切换至 "中华医学电子期刊资源库"

中华损伤与修复杂志(电子版) ›› 2021, Vol. 16 ›› Issue (04) : 301 -309. doi: 10.3877/cma.j.issn.1673-9450.2021.04.004

论著

色素上皮衍生因子在创面中的表达变化及对人真皮微血管内皮细胞的作用与机制
舒斌1, 朱君佑1, 祁少海1,()   
  1. 1. 510080 广州,中山大学附属第一医院烧伤外科
  • 收稿日期:2021-05-16 出版日期:2021-08-05
  • 通信作者: 祁少海
  • 基金资助:
    国家自然科学基金面上项目(81971833); 广东省自然科学基金面上项目(2021A1515011806)

Expression of pigment epithelium-derived factor in wound healing and its effect and mechanism on human dermal microvascular endothelial cells

Bin Shu1, Junyou Zhu1, Shaohai Qi1,()   

  1. 1. Department of Burn Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
  • Received:2021-05-16 Published:2021-08-05
  • Corresponding author: Shaohai Qi
引用本文:

舒斌, 朱君佑, 祁少海. 色素上皮衍生因子在创面中的表达变化及对人真皮微血管内皮细胞的作用与机制[J]. 中华损伤与修复杂志(电子版), 2021, 16(04): 301-309.

Bin Shu, Junyou Zhu, Shaohai Qi. Expression of pigment epithelium-derived factor in wound healing and its effect and mechanism on human dermal microvascular endothelial cells[J]. Chinese Journal of Injury Repair and Wound Healing(Electronic Edition), 2021, 16(04): 301-309.

目的

探讨色素上皮衍生因子(PEDF)在创面愈合过程中的表达变化情况以及对人真皮微血管内皮细胞(hDMEC)的作用和潜在机制。

方法

运用生物信息学方法,通过NCBI GEO数据库行基因芯片分析,明确PEDF在创面愈合过程中表达变化情况;选择3只SD大鼠,制作创面模型,收集皮肤组织样本进行实时荧光定量PCR及蛋白质印迹法检测,验证PEDF在创面愈合过程中表达变化情况;细胞划痕试验探究PEDF对hDMEC迁移能力的影响,细胞计数试剂盒(CCK)-8试验探究PEDF对hDMEC增殖能力的影响,成管实验探究PEDF对hDMEC血管形成能力的影响;STRING预测PEDF-蛋白间相互作用关系,最终通过蛋白质印迹法检测PEDF与hDMEC Wnt/β-catenin通路间关系。数据比较采用单因素方差分析和LSD-t检验。

