切换至 "中华医学电子期刊资源库"

中华损伤与修复杂志(电子版) ›› 2021, Vol. 16 ›› Issue (04) : 289 -300. doi: 10.3877/cma.j.issn.1673-9450.2021.04.003

论著

体外周期性压应力对兔胫骨骨折愈合过程成骨与破骨细胞增殖分化能力的影响
林伟斌1, 朱聪2, 洪海森3, 黄国锋3, 高明明3, 吴进3, 沙漠3, 林灿斌3, 陈娜娜2, 张晓旭2, 丁真奇3,()   
  1. 1. 363007 漳州市第三医院骨科;363000 漳州,解放军联勤保障部队第909医院骨科
    2. 614000 乐山,解放军陆军32280部队
    3. 363000 漳州,解放军联勤保障部队第909医院骨科
  • 收稿日期:2021-05-10 出版日期:2021-08-05
  • 通信作者: 丁真奇
  • 基金资助:
    军队后勤科研项目(CNJ16C013); 军队青年医学科技培育项目(19QNP046)

Effects of cyclic compressive stress in vitro on the proliferation and differentiation of osteoblasts and osteoclasts during the healing of New Zealand rabbit tibia fracture

Weibin Lin1, Cong Zhu2, Haisen Hong3, Guofeng Huang3, Mingming Gao3, Jin Wu3, Mo Sha3, Canbin Lin3, Nana Chen2, Xiaoxu Zhang2, Zhenqi Ding3,()   

  1. 1. Department of Orthopedic Surgery, Third Hospital of Zhangzhou, Zhangzhou 363007, China; Department of Orthopedic Surgery, the 909th Hospital of Joint Service Support Force of Chinese People′s Liberation Army, Zhangzhou 363000, China
    2. Chinese People′s Liberation Army Number 32280, Leshan 614000, China
    3. Department of Orthopedic Surgery, the 909th Hospital of Joint Service Support Force of Chinese People′s Liberation Army, Zhangzhou 363000, China
  • Received:2021-05-10 Published:2021-08-05
  • Corresponding author: Zhenqi Ding
引用本文:

林伟斌, 朱聪, 洪海森, 黄国锋, 高明明, 吴进, 沙漠, 林灿斌, 陈娜娜, 张晓旭, 丁真奇. 体外周期性压应力对兔胫骨骨折愈合过程成骨与破骨细胞增殖分化能力的影响[J]. 中华损伤与修复杂志(电子版), 2021, 16(04): 289-300.

Weibin Lin, Cong Zhu, Haisen Hong, Guofeng Huang, Mingming Gao, Jin Wu, Mo Sha, Canbin Lin, Nana Chen, Xiaoxu Zhang, Zhenqi Ding. Effects of cyclic compressive stress in vitro on the proliferation and differentiation of osteoblasts and osteoclasts during the healing of New Zealand rabbit tibia fracture[J]. Chinese Journal of Injury Repair and Wound Healing(Electronic Edition), 2021, 16(04): 289-300.

目的

探究体外周期性压应力对兔胫骨骨折愈合过程成骨与破骨细胞增殖分化能力的影响。

方法

选取48只健康雄性4个月龄新西兰大白兔,所有样本均于右侧胫腓联合下0.5 cm处横行截骨构建兔胫骨骨折模型,行骨折复位钢板内固定术及高分子石膏外固定治疗。采用随机数字表法将48只新西兰大白兔分为实验组和对照组,每组24只。实验组于术后第8天开始施加大小15 N、频率1 Hz、叩击持续时间5 s、间隔3 s、30 min/次、1次/2 d的体外周期性压应力轴向应力刺激;对照组无应力刺激。分别于术后2、4、6、8周依次从2组各选6只新西兰大白兔,通过X线片检查骨折愈合情况,并计算比较2组Lane-Sandhu X线评分;术后2、4、6、8周2组分别处死6只新西兰大白兔,取骨折区骨组织标本,通过苏木精-伊红(HE)染色观察比较2组新生骨痂、骨髓腔、骨小梁等构成排列,以及新生骨组织中成骨细胞增生情况;术后2、4、6、8周分别取2组骨组织每组各3份切片,通过免疫组化染色检测2组新生骨组织中成骨细胞相关分子核心结合因子α1(Cbf-α1)、骨钙素、骨保护素(OPG)及核因子-κB受体活化因子配体(RANKL)的表达水平,并计算比较不同时间点2组OPG/RANKL比值。数据比较采用独立样本t检验。

