bounkeo JM, Brannon WM, et al. The efficacy of laser therapy in wound repair: A meta-analysis of the literature[J]. Photomed Laser Surg, 2004, 22(3): 241-247.
[25]
Rohringer S, Holnthoner W, Chaudary S, et al. The impact of wavelengths of LED light-therapy on endothelial cells[J]. Sci Rep, 2017, 7 (1): 10700.
[26]
Arany PR. Craniofacial Wound Healing with Photobiomodulation Therapy: New Insights and Current Challenges[J]. J Dent Res, 2016, 95(9): 977-84.
[27]
Khan I, Arany PR. Photobiomodulation Therapy Promotes Expansion of Epithelial Colony Forming Units[J]. Photomed Laser Surg, 2016, 34(11): 550-555.
[28]
de Alencar Fonseca Santos J, Campelo MBD, de Oliveira RA, et al. Effects of Low-Power Light Therapy on the Tissue Repair Process of Chronic Wounds in Diabetic Feet[J]. Photomed Laser Surg, 2018, 36(6): 298-304.
[29]
Frangež I, Nizic-Kos T, Frangež HB. Phototherapy with LED Shows Promising Results in Healing Chronic Wounds in Diabetes Mellitus Patients: A Prospective Randomized Double-Blind Study[J]. Photomed Laser Surg, 2018, 36(7): 377-382.
[30]
Vitoriano NAM, Mont′alverne DGB, Martins MIS, et al. Comparative study on laser and LED influence on tissue repair and improvement of neuropathic symptoms during the treatment of diabetic ulcers[J]. Lasers Med Sci, 2019, 34(7): 1365-1371.
[31]
de Oliveira RA, Boson LLB, Portela SMM, et al. Low-intensity LED therapy (658 nm) on burn healing: a series of cases[J]. Lasers Med Sci, 2018, 33(4): 729-735.
[32]
Brassolatti P, de Andrade ALM, Bossini PS, et al. Evaluation of the low-level laser therapy application parameters for skin burn treatment in experimental model: a systematic review[J]. Lasers Med Sci, 2018, 33(5): 1159-1169.
[33]
Vitse J, Bekara F, Byun S, et al. A Double-Blind, Placebo-Controlled Randomized Evaluation of the Effect of Low-Level Laser Therapy on Venous Leg Ulcers[J]. Int J Low Extrem Wounds, 2017, 16(1): 29-35.
[34]
Taradaj J, Shay B, Dymarek R, et al. Effect of laser therapy on expression of angio- and fibrogenic factors, and cytokine concentrations during the healing process of human pressure ulcers[J]. Int J Med Sci, 2018, 15(11): 1105-1112.
[1] 徐志刚, 曹涛, 何亭, 李博奥, 魏婧韬, 张栋梁, 官浩, 杨薛康. 采用抗生素骨水泥治疗糖尿病患者心脏术后胸骨骨髓炎的临床效果观察[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 498-502.
[2] 王强, 金光哲, 巨积辉, 王凯, 唐晓强, 吕文涛, 程贺云, 杨林, 王海龙. 超声辅助定位下游离臂内侧皮瓣在修复手指创面中的临床应用[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(05): 393-397.
[3] 崔子豪, 阳跃, 赵景峰, 冯光, 庹晓晔. Fournier坏疽创面感染控制策略及创面修复的临床分析[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(04): 319-323.
[4] 狄海萍, 郑军杰, 刘磊, 郭海娜, 邢培朋, 曹大勇, 马超, 黄万新, 张博, 夏成德, 周超. 人工真皮联合富血小板纤维蛋白修复小面积深度创面的临床疗效[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(04): 288-293.
[5] 孙勇, 彭曦. 重视烧伤创面愈合中的葡萄糖代谢以优化营养治疗策略[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(04): 277-281.
[6] 程宇欣, 张伟, 孔维诗, 孙瑜. 胶原蛋白敷料在创面修复中应用的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(01): 73-77.
[7] 廖晓霜, 曾李, 杨波. 脱细胞同种异体真皮联合自体皮修复糖尿病足创面的临床效果[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(01): 46-50.
[8] 张健, 刘小龙, 查天建, 姚俊杰, 王傑. 富含血小板血浆联合异种脱细胞真皮基质修复糖尿病足缺血性创面的临床效果[J/OL]. 中华损伤与修复杂志(电子版), 2023, 18(06): 503-506.
[9] 刘江涛, 王一勇, 欧阳容兰, 黄书润. 采用改良胸脐带蒂皮瓣修复手腕背部深度创面的临床效果[J/OL]. 中华损伤与修复杂志(电子版), 2023, 18(04): 321-325.
[10] 王雪, 程微, 苏建东. 微针法表皮移植应用的新进展[J/OL]. 中华损伤与修复杂志(电子版), 2023, 18(03): 270-273.
[11] 杨润功. 重视国家军队重大医疗需求以推动创面修复科快速发展[J/OL]. 中华损伤与修复杂志(电子版), 2023, 18(03): 191-196.
[12] 陆树良. 重视创面修复学科的规范化建设和理论培训[J/OL]. 中华损伤与修复杂志(电子版), 2023, 18(03): 188-190.
[13] 黄跃生. 努力建设高水平创面修复新学科[J/OL]. 中华损伤与修复杂志(电子版), 2023, 18(03): 185-187.
[14] 肖仕初. 微型皮移植的创新与应用[J/OL]. 中华损伤与修复杂志(电子版), 2023, 18(02): 184-184.
[15] 李芳, 李全, 曹胜军, 王凌峰. 生长因子和细胞因子在创面修复过程中作用的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2023, 18(02): 174-179.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?