结果

(1)R语言分析基因芯片GSE28914人皮肤正常创面愈合过程中PEDF变化情况,发现人正常皮肤组织中PEDF表达量为-0.04±0.03,而人皮肤正常创面愈合过程中,PEDF在凝血期(创后即刻)一过性升高(0.84±0.12),比较差异有统计学意义(差异倍数= 0.89,P=0.002),炎症期(创后第3天)迅速下降(-0.60±0.09),比较差异有统计学意义(差异倍数=-0.55,P=0.010),最终逐渐恢复到正常皮肤水平(0.03±0.06),比较差异有统计学意义(差异倍数=-0.07,P=0.602);(2)SD大鼠皮肤组织PEDF表达量高于创后第3天,SD大鼠皮肤中PEDF的RNA相对表达量为1.15±0.13,创后第3天SD大鼠创面组织中PEDF的RNA相对表达量为0.45±0.04,比较差异有统计学意义(t=9.21,P<0.001)。SD大鼠皮肤组织中相对PEDF蛋白表达水平为1.32±0.15,创后第3天SD大鼠创面组织中PDEF蛋白表达水平为0.83±0.08,比较差异有统计学意义(t=5.11,P<0.001);(3)PEDF抑制hDMEC迁移能力,siPEDF组、rPEDF组、对照组的内皮细胞迁移率分别是(92.01±3.04)%、(19.51±3.93)%、(57.03±1.065)%,3组比较差异有统计学意义(F=459.30,P<0.001)。siPEDF组的迁移率明显高于对照组,差异有统计学意义(t=25.29,P<0.001),rPEDF组的迁移率明显低于对照组,差异有统计学意义(t=15.98,P<0.001)。siPEDF组内皮细胞迁移率为对照组2倍,rPEDF组内皮细胞迁移率为对照组的1/3;(4)PEDF抑制hDMEC增殖能力,siPEDF组、rPEDF组、对照组的内皮细胞增殖率分别是(442.60±58.90)%、(248.90±52.19)%、(333.80±47.70)%,3组比较差异有统计学意义(F=16.69,P<0.001)。siPEDF组的增殖率明显高于对照组,差异有统计学意义(t=3.21,P=0.013),rPEDF组的增殖率明显低于对照组,差异有统计学意义(t=2.69,P=0.028);(5)PEDF抑制hDMEC成管能力:siPEDF组、rPEDF组、对照组的内皮细胞成管结点数分别是(38.00±4.58)、(11.33±3.51)、(23.67±6.66)个,3组比较差异有统计学意义(F=20.64,P=0.002),siPEDF组的成管结点数明显多于对照组,差异有统计学意义(t=3.07,P=0.037),rPEDF组的成管结点数明显少于对照组,差异有统计学意义(t=2.84,P=0.047);siPEDF组、rPEDF组、对照组的成管长度分别是(1 518.00±250.90)、(365.8±91.52)、(925.50±193.00) ppi,3组比较差异有统计学意义(F=27.53,P<0.001),siPEDF组的成管长度明显长于对照组,差异有统计学意义(t=3.24,P=0.032),rPEDF组的成管长度明显短于对照组,差异有统计学意义(t=4.54,P=0.011);(6)PEDF与经典Wnt/β-catenin信号通路关键蛋白存在相互作用,STRING预测蛋白-蛋白之间的相互作用关系,发现PEDF与Wnt/β-catenin信号通路之间存在共同作用蛋白;(7)PEDF抑制Wnt1、β-catenin蛋白表达,siPEDF组、rPEDF组、对照组hDMEC中Wnt1蛋白相对表达水平分别为0.84±0.04、0.12±0.05、0.66±0.08,3组比较差异有统计学意义(F=114.80,P<0.001),siPEDF组的Wnt1的蛋白表达水平明显高于对照组,差异有统计学意义(t=4.95,P=0.036),rPEDF组的Wnt1的蛋白表达水平明显低于对照组,差异有统计学意义(t=13.94,P=0.005);siPEDF组、rPEDF组、对照组β-catenin蛋白相对表达水平分别为0.77±0.05、0.50±0.07、0.63±0.06,3组比较差异有统计学意义(F=15.04,P=0.005),siPEDF组的β-catenin的蛋白表达水平明显高于对照组,差异有统计学意义(t=6.51,P=0.023),rPEDF组的β-catenin的蛋白表达水平明显低于对照组,差异有统计学意义(t=4.56,P=0.045)。

结论

PEDF随着创面愈合过程,其表达呈动态的变化;PEDF可能通过调节Wnt/β-catenin通路,进而抑制hDMEC的迁移、增殖与成管,最终影响创面愈合。

Objective

To investigate the expression of pigment epithelium-derived factor (PEDF) in wound healing and its effect and mechanism on human dermal microvascular endothelial cells (hDMEC).

Methods

The expression of PEDF during wound healing was determined by bioinformatics and gene chip analysis in NCBI GEO database; 3 SD rats were selected to make wound models, and skin tissue samples were collected for real-time fluorescence quantitative PCR and western blotting to verify the expression changes of PEDF in the process of wound healing. The cell scratch test was conducted to explore the effect of PEDF on the migration ability of hDMEC, the cell counting kit (CCK)-8 test was conduccted to explore the effect of PEDF on the proliferation of hDMEC, and the tube formation experiment was conducted to explore the effect of PEDF on the angiogenesis of hDMEC. STRING was used to predicte the PEDF-protein interaction relationship, and finally passed western blotting was used to detect the relationship between PEDF and hDMEC Wnt/β-catenin pathway. Data were compared with one-way ANOVA and LSD-t test.