结果

(1)X线片显示,术后2周,实验组和对照组骨折线均清晰可见,仅少量外骨痂生长;术后4周,实验组和对照组骨折间隙均明显变小,实验组骨折线较对照组模糊,骨痂量多于对照组;术后6周,实验组骨折线模糊,外骨痂生长致密,且有少量内骨痂生长,基本达到骨性愈合,对照组骨折线与第4周相比较模糊,骨折端骨痂量较实验组少;术后8周,对照组骨折线基本消失,实验组骨折线完全消失,且实验组骨痂量仍明显多于对照组。术后4、6、8周,实验组Lane-Sandhu评分分别为(5.17±1.07)、(7.33±0.94)、(9.17±1.07)分,均高于对照组[(3.50±0.76)、(5.83±1.07)、(7.33±1.25)分],比较差异均有统计学意义(t= 2.84、2.36、2.50,P=0.02、0.04、0.03)。(2)HE染色观察显示,术后2周,实验组较对照组出现更多成骨细胞;术后4、6、8周,实验组较对照组更早形成骨髓腔及骨小梁组织,且骨组织较对照组更早成熟。(3)免疫组织化学染色观察显示:①实验组和对照组Cbf-α1术后2周均呈低表达,术后4周表达达到高峰,术后6~8周表达逐渐减少,且术后2、4、6、8周,实验组Cbf-α1表达均高于对照组;不同时间点实验组Cbf-α1的平均吸光度值分别为263.20±49.95、503.39±38.53、377.98±12.38、276.91±8.61,均高于对照组(123.05±14.60、359.51±58.98、339.14±18.98、224.54±23.94),比较差异均有统计学意义(t= 4.67、3.54、2.97、3.57,P= 0.01、0.03、0.04、0.03);②术后2、4、6、8周,实验组和对照组骨钙素表达量均逐渐增高,且实验组骨钙素的表达均高于对照组;术后2、4、6、8周,实验组骨钙素的平均吸光度值分别为45.28±4.96、283.80±49.01、450.06±61.42、619.00±105.40,均高于对照组(5.29±4.49、20.94±7.59、220.39±32.18、424.98±32.84),比较差异均有统计学意义(t= 10.35、9.18、5.74、3.05,P< 0.05);③实验组和对照组OPG术后2周均呈低表达,术后4周表达达到高峰,术后6、8周表达逐渐减少;术后2、4、6、8周,实验组OPG的表达均高于对照组;不同时间点实验组OPG的平均吸光度值分别为443.97±23.61、576.91±37.21、278.28±16.38、144.13±30.20,均高于对照组(374.66±26.30、454.50±49.95、233.17±21.35、62.82±4.16),比较差异均有统计学意义(t= 3.40、3.40、2.90、4.62,P<0.05);④实验组和对照组RANKL表达量在术后2、4周均较低,术后6、8周表达量逐渐增多;术后2、4、6、8周,实验组RANKL的表达量均低于对照组;实验组不同时间点RANKL的平均吸光度值分别为203.34±18.16、186.63±19.50、261.78±28.33、441.06±17.89,均低于对照组(275.64±26.68、277.28±9.49、385.13±11.56、485.20±8.15),比较差异均有统计学意义(t= 3.88、7.24、6.98、3.89,P< 0.05);⑤术后2、4、6、8周,实验组OPG/RANKL的平均吸光度值比值分别为2.19±0.18、3.13±0.53、1.08±0.18、0.33±0.08,均大于对照组(1.37±0.21、1.64±0.22、0.61±0.07、0.13±0.01),比较差异均有统计学意义(t=5.14、4.50、4.14、4.50,P<0.05)。

结论

体外周期性压应力可通过促进骨折局部成骨细胞因子Cbf-α1、骨钙素、OPG的表达及抑制骨折局部破骨细胞因子RANKL的表达,提高OPG/RANKL的比值,从而延缓骨吸收促进兔胫骨骨折愈合。

Objective

To investigate the effects of cyclic compressive stress in vitro on the proliferation and differentiation of osteoblasts and osteoclasts during fracture healing of New Zealand rabbit tibia fracture.

