切换至 "中华医学电子期刊资源库"

中华损伤与修复杂志(电子版) ›› 2021, Vol. 16 ›› Issue (04) : 349 -352. doi: 10.3877/cma.j.issn.1673-9450.2021.04.012

综述

颗粒酶B在组织损伤修复中的研究进展
王在强1, 金发光1, 傅恩清1,()   
  1. 1. 710038 西安,空军军医大学第二附属医院呼吸与危重症医学科
  • 收稿日期:2021-06-09 出版日期:2021-08-05
  • 通信作者: 傅恩清
  • 基金资助:
    陕西省重点研发计划(2017ZDL-SF-14-6)

Research progress of granzyme B in tissue injury repair

Zaiqiang Wang1, Faguang Jin1, Enqing Fu1,()   

  1. 1. Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Air Force Medical University, Xi′an 710038, China
  • Received:2021-06-09 Published:2021-08-05
  • Corresponding author: Enqing Fu
引用本文:

王在强, 金发光, 傅恩清. 颗粒酶B在组织损伤修复中的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2021, 16(04): 349-352.

Zaiqiang Wang, Faguang Jin, Enqing Fu. Research progress of granzyme B in tissue injury repair[J/OL]. Chinese Journal of Injury Repair and Wound Healing(Electronic Edition), 2021, 16(04): 349-352.

以往关于颗粒酶B的研究热点是其进入细胞内诱导肿瘤细胞或感染病毒细胞凋亡的作用。近年来越来越多的研究发现,颗粒酶B也可在细胞外基质中发挥作用,导致受损组织愈合不良。颗粒酶B可通过诱导炎症因子表达,破坏血管完整性,增加炎症细胞浸润,促进组织炎症反应,通过释放转化生长因子-β(TGF-β),活化白细胞介素(IL)-18,降解核心蛋白聚糖,促进组织纤维化。颗粒酶B在组织损伤修复中的作用日益引起重视,本文就颗粒酶B促进组织炎症反应和纤维化的机制作一综述。

Previous studies on granzyme B mainly focused on its role in inducing apoptosis of tumor cells or virus-infected cells. In recent years, more and more studies have found that granzyme B can also play a role in the extracellular matrix, leading to poor injury repair. Granzyme B promotes tissue inflammation by inducing the expression of inflammatory factors, destroying vascular integrity and increasing inflammatory cell infiltration, and promotes tissue fibrosis by releasing transforming growth factor-β (TGF-β), activating interleukin (IL)-18 and degrading decorin. The role of granzyme B in injury repair has attracted increasing attention. This article reviews the mechanism of granzyme B in promoting inflammation and fibrosis.