Results

(1) Bioinformatics analysis of gene chip GSE28914 by R showed that PEDF expression in human normal skin tissue was -0.04±0.03, and PEDF increased transiently during the coagulation phase (immediately after trauma) (0.84±0.12), the difference was statistically significant (Fold change= 0.89, P=0.002), decreased rapidly on the third day after trauma(-0.60±0.09), the difference was statistically significant (Fold change= -0.55, P=0.010), and finally returned to normal skin level(0.03±0.06), the difference was statistically significant (Fold change=-0.07, P=0.602). (2) The expression of PEDF in skin tissue of SD rats was higher than that in wound tissue on the third day after trauma. The relative expression level of PEDF RNA in skin of SD rats was 1.15±0.13, and that in wound tissue of SD rats on the third day after trauma was 0.45±0.04, the difference was statistically significant (t= 9.21, P< 0.001). The relative expression level of PEDF protein in skin tissue of SD rats was 1.32±0.15, and the expression level of PDEF protein in wound tissue of SD rats was 0.83±0.08 on the third day after trauma, the difference was statistically significant (t= 5.11, P< 0.001). (3) PEDF inhibited the migration of hDMEC. The migration rates of endothelial cells in siPEDF group, rPEDF group and control group were (92.01±3.04)%, (19.51±3.93)%, (57.03±1.065)%, respectively, and the difference was statistically significant (F=459.30, P< 0.001). The migration rate of siPEDF group was significantly higher than that of control group, the difference was statistically significant (t=25.29, P< 0.001), and the rPEDF group was significantly lower than that of control group, the difference was statistically significant (t=15.98, P< 0.001). The migration rate of endothelial cells in siPEDF group was two times that in control group, and that in rPEDF group was 1/3 of that in control group. (4) PEDF inhibited the proliferation of hDMEC. The proliferation rates of endothelial cells in siPEDF group, rPEDF group and control group were (442.60±58.90)%, (248.90±52.19)%, (333.80±47.70)%, respectively. There was statistically significant difference among the three groups (F= 16.69, P< 0.001). The proliferation rate of the siPEDF group was significantly higher than that of the control group, and the difference was statistically significant (t= 3.21, P= 0.013). The proliferation rate of the rPEDF group was significantly lower than that of the control group, and the difference was statistically significant (t= 2.69, P= 0.028). (5) PEDF inhibited hDMEC tube forming. The number of endothelial tube forming nodes in siPEDF group, rPEDF group and control group were (38.00±4.58), (11.33±3.51), (23.67±6.66) respectively, and the difference was statistically significant (F= 20.64, P= 0.002). The number of endothelial tube forming nodes in siPEDF group was significantly higher than that of control group, the difference was statistically significant (t= 3.07, P= 0.037). The number of nodes in rPEDF group was significantly less than that in control group, the difference was statistically significant (t= 2.84, P= 0.047); the tube length of siPEDF group, rPEDF group and control group were (1 518.00±250.90), (365.8±91.52) and (925.50±193.00) ppi, respectively, and the difference was statistically significant (F= 27.53, P< 0.001). The tube length of siPEDF group was significantly longer than that of control group, and the difference was statistically significant (t= 3.24, P= 0.032). The tube length of rPEDF group was significantly shorter than that of control group, the difference was statistically significant (t= 4.54, P= 0.011). (6) PEDF interacts with key proteins in the classical Wnt/β-catenin signaling pathway. STRING were used to predict the protein-protein interaction relationship and founded that there were co-acting proteins between PEDF and Wnt/β-catenin signaling pathway. (7) PEDF inhibited Wnt1 and β-catenin expression level. The relative expression levels of Wnt1 protein in hDMEC of siPEDF group, rPEDF group and control group were 0.84±0.04, 0.12±0.05 and 0.66±0.08, respectively. The differences among the three groups was statistically significant (F=114.80, P< 0.001). The protein expression level of Wnt1 in siPEDF group was significantly higher than that of control group, the difference was statistically significant (t=4.95, P= 0.036). The protein expression level of Wnt1 in rPEDF group was significantly lower than that of control group, the difference was statistically significant (t=13.94, P=0.005). The relative expression levels of β-catenin protein in siPEDF group, rPEDF group and control group were 0.77±0.05, 0.50±0.07 and 0.63±0.06, respectively, the differences between the three groups was statistically significant(F= 15.04, P= 0.005). The protein expression level of β-catenin in siPEDF group was significantly higher than that of the control group, and the difference was statistically significant (t=6.51, P=0.023). The protein expression level of β-catenin rPEDF group was significantly lower than that in control group, the difference was statistically significant (t=4.56, P=0.045).

Conclusion

The expression of PEDF changes dynamically within the wound healing process; PEDF might inhibit the ability of migration, proliferation, and tube formation in hDMEC by regulating Wnt/β-catenin pathway, and ultimately affect wound healing.