Methods

A total of 48 healthy male New Zealand rabbits at the age of 4 months were selected. All the samples were transversely osteotomized at 0.5 cm below the right joint of the tibia and fibula to construct a rabbit tibia fracture model, steel plate internal fixation and polymeric plaster external fixation treatment were used. Forty-eight New Zealand rabbits were divided into the experimental group and the control group according to the random number table method, 24 in each group. On the 8th day after operation, the experimental group was applied external periodic compressive stress axial stress stimulation of 15 N, frequency 1 Hz, duration of slamming 5 s, interval 3 s, 30 min/time, 1 time/2 days; no stress stimulation was applied in the control group. At 2, 4, 6, and 8 weeks after operation, 6 New Zealand white rabbits from each of the 2 groups were selected in turn, and the fracture healing was checked by Lane-Sandhu X-ray film, and the Lane-Sandhu X-ray scores of the 2 groups were calculated and compared. At 2, 4, 6, and 8 weeks after the operation, 6 New Zealand rabbits were sacrificed in the 2 groups, and bone tissue samples were taken from the fracture area. The hematoxylin-eosin (HE) staining was used to observe and compare the composition and arrangement of new callus, bone marrow cavity, trabecular bone, and the proliferation of osteoblasts in the new bone tissue of the 2 groups. At 2, 4, 6, and 8 weeks after operation, 3 slices of each group of bone tissues were taken from each of the 2 groups, and the expression levels of core-binding factor α1 (Cbf-α1), osteocalcin, osteoprotegerin (OPG) and receptor activator of NF-κB ligand (RANKL) in the new callus of these 2 groups were compared by immunohistochemical staining, and the ratio of OPG/RANKL of the two groups at different time points were calculated and compared. Data were compared with independent sample t test.

Results

(1) X-ray film showed that the fracture lines of the experimental group and the control group were clearly visible 2 weeks after the operation, and only a small amount of external callus grew. At 4 weeks after the operation, the fracture gap between the experimental group and the control group was significantly smaller, and the fracture line of the experimental group was lower than that of the control group. At 6 weeks after the operation, the fracture line of the experimental group was blurred, the outer callus grew densely, and there was a small amount of internal callus growth, which basically achieved bony union, the fracture line of the control group was blurred compared with 4 weeks after the operation, and the volume of the fractured callus was higher Less. At 8 weeks after the operation, the fracture line in the control group basically disappeared, the fracture line in the experimental group disappeared completely, and the amount of callus in the experimental group was still significantly more than that in the control group. At 4, 6 and 8 weeks after operation, the Lane-Sandhu scores of the experimental group were (5.17±1.07), (7.33±0.94), (9.17±1.07) points, which were higher than those of the control group [(3.50±0.76), (5.83±1.07), (7.33±1.25) points], the differences were statistically significant (t=2.84, 2.36, 2.50; P= 0.02, 0.04, 0.03). (2) HE staining observation showed that the experimental group had more osteoblasts than the control group at 2 weeks after the operation; at 4, 6, 8 weeks after the operation, the bone marrow cavity and trabecular bone tissue were formed in the experimental group earlier than the control group, and the bone tissue matured earlier than the control group. (3) Immunohistochemical staining observations showed: ① the expression levels of Cbf-α1 in the experimental group and the control group were both low at 2 weeks after the operation, reached a peak at 4 weeks after the operation, and gradually decreased at 6 to 8 weeks after the operation. At 2, 4, 6, and 8 weeks after the operation, the expression of Cbf-α1 in the experimental group was higher than that of the control group; the average absorbance values of Cbf-α1 in the experimental group at different time points were 263.20±49.95, 503.39±38.53, 377.98±12.38, 276.91±8.61, respectively, all higher than the control group (123.05±14.60, 359.51±58.98, 339.14±18.98, 224.54±23.94), the differences were statistically significant (t= 4.67, 3.54, 2.97, 3.57; P= 0.01, 0.03, 0.04, 0.03). ② At 2, 4, 6, 8 weeks after operation, the expression of osteocalcin in the experimental group and the control group gradually increased, and the expression of osteocalcin in the experimental group was higher than that of the control group. At 2, 4, 6, and 8 weeks after operation, the average absorbance values of osteocalcin in the experimental group were 45.28±4.96, 283.80±49.01, 450.06±61.42 and 619.00±105.40, which were higher than those of the control group (5.29±4.49, 20.94±7.59, 220.39±32.18, 424.98±32.84), the differences were statistically significant (t= 10.35, 9.18, 5.74, 3.05; P<0.05). ③ The expression levels of OPG in the experimental group and the control group were both low expression at 2 weeks after operation, peaked at at 4 weeks after operation, , and gradually decreased from the 6 to 8 weeks after operation. At 2, 4, 6, and 8 weeks after operation, the expression of OPG in the experimental group was higher than that in the control group; the average absorbance values of OPG in the experimental group at different time points were 443.97±23.61, 576.91±37.21, 278.28±16.38, 144.13±30.20, respectively, all higher than the control group (374.66±26.30, 454.50±49.95, 233.17±21.35, 62.82±4.16), the differences were statistically significant (t= 3.40, 3.40, 2.90, 4.62; P<0.05). ④ The expression of RANKL in the experimental group and the control group were both low at 2 and 4 weeks after operation, and the expression increased gradually at 6 and 8 weeks after operation. At 2, 4, 6 and 8 weeks after operation, the expression of RANKL in the experimental group was lower than that in the control group; the average absorbance values of RANKL in the experimental group at different time points were 203.34±18.16, 186.63±19.50, 261.78±28.33, 441.06±17.89, respectively, all lower than the control group (275.64±26.68, 277.28±9.49, 385.13±11.56, 485.20±8.15), and the differences were statistically significant (t= 3.88, 7.24, 6.98, 3.89; P<0.05). ⑤At 2, 4, 6, and 8 weeks after operation, the average absorbance ratios of OPG/RANKL in the experimental group were 2.19±0.18, 3.13±0.53, 1.08±0.18, 0.33±0.08, which were all larger than those of the control group (1.37±0.21, 1.64±0.22, 0.61±0.07, 0.13±0.01), the differences were statistically significant (t= 5.14, 4.50, 4.14, 4.50; P<0.05).