[1]
Masson D, Tschopp J. A family of serine esterases in lytic granules of cytolytic T lymphocytes[J]. Cell, 1987, 49(5): 679-685.
[2]
Waugh SM, Harris JL, Fletterick R, et al. The structure of the pro-apoptotic protease granzyme B reveals the molecular determinants of its specificity[J]. Nat Struct Biol, 2000, 7(9): 762-765.
[3]
Boivin WA, Cooper DM, Hiebert PR, et al. Intracellular versus extracellular granzyme B in immunity and disease: challenging the dogma[J]. Lab Invest, 2009, 89(11): 1195-1220.
[4]
Van Damme P, Maurer-Stroh S, Plasman K, et al. Analysis of protein processing by N-terminal proteomics reveals novel species-specific substrate determinants of granzyme B orthologs[J]. Mol Cell Proteomics, 2009, 8(2): 258-272.
[5]
Vahedi F, Fraleigh N, Vlasschaert C, et al. Human granzymes: related but far apart[J]. Med Hypotheses, 2014, 83(6): 688-693.
[6]
Turner CT, Hiroyasu S, Granville DJ. Granzyme B as a therapeutic target for wound healing[J]. Expert Opin Ther Targets, 2019, 23(9): 745-754.
[7]
Zeglinski MR, Granville DJ. Granzymes in cardiovascular injury and disease[J]. Cell Signal, 2020, 76: 109804.
[8]
Kurschus FC, Kleinschmidt M, Fellows E, et al. Killing of target cells by redirected granzyme B in the absence of perforin[J]. FEBS Lett, 2004, 562(1/3): 87-92.
[9]
Bao CX, Chen HX, Mou XJ, et al. GZMB gene silencing confers protection against synovial tissue hyperplasia and articular cartilage tissue injury in rheumatoid arthritis through the MAPK signaling pathway[J]. Biomed Pharmacother, 2018, 103: 346-354.
[10]
Hendel A, Hsu I, Granville DJ. Granzyme B releases vascular endothelial growth factor from extracellular matrix and induces vascular permeability[J]. Lab Invest, 2014, 94(7): 716-725.
[11]
Shen Y, Cheng F, Sharma M, et al. Granzyme B Deficiency Protects against Angiotensin II-Induced Cardiac Fibrosis[J]. Am J Pathol, 2016, 186(1): 87-100.
[12]
张天宇,SHEN Steve, 杨琳. 颗粒酶B在慢性鼓膜穿孔炎症损伤修复中的应用[J]. 中国眼耳鼻喉科杂志2016, 16(1): 7-9, 15.
[13]
Hiebert PR, Wu D, Granville DJ. Granzyme B degrades extracellular matrix and contributes to delayed wound closure in apolipoprotein E knockout mice[J]. Cell Death Differ, 2013, 20(10): 1404-1414.
[14]
Ewen CL, Kane KP, Bleackley RC. A quarter century of granzymes[J]. Cell Death Differ, 2012, 19(1): 28-35.
[15]
Sanad EF, Hamdy NM, El-Etriby AK, et al. Peripheral leucocytes and tissue gene expression of granzyme B/perforin system and serpinB9: Impact on inflammation and insulin resistance in coronary atherosclerosis[J]. Diabetes Res Clin Pract, 2017, 131: 132-141.
[16]
Hu X, Zhong Y, Lambers TT, et al. Anti-inflammatory activity of extensively hydrolyzed casein is mediated by granzyme B[J]. Inflamm Res, 2019, 68(8): 715-722.
[17]
Garzón-Tituaña M, Arias MA, Sierra-Monzón JL, et al. The Multifaceted Function of Granzymes in Sepsis: Some Facts and a Lot to Discover[J]. Front Immunol, 2020, 11: 1054.
[18]
Wang L, Jiang S, Xiao L, et al. Inhibition of granzyme B activity blocks inflammation induced by lipopolysaccharide through regulation of endoplasmic reticulum stress signaling in NK92 cells[J]. Mol Med Rep, 2018, 18(1): 580-586.
[19]
Kono H, Karmarkar D, Iwakura Y, et al. Identification of the cellular sensor that stimulates the inflammatory response to sterile cell death[J]. J Immunol, 2010, 184(8): 4470-4478.
[20]
Afonina IS, Tynan GA, Logue SE, et al. Granzyme B-dependent proteolysis acts as a switch to enhance the proinflammatory activity of IL-1alpha[J]. Mol Cell, 2011, 44(2): 265-278.