表1 引物名称与序列
图1 SD大鼠正常皮肤组织PEDF的蛋白表达水平明显高于创后第3天创面组织中的PEDF的蛋白表达水平;PEDF为色素上皮衍生因子
图2 划痕后即刻及划痕后24 h倒置荧光显微镜下观察3组hDMEC细胞迁移情况(100×)。A示划痕后即刻对照组hDMEC情况;B示划痕后即刻rPEDF组hDMEC情况;C示划痕后即刻siPEDF组hDMEC情况;D示划痕后24 h对照组hDMEC迁移情况;E示划痕后24 h rPEDF组hDMEC迁移情况;F示划痕后24 h siPEDF组hDMEC迁移情况;hDMEC为人真皮微血管内皮细胞;PEDF为色素上皮衍生因子
图3 倒置荧光显微镜下观察PEDF对hDMEC成管能力的影响(100×)。A示对照组血管内皮细胞成管结点数及成管长度;B示rPEDF组血管内皮细胞成管结点数及成管长度;C示siPEDF组血管内皮细胞成管结点数及成管长度;PEDF为色素上皮衍生因子;hDMEC为人真皮微血管内皮细胞
图4 STRING预测PEDF与Wnt/β-catenin信号通路关键蛋白相互作为关系;PEDF为色素上皮衍生因子
表2 PEDF参与信号通路
表3 PEDF参与细胞生物学行为
图5 PEDF抑制Wnt1、β-catenin蛋白表达;PEDF为色素上皮衍生因子
[1]
Hay RJ, Johns NE, Williams HC, et al. The global burden of skin disease in 2010: an analysis of the prevalence and impact of skin conditions[J]. J Invest Dermatol, 2014, 134(6): 1527-1534.
[2]
王科,晁生武. 创面愈合相关机制的研究进展[J/CD]. 中华损伤与修复杂志(电子版), 2021, 16(1): 81-84.
[3]
Li J, Du R, Bian Q, et al. Topical application of HA-g-TEMPO accelerates the acute wound healing via reducing reactive oxygen species (ROS) and promoting angiogenesis[J]. Int J Pharm, 2021, 597: 120328.
[4]
Bauer SM, Bauer RJ, Velazquez OC. Angiogenesis, vasculogenesis, and induction of healing in chronic wounds[J]. Vasc Endovascular Surg, 2005, 39(4): 293-306.
[5]
Dalirfardouei R, Jamialahmadi K, Jafarian AH, et al. Promising effects of exosomes isolated from menstrual blood-derived mesenchymal stem cell on wound-healing process in diabetic mouse model[J]. J Tissue Eng Regen Med, 2019, 13(4): 555-568.
[6]
朱君佑,祁少海. 血管生成的调节在瘢痕形成过程中的作用[J/CD]. 中华损伤与修复杂志(电子版), 2019, 14(4): 303-306.
[7]
Michalczyk ER, Chen L, Fine D, et al. Pigment Epithelium-Derived Factor (PEDF) as a Regulator of Wound Angiogenesis[J]. Sci Rep, 2018, 8(1): 11142.
[8]
He X, Cheng R, Benyajati S, et al. PEDF and its roles in physiological and pathological conditions: implication in diabetic and hypoxia-induced angiogenic diseases[J]. Clin Sci (Lond), 2015, 128(11): 805-823.
[9]
Famulla S, Lamers D, Hartwig S, et al. Pigment epithelium-derived factor (PEDF) is one of the most abundant proteins secreted by human adipocytes and induces insulin resistance and inflammatory signaling in muscle and fat cells[J]. Int J Obes (Lond), 2011, 35(6): 762-772.
[10]
Ek ET, Dass CR, Choong PF. PEDF: a potential molecular therapeutic target with multiple anti-cancer activities[J]. Trends Mol Med, 2006, 12(10): 497-502.
[11]
Wang JJ, Zhang SX, Mott R, et al. Salutary effect of pigment epithelium-derived factor in diabetic nephropathy: evidence for antifibrogenic activities[J]. Diabetes, 2006, 55(6): 1678-1685.
[12]
Yamagishi SI, Koga Y, Sotokawauchi A, et al. Therapeutic Potential of Pigment Epithelium-derived Factor in Cancer[J]. Curr Pharm Des, 2019, 25(3): 313-324.
[13]