Conclusion

Cyclic compressive stress in vitro can promote the expression of local osteoblasts Cbf-α1, osteocalcin and OPG in fractures and inhibit the expression of local osteoclast factor RANKL in fractures, thereby increasing the ratio of OPG/RANKL, delaying bone resorption and promoting healing of New Zealand rabbit tibia fracture.

图1 叩击式骨应力刺激仪与固定装置
图2 新西兰大白兔右下肢胫骨骨折模型制备+骨折复位钢板内固定术。A示用线锯于右侧胫腓联合下0.5 cm处横行截骨制造兔胫骨骨折模型;B示复位及钢板系统固定完好的兔胫骨骨折断端;C示用石膏固定患肢于屈髋屈膝位的新西兰大白兔
图3 实验组新西兰大白兔体外周期性压应力的添加
表1 Lane-Sandhu X线评分标准
图4 2组新西兰大白兔右下肢胫骨骨折复位钢板内固定术后不同时间点X线显示骨折愈合情况。A、B、C、D分别示对照组术后2、4、6、8周X线检查骨折愈合情况,随着时间延长,新生骨组织越来越多,骨折线越来越模糊;E、F、G、H分别示实验组术后2、4、6、8周X线检查骨折愈合情况,随着时间延长,新生骨组织越来越多,骨折线越来越模糊;且在同一时间点,实验组新生骨组织量较对照组多,其骨折线也较对照组更模糊
表2 2组新西兰大白兔右下肢胫骨骨折复位钢板内固定术后不同时间点Lane-Sandhu X线评分比较(分,±s)
图5 HE染色检测2组新西兰大白兔右下肢胫骨骨折复位钢板内固定术后不同时间点骨组织情况(×200),图中标尺为200 μm。A、B、C、D分别示对照组术后2、4、6、8周HE染色检测新生骨组织情况;E、F、G、H分别示实验组术后2、4、6、8周HE染色检测新生骨组织情况;术后2周,实验组较对照组出现更多成骨细胞;术后4、6、8周,实验组较对照组更早形成骨髓腔及骨小梁组织,且骨组织较对照组更早成熟;HE为苏木精-伊红
图6 免疫组织化学染色观察2组新西兰大白兔右下肢胫骨骨折复位钢板内固定术后不同时间点骨组织中Cbf-α1表达情况(×200),图中标尺为200 μm。A、B、C、D分别示对照组术后2、4、6、8周新生骨组织中Cbf-α1表达情况;E、F、G、H分别示实验组术后2、4、6、8周新生骨组织中Cbf-α1表达情况;实验组和对照组Cbf-α1术后2周均低表达,术后4周表达达到高峰,术后6、8周表达逐渐减少;术后2、4、6、8周,实验组Cbf-α1的表达均高于对照组;Cbf-α1为成骨细胞相关分子核心结合因子α1
表3 2组新西兰大白兔右下肢胫骨骨折复位钢板内固定术后不同时间点骨组织Cbf-α1的平均吸光度值比较(±s)
图7 免疫组织化学染色观察2组新西兰大白兔右下肢胫骨骨折复位钢板内固定术后不同时间点骨组织中骨钙素表达情况(×200),图中标尺为200 μm。A、B、C、D分别示对照组术后2、4、6、8周新生骨组织中骨钙素表达情况;E、F、G、H分别示实验组术后2、4、6、8周新生骨组织中骨钙素表达情况;术后2、4、6、8周,实验组和对照组骨钙素表达量均逐渐增高,且实验组骨钙素的表达均高于对照组
表4 2组新西兰大白兔右下肢胫骨骨折复位钢板内固定术后不同时间点骨组织中骨钙素的平均吸光度值比较(±s)
图8 免疫组织化学染色观察2组新西兰大白兔右下肢胫骨骨折复位钢板内固定术后不同时间点骨组织中OPG表达情况(×200),图中标尺为200 μm。A、B、C、D分别示对照组术后2、4、6、8周新生骨组织中OPG表达情况;E、F、G、H分别示实验组术后2、4、6、8周新生骨组织中OPG表达情况;实验组和对照组OPG术后2周均呈低表达,术后4周表达达到高峰,术后6、8周表达逐渐减少;术后2、4、6、8周,实验组OPG的表达均高于对照组;OPG为骨保护素
表5 2组新西兰大白兔右下肢胫骨骨折复位钢板内固定术后不同时间点骨组织中OPG的平均吸光度值比较(±s)
图9 免疫组织化学染色观察2组新西兰大白兔右下肢胫骨骨折复位钢板内固定术后不同时间点骨组织中RANKL表达情况(×200),图中标尺为200 μm。A、B、C、D分别示对照组术后2、4、6、8周新生骨组织中RANKL情况;E、F、G、H分别示实验组术后2、4、6、8周新生骨组织中RANKL情况。实验组和对照组RANKL表达量术后2、4周均较低,术后6、8周表达量逐渐增多,术后2、4、6、8周,实验组RANKL的表达量均低于对照组;RANKL为核因子-κB受体活化因子配体