[21]
Akeda T, Yamanaka K, Tsuda K, et al. CD8+ T cell granzyme B activates keratinocyte endogenous IL-18[J]. Arch Dermatol Res, 2014, 306(2): 125-130.
[22]
Xiao H, Li H, Wang JJ, et al. IL-18 cleavage triggers cardiac inflammation and fibrosis upon beta-adrenergic insult[J]. Eur Heart J, 2018, 39(1): 60-69.
[23]
Zhang LM, Zhang J, Zhang Y, et al. Interleukin-18 binding protein attenuates lipopolysaccharide-induced acute lung injury in mice via suppression NF-kappaB and activation Nrf2 pathway[J]. Biochem Biophys Res Commun, 2018, 505(3): 837-842.
[24]
Pilkington SM, Barron MJ, Watson R, et al. Aged human skin accumulates mast cells with altered functionality that localize to macrophages and vasoactive intestinal peptide-positive nerve fibres[J]. Br J Dermatol, 2019, 180(4): 849-858.
[25]
Campos TM, Novais FO, Saldanha M, et al. Granzyme B Produced by Natural Killer Cells Enhances Inflammatory Response and Contributes to the Immunopathology of Cutaneous Leishmaniasis[J]. J Infect Dis, 2020, 221(6): 973-982.
[26]
Qiao J, Zhou M, Li Z, et al. Elevated serum granzyme B levels are associated with disease activity and joint damage in patients with rheumatoid arthritis[J]. J Int Med Res, 2020, 48(11): 300060520962954.
[27]
Jackson JR, Seed MP, Kircher CH, et al. The codependence of angiogenesis and chronic inflammation[J]. FASEB J, 1997, 11(6): 457-465.
[28]
Hendel A, Granville DJ. Granzyme B cleavage of fibronectin disrupts endothelial cell adhesion, migration and capillary tube formation[J]. Matrix Biol, 2013, 32(1): 14-22.
[29]
Nagy JA, Dvorak AM, Dvorak HF. VEGF-A and the induction of pathological angiogenesis[J]. Annu Rev Pathol, 2007, 2: 251-275.
[30]
Chamberlain CM, Ang LS, Boivin WA, et al. Perforin-independent extracellular granzyme B activity contributes to abdominal aortic aneurysm[J]. Am J Pathol, 2010, 176(2): 1038-1049.
[31]
Gross CC, Meyer C, Bhatia U, et al. CD8(+) T cell-mediated endotheliopathy is a targetable mechanism of neuro-inflammation in Susac syndrome[J]. Nat Commun, 2019, 10(1): 5779.
[32]
Matsubara JA, Tian Y, Cui JZ, et al. Retinal Distribution and Extracellular Activity of Granzyme B: A Serine Protease That Degrades Retinal Pigment Epithelial Tight Junctions and Extracellular Matrix Proteins[J]. Front Immunol, 2020, 11: 574.
[33]
Mulligan-Kehoe MJ, Drinane MC, Mollmark J, et al. Antiangiogenic plasma activity in patients with systemic sclerosis[J]. Arthritis Rheum, 2007, 56(10): 3448-3458.
[34]
Buzza MS, Zamurs L, Sun J, et al. Extracellular matrix remodeling by human granzyme B via cleavage of vitronectin, fibronectin, and laminin[J]. J Biol Chem, 2005, 280(25): 23549-23558.
[35]
Perl M, Denk S, Kalbitz M, et al. Granzyme B: a new crossroad of complement and apoptosis[J]. Adv Exp Med Biol, 2012, 946: 135-146.
[36]
Prakash MD, Munoz MA, Jain R, et al. Granzyme B promotes cytotoxic lymphocyte transmigration via basement membrane remodeling[J]. Immunity, 2014, 41(6): 960-972.
[37]
Merkulova Y, Shen Y, Parkinson LG, et al. Granzyme B inhibits keratinocyte migration by disrupting epidermal growth factor receptor (EGFR)-mediated signaling[J]. Biol Chem, 2016, 397(9): 883-895.
[38]
Turner CT, Zeglinski MR, Richardson KC, et al. Granzyme B Contributes to Barrier Dysfunction in Oxazolone-Induced Skin Inflammation through E-Cadherin and FLG Cleavage[J]. J Invest Dermatol, 2021, 141(1): 36-47.
[39]