He X, Cheng R, Benyajati S, et al. PEDF and its roles in physiological and pathological conditions: implication in diabetic and hypoxia-induced angiogenic diseases[J]. Clin Sci (Lond), 2015, 128(11): 805-823.
[14]
Wietecha MS, Król MJ, Michalczyk ER, et al. Pigment epithelium-derived factor as a multifunctional regulator of wound healing[J]. Am J Physiol Heart Circ Physiol, 2015, 309(5): H812-H826.
[15]
Tahara N, Nitta Y, Bekki M, et al. Two-hour postload plasma glucose and pigment epithelium-derived factor levels are markers of coronary artery inflammation in type 2 diabetic patients[J]. J Nucl Cardiol, 202027(4): 1352-1364.
[16]
郭星荣,冯烈,吴标良,等. 糖尿病慢性肾脏疾病患者血清色素上皮衍生因子水平的变化及其临床意义[J]. 中国糖尿病杂志2016, 24(7): 606-609.
[17]
Qi W, Yang C, Dai Z, et al. High Levels of Pigment Epithelium-Derived Factor in Diabetes Impair Wound Healing Through Suppression of Wnt Signaling[J]. Diabetes, 2015, 64(4): 1407-1419.
[18]
Ma D, Chen L, Shi J, et al. Pigment epithelium-derived factor attenuates angiogenesis and collagen deposition in hypertrophic scars[J]. Wound Repair Regen, 2020, 28(5): 684-695.
[1] 刘佳璇, 何迈越, 李俏, 徐兵河. 阿帕替尼在晚期乳腺癌治疗中的临床研究进展[J]. 中华乳腺病杂志(电子版), 2023, 17(01): 1-5.
[2] 林昌盛, 战军, 肖雪. 上皮性卵巢癌患者诊疗中基因检测及分子靶向药物治疗[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 505-510.
[3] 周子慧, 李恭驰, 李炳辉, 王知, 刘慧真, 王卉, 邹利军. 细胞自噬在创面愈合中作用的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 542-546.
[4] 陈继秋, 朱世辉. 皮肤牵张装置的临床应用现状[J]. 中华损伤与修复杂志(电子版), 2023, 18(05): 451-453.
[5] 全勇, 冉新泽, 胡梦佳, 陈芳, 陈乃成, 廖伟年, 陈默, 申明强, 陈石磊, 王崧, 王军平. 低氧习服在小鼠造血干细胞急性放射损伤修复中的作用观察[J]. 中华损伤与修复杂志(电子版), 2023, 18(04): 293-298.
[6] 中国老年医学学会烧创伤分会, 中国生物材料学会烧创伤创面修复材料分会. 中国糖尿病足截肢(趾)治疗专家共识(2022年版)[J]. 中华损伤与修复杂志(电子版), 2023, 18(01): 1-9.
[7] 刘甜甜, 李明, 朱含汀, 倪涛, 彭银波, 方勇. 创缘铁过载的临床样本验证与铁过载对小鼠创面愈合的影响[J]. 中华损伤与修复杂志(电子版), 2022, 17(06): 475-481.
[8] 张生军, 赵阿静, 李守博, 郝祥宏, 刘敏丽. 高糖通过HGF/c-met通路促进结直肠癌侵袭和迁移的实验研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 21-24.
[9] 江振剑, 蒋明, 黄大莉. TK1、Ki67蛋白在分化型甲状腺癌组织中的表达及预后价值研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 623-626.
[10] 张原, 李小龙, 王亚鹏. 胰腺癌中ANGPTL2蛋白与免疫抑制细胞浸润的关系及临床意义[J]. 中华普外科手术学杂志(电子版), 2023, 17(02): 145-148.
[11] 谭林, 蒲运刚, 朱顺, 杨希. 急性呼吸窘迫综合征患者血清FGF21、ANGPTL4、HO-1表达及其临床意义[J]. 中华肺部疾病杂志(电子版), 2023, 16(02): 227-229.
[12] 刘燕, 叶亚萍, 郑艳莉. 干扰LINC00466通过miR-493-3p/MIF抑制子宫内膜癌RL95-2细胞恶性生物学行为[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(03): 151-158.
[13] 莫钊鸿, 翟航, 苏日顺, 孟泓宇, 罗豪, 陈文豪, 许瑞云. U2AF2表达对肝细胞癌增殖和迁移的影响及其与预后的关系[J]. 中华肝脏外科手术学电子杂志, 2023, 12(03): 336-341.
[14] 魏志鸿, 郭娟, 江哲龙, 江艺, 吕立志. miR-4458靶向结合BZW2对肝癌细胞增殖、迁移和侵袭的影响[J]. 中华肝脏外科手术学电子杂志, 2023, 12(01): 108-113.
[15] 张懿炜, 胡亚欣, 出良钊, 严昭, 曾茜, 蒲茜. CREB3通过下调FAK磷酸化水平抑制胶质瘤细胞增殖及侵袭转移的体外实验研究[J]. 中华临床医师杂志(电子版), 2023, 17(02): 202-209.
阅读次数
全文


摘要