表6 2组新西兰大白兔右下肢胫骨骨折复位钢板内固定术后不同时间点骨组织中RANKL的平均吸光度值比较(±s)
表7 2组新西兰大白兔右下肢骨折复位钢板内固定术后不同时间点骨组织OPG/RANKL的平均吸光度值比值测定比较(±s)
[1]
Chen JH, Liu C, You L, et al. Boning up on Wolff′s Law: mechanical regulation of the cells that make and maintain bone[J]. J Biomech, 2010, 43(1): 108-118.
[2]
Bosetti M, Sabbatini M, Nicolì E, et al. Effects and differentiation activity of IGF-I, IGF-II, insulin and preptin on human primary bone cells[J]. Growth Factors, 2013, 31(2): 57-65.
[3]
朱聪,黄国锋,江惠祥,等. 间歇式轴向压应力对组织工程骨种子细胞的黏附增殖与成骨分化促进作用的研究[J/CD]. 中华细胞与干细胞杂志(电子版), 2018, 8(6): 334-342.
[4]
Yao JF, Shen JZ, Li DK, et al. Rap system of stress stimulation can promote bone union after lower tibial bone fracture: a clinical research[J]. Int J Med Sci, 2012, 9(6): 462-466.
[5]
Huang G, Liu G, Zhang F, et al. Combination of heel-strike like mechanical loading with deproteinized cancellous bone scaffold implantation to repair segmental bone defects in rabbits[J]. Int J Med Sci, 2017, 14(9): 871-879.
[6]
刘国浚,黄国锋,高建廷,等. 骨应力刺激仪叩击治疗促进兔胫骨缺损内成骨及支架降解的实验研究[J]. 中华创伤骨科杂志2016, 18(10): 895-901.
[7]
Kapur S, Baylink DJ, Lau KH. Fluid flow shear stress stimulates human osteoblast proliferation and differentiation through multiple interacting and competing signal transduction pathways[J]. Bone, 2003, 32(3): 241-251.
[8]
许海燕,周洪,饶国洲. 持续压力对体外培养的人破骨细胞形态和基质金属蛋白酶9、抗酒石酸酸性磷酸酶表达的影响[J]. 上海口腔医学2008, 17(3): 285-288.
[9]
Gao C, Qiu ZY, Hou JW, et al. Clinical observation of mineralized collagen bone grafting after curettage of benign bone tumors[J]. Regen Biomater, 2020, 7(6): 567-575.
[10]
Liu C, Abedian R, Meister R, et al. Influence of perfusion and compression on the proliferation and differentiation of bone mesenchymal stromal cells seeded on polyurethane scaffolds[J]. Biomaterials, 2012, 33(4): 1052-1064.
[11]
Tanaka SM, Tachibana K. Frequency-Dependence of mechanically stimulated osteoblastic calcification in Tissue-Engineered bone in vitro[J]. Ann Biomed Eng, 2015, 43(9): 2083-2089.