Russo V, Klein T, Lim DJ, et al. Granzyme B is elevated in autoimmune blistering diseases and cleaves key anchoring proteins of the dermal-epidermal junction[J]. Sci Rep, 2018, 8(1): 9690.
[40]
Hu HH, Chen DQ, Wang YN, et al. New insights into TGF-beta/Smad signaling in tissue fibrosis[J]. Chem Biol Interact, 2018, 292: 76-83.
[41]
Boivin WA, Shackleford M, Vanden HA, et al. Granzyme B cleaves decorin, biglycan and soluble betaglycan, releasing active transforming growth factor-beta1[J]. PLoS One, 2012, 7(3): e33163.
[42]
孙云晖,王一新,马雪梅,等. 大鼠肺纤维化模型中NLRP3、IL-18表达及意义的探讨[J]. 临床肺科杂志2018, 23(5): 817-820.
[43]
Zhang LM, Zhang Y, Fei C, et al. Neutralization of IL-18 by IL-18 binding protein ameliorates bleomycin-induced pulmonary fibrosis via inhibition of epithelial-mesenchymal transition[J]. Biochem Biophys Res Commun, 2019, 508(2): 660-666.
[44]
Xiao H, Li H, Wang JJ, et al. IL-18 cleavage triggers cardiac inflammation and fibrosis upon beta-adrenergic insult[J]. Eur Heart J, 2018, 39(1): 60-69.
[45]
Fix C, Bingham K, Carver W. Effects of interleukin-18 on cardiac fibroblast function and gene expression[J]. Cytokine, 2011, 53(1): 19-28.
[46]
Platis A, Yu Q, Moore D, et al. The effect of daily administration of IL-18 on cardiac structure and function[J]. Perfusion, 2008, 23(4): 237-242.
[47]
Reese SP, Underwood CJ, Weiss JA. Effects of decorin proteoglycan on fibrillogenesis, ultrastructure, and mechanics of type I collagen gels[J]. Matrix Biol, 2013, 32(7/8): 414-423.
[48]
Danielson KG, Baribault H, Holmes DF, et al. Targeted disruption of decorin leads to abnormal collagen fibril morphology and skin fragility[J]. J Cell Biol, 1997, 136(3): 729-743.
[49]
Shen Y, Zeglinski MR, Turner CT, et al. Topical small molecule granzyme B inhibitor improves remodeling in a murine model of impaired burn wound healing[J]. Exp Mol Med, 2018, 50(5): 1-11.
[1] 蚁淳, 袁冬生, 熊学军. 系统免疫炎症指数与骨密度降低和骨质疏松的关联[J/OL]. 中华关节外科杂志(电子版), 2024, 18(05): 609-617.
[2] 黄蓉, 梁自毓, 祁文瑾. NLRP3炎症小体在胎膜早破孕妇血清中的表达及其意义[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(05): 540-548.
[3] 王振宇, 张洪美, 荆琳, 何名江, 闫奇. 膝骨关节炎相关炎症因子与血浆代谢物间的因果关系及中介效应[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 467-473.
[4] 张洁, 罗小霞, 余鸿. 系统性免疫炎症指数对急性胰腺炎患者并发器官功能损伤的预测价值[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 68-71.
[5] 唐梅, 周丽, 牛岑月, 周小童, 王倩. ICG荧光导航的腹腔镜肝切除术临床意义[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 655-658.
[6] 付成旺, 杨大刚, 王榕, 李福堂. 营养与炎症指标在可切除胰腺癌中的研究进展[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 704-708.
[7] 唐亦骁, 陈峻, 连正星, 胡海涛, 鲁迪, 徐骁, 卫强. 白果内酯对小鼠肝缺血再灌注损伤保护作用研究[J/OL]. 中华移植杂志(电子版), 2024, 18(05): 278-282.
[8] 高娟, 徐建庆, 闫芳, 丁盛华, 刘霞. Rutkow、TAPP、TEP 手术治疗单侧腹股沟疝患者的临床疗效及对血清炎症因子水平的影响[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(06): 675-680.
[9] 李智, 冯芸. NF-κB 与MAPK 信号通路及其潜在治疗靶点在急性呼吸窘迫综合征中的研究进展[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 840-843.
[10] 孙璐, 蒋亚玲, 陈凌君. 布托啡诺对脑缺血再灌注损伤大鼠神经炎症和JAK2/STAT3信号通路的影响[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 344-350.
[11] 陈意志. 核磁共振钆造影剂导致的肾源性系统性纤维化[J/OL]. 中华肾病研究电子杂志, 2024, 13(06): 358-358.
[12] 杜霞, 马梦青, 曹长春. 造影剂诱导的急性肾损伤的发病机制及干预靶点研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(05): 279-282.
[13] 王湛, 李文坤, 杨奕, 徐芳, 周敏思, 苏珈仪, 王亚丹, 吴静. 炎症指标在早发性结直肠肿瘤中的应用[J/OL]. 中华临床医师杂志(电子版), 2024, 18(09): 802-810.
[14] 李浩, 陈棋帅, 费发珠, 张宁伟, 李元东, 王硕晨, 任宾. 慢性肝病肝纤维化无创诊断的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(09): 863-867.
[15] 欧春影, 李晓宾, 郭靖, 朱亮, 许可, 王梦, 安晓雷. 丁苯酞对血管性认知障碍大鼠炎症因子的影响及对认知障碍的改善作用[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(05): 483-487.
阅读次数
全文


摘要