[12]
Ravichandran A, Lim J, Chong MSK, et al. In vitro cyclic compressive loads potentiate early osteogenic events in engineered bone tissue[J]. J Biomed Mater Res B Appl Biomater, 2017, 105(8): 2366-2375.
[13]
Pacifici R. Role of T cells in ovariectomy induced bone loss—revisited[J]. J Bone Miner Res, 2012, 27(2): 231-239.
[14]
You L, Temiyasathit S, Lee P, et al. Osteocytes as mechanosensors in the inhibition of bone resorption due to mechanical loading[J]. Bone, 2008, 42(1): 172-179.
[15]
Kurata K, Uemura T, Nemoto A, et al. Mechanical Strain Effect on Bone-Resorbing Activity and Messenger RNA Expressions of Marker Enzymes in Isolated Osteoclast Culture[J]. J Bone Miner Res, 2001, 16(4): 722-730.
[16]
Taddei SR, Moura AP, Andrade I Jr, et al. Experimental model of tooth movement in mice: A standardized protocol for studying bone remodeling under compression and tensile strains[J]. J Biomech, 2012, 45(16): 2729-2735.
[17]
Wang L, Li JY, Zhang XZ, et al. Involvement of p38MAPK/NF-κB signaling pathways in osteoblasts differentiation in response to mechanical stretch[J]. Ann Biomed Eng, 2012, 40(9): 1884-1894.
[18]
Chen X, Yan J, He F, et al. Mechanical stretch induces antioxidant responses and osteogenic differentiation in human mesenchymal stem cells through activation of the AMPK-SIRT1 signaling pathway[J]. Free Radic Biol Med, 2018, 126: 187-201.
[19]
Song F, Jiang D, Wang T, et al. Mechanical Stress Regulates Osteogenesis and Adipogenesis of Rat Mesenchymal Stem Cells through PI3K/Akt/GSK-3beta/beta-Catenin Signaling Pathway[J]. Biomed Res Int, 2017, 2017: 6027402.
[20]
Malliga DE, Wagner D, Fahrleitner-Pammer A. The role of osteoprotegerin (OPG) receptor activator for nuclear factor kappaB ligand (RANKL) in cardiovascular pathology - a review[J]. Wien Med Wochenschr, 2011, 161(23/24): 565-570.
[21]
Liu XH, Kirschenbaum A, Yao S, et al. Interactive effect of interleukin-6 and prostaglandin E2 on osteoclastogenesis via the OPG/RANKL/RANK system[J]. Ann N Y Acad Sci, 2006, 1068: 225-233.
[22]
Agata H, Asahina I, Watanabe N, et al. Characteristic change and loss of in vivo osteogenic abilities of human bone marrow stromal cells during passage[J]. Tissue Eng Part A, 2010, 16(2): 663-673.
[23]
Yamada A, Yokoo T, Yokote S, et al. Comparison of multipotency and molecular profile of MSCs between CKD and healthy rats[J]. Hum Cell, 2014, 27(2): 59-67.
[1] 康夏, 田浩, 钱进, 高源, 缪洪明, 齐晓伟. 骨织素抑制破骨细胞分化改善肿瘤骨转移中骨溶解的机制研究[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 329-339.
[2] 中华医学会骨科学分会关节外科学组, 广东省医学会骨质疏松和骨矿盐疾病分会, 广东省佛山市顺德区第三人民医院. 中国髋部脆性骨折术后抗骨质疏松药物临床干预指南(2023年版)[J]. 中华关节外科杂志(电子版), 2023, 17(06): 751-764.
[3] 刘瀚忠, 黄生辉, 万俊明, 李家春, 舒涛. 髌上入路和髌旁外侧入路髓内钉治疗胫骨骨折疗效比较[J]. 中华关节外科杂志(电子版), 2023, 17(06): 795-801.
[4] 董红华, 郭艮春, 江磊, 吴雪飞, 马飞翔, 李海凤. 骨科康复一体化模式在踝关节骨折快速康复中的应用[J]. 中华关节外科杂志(电子版), 2023, 17(06): 802-807.
[5] 孟繁宇, 周新社, 赵志, 裴立家, 刘犇. 侧位直接前方入路髋关节置换治疗偏瘫肢体股骨颈骨折[J]. 中华关节外科杂志(电子版), 2023, 17(06): 865-870.
[6] 陈志超, 张志伟, 蒋勰, 顾祖超, 蒋菁芸, 许婷婷. 带线锚钉结合缝线捆扎固定髌骨下极粉碎性骨折[J]. 中华关节外科杂志(电子版), 2023, 17(05): 732-735.
[7] 周春林, 韩元龙, 丁飞, 吴玮杰. 踝关节骨折内固定术后形态变化及功能影响因素[J]. 中华关节外科杂志(电子版), 2023, 17(05): 736-740.
[8] 浦路桥, 徐永清, 齐保闯, 施洪鑫, 林玮, 卜鹏飞, 白艳, 唐志方, 李川. 中国髋部脆性骨折术后抗骨质疏松药物临床干预指南(2023年版)计划书[J]. 中华关节外科杂志(电子版), 2023, 17(05): 747-750.
[9] 刘丹丹, 宋鸣, 李霞, 徐夏君. 老年髋部骨折术后便秘的影响因素及其列线图预测模型[J]. 中华关节外科杂志(电子版), 2023, 17(05): 607-612.
[10] 夏效泳, 王立超, 朱治国, 丛云海, 史宗新. 深度塌陷性胫骨平台骨折的形态特点和治疗策略[J]. 中华关节外科杂志(电子版), 2023, 17(05): 625-632.
[11] 伊喆, 王志新, 陈伟, 齐伟亚, 方杰, 石海飞, 赵夏, 赵喆, 竺枫, 盛伟, 陈焱, 张宇昊, 朱瑾, 殷耀斌, 杨勇, 陈山林, 刘波. 机器人辅助无移位急性舟骨骨折经皮内固定的诊疗与手术操作规范[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 464-468.
[12] 丁晨梦, 胡雪慧, 闫沛, 程乔. 髋部骨折术后患者居家康复体验质性研究的Meta整合[J]. 中华老年骨科与康复电子杂志, 2023, 09(06): 365-372.
[13] 金浪, 石洁, 黄正, 贾永伟, 张建坡, 魏礼成, 金昊雷. 3D打印数字技术辅助改良交叉PVP对重度骨质疏松性椎体压缩骨折脊柱-骨盆矢状面平衡状态的影响[J]. 中华老年骨科与康复电子杂志, 2023, 09(05): 263-268.
[14] 傅佰圣, 李庆虎, 王大伟, 陶扶林, 王永会. 扩髓清创联合单边外固定架治疗长骨骨折髓内钉术后慢性感染的研究[J]. 中华老年骨科与康复电子杂志, 2023, 09(05): 289-294.
[15] 杨鹏, 刘冲. PFNA治疗老年股骨转子间骨折后隐匿性失血及其危险因素的横断面研究[J]. 中华老年骨科与康复电子杂志, 2023, 09(05): 301-306.
阅读次数
全文


摘要