切换至 "中华医学电子期刊资源库"

中华损伤与修复杂志(电子版) ›› 2021, Vol. 16 ›› Issue (04) : 349 -352. doi: 10.3877/cma.j.issn.1673-9450.2021.04.012

综述

颗粒酶B在组织损伤修复中的研究进展
王在强1, 金发光1, 傅恩清1,()   
  1. 1. 710038 西安,空军军医大学第二附属医院呼吸与危重症医学科
  • 收稿日期:2021-06-09 出版日期:2021-08-05
  • 通信作者: 傅恩清
  • 基金资助:
    陕西省重点研发计划(2017ZDL-SF-14-6)

Research progress of granzyme B in tissue injury repair

Zaiqiang Wang1, Faguang Jin1, Enqing Fu1,()   

  1. 1. Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Air Force Medical University, Xi′an 710038, China
  • Received:2021-06-09 Published:2021-08-05
  • Corresponding author: Enqing Fu
引用本文:

王在强, 金发光, 傅恩清. 颗粒酶B在组织损伤修复中的研究进展[J]. 中华损伤与修复杂志(电子版), 2021, 16(04): 349-352.

Zaiqiang Wang, Faguang Jin, Enqing Fu. Research progress of granzyme B in tissue injury repair[J]. Chinese Journal of Injury Repair and Wound Healing(Electronic Edition), 2021, 16(04): 349-352.

以往关于颗粒酶B的研究热点是其进入细胞内诱导肿瘤细胞或感染病毒细胞凋亡的作用。近年来越来越多的研究发现,颗粒酶B也可在细胞外基质中发挥作用,导致受损组织愈合不良。颗粒酶B可通过诱导炎症因子表达,破坏血管完整性,增加炎症细胞浸润,促进组织炎症反应,通过释放转化生长因子-β(TGF-β),活化白细胞介素(IL)-18,降解核心蛋白聚糖,促进组织纤维化。颗粒酶B在组织损伤修复中的作用日益引起重视,本文就颗粒酶B促进组织炎症反应和纤维化的机制作一综述。

Previous studies on granzyme B mainly focused on its role in inducing apoptosis of tumor cells or virus-infected cells. In recent years, more and more studies have found that granzyme B can also play a role in the extracellular matrix, leading to poor injury repair. Granzyme B promotes tissue inflammation by inducing the expression of inflammatory factors, destroying vascular integrity and increasing inflammatory cell infiltration, and promotes tissue fibrosis by releasing transforming growth factor-β (TGF-β), activating interleukin (IL)-18 and degrading decorin. The role of granzyme B in injury repair has attracted increasing attention. This article reviews the mechanism of granzyme B in promoting inflammation and fibrosis.

[1]
Masson D, Tschopp J. A family of serine esterases in lytic granules of cytolytic T lymphocytes[J]. Cell, 1987, 49(5): 679-685.
[2]
Waugh SM, Harris JL, Fletterick R, et al. The structure of the pro-apoptotic protease granzyme B reveals the molecular determinants of its specificity[J]. Nat Struct Biol, 2000, 7(9): 762-765.
[3]
Boivin WA, Cooper DM, Hiebert PR, et al. Intracellular versus extracellular granzyme B in immunity and disease: challenging the dogma[J]. Lab Invest, 2009, 89(11): 1195-1220.
[4]
Van Damme P, Maurer-Stroh S, Plasman K, et al. Analysis of protein processing by N-terminal proteomics reveals novel species-specific substrate determinants of granzyme B orthologs[J]. Mol Cell Proteomics, 2009, 8(2): 258-272.
[5]
Vahedi F, Fraleigh N, Vlasschaert C, et al. Human granzymes: related but far apart[J]. Med Hypotheses, 2014, 83(6): 688-693.
[6]
Turner CT, Hiroyasu S, Granville DJ. Granzyme B as a therapeutic target for wound healing[J]. Expert Opin Ther Targets, 2019, 23(9): 745-754.
[7]
Zeglinski MR, Granville DJ. Granzymes in cardiovascular injury and disease[J]. Cell Signal, 2020, 76: 109804.
[8]
Kurschus FC, Kleinschmidt M, Fellows E, et al. Killing of target cells by redirected granzyme B in the absence of perforin[J]. FEBS Lett, 2004, 562(1/3): 87-92.
[9]
Bao CX, Chen HX, Mou XJ, et al. GZMB gene silencing confers protection against synovial tissue hyperplasia and articular cartilage tissue injury in rheumatoid arthritis through the MAPK signaling pathway[J]. Biomed Pharmacother, 2018, 103: 346-354.
[10]
Hendel A, Hsu I, Granville DJ. Granzyme B releases vascular endothelial growth factor from extracellular matrix and induces vascular permeability[J]. Lab Invest, 2014, 94(7): 716-725.
[11]
Shen Y, Cheng F, Sharma M, et al. Granzyme B Deficiency Protects against Angiotensin II-Induced Cardiac Fibrosis[J]. Am J Pathol, 2016, 186(1): 87-100.
[12]
张天宇,SHEN Steve, 杨琳. 颗粒酶B在慢性鼓膜穿孔炎症损伤修复中的应用[J]. 中国眼耳鼻喉科杂志2016, 16(1): 7-9, 15.
[13]
Hiebert PR, Wu D, Granville DJ. Granzyme B degrades extracellular matrix and contributes to delayed wound closure in apolipoprotein E knockout mice[J]. Cell Death Differ, 2013, 20(10): 1404-1414.
[14]
Ewen CL, Kane KP, Bleackley RC. A quarter century of granzymes[J]. Cell Death Differ, 2012, 19(1): 28-35.
[15]
Sanad EF, Hamdy NM, El-Etriby AK, et al. Peripheral leucocytes and tissue gene expression of granzyme B/perforin system and serpinB9: Impact on inflammation and insulin resistance in coronary atherosclerosis[J]. Diabetes Res Clin Pract, 2017, 131: 132-141.
[16]
Hu X, Zhong Y, Lambers TT, et al. Anti-inflammatory activity of extensively hydrolyzed casein is mediated by granzyme B[J]. Inflamm Res, 2019, 68(8): 715-722.
[17]
Garzón-Tituaña M, Arias MA, Sierra-Monzón JL, et al. The Multifaceted Function of Granzymes in Sepsis: Some Facts and a Lot to Discover[J]. Front Immunol, 2020, 11: 1054.
[18]
Wang L, Jiang S, Xiao L, et al. Inhibition of granzyme B activity blocks inflammation induced by lipopolysaccharide through regulation of endoplasmic reticulum stress signaling in NK92 cells[J]. Mol Med Rep, 2018, 18(1): 580-586.
[19]
Kono H, Karmarkar D, Iwakura Y, et al. Identification of the cellular sensor that stimulates the inflammatory response to sterile cell death[J]. J Immunol, 2010, 184(8): 4470-4478.
[20]
Afonina IS, Tynan GA, Logue SE, et al. Granzyme B-dependent proteolysis acts as a switch to enhance the proinflammatory activity of IL-1alpha[J]. Mol Cell, 2011, 44(2): 265-278.
[21]
Akeda T, Yamanaka K, Tsuda K, et al. CD8+ T cell granzyme B activates keratinocyte endogenous IL-18[J]. Arch Dermatol Res, 2014, 306(2): 125-130.
[22]
Xiao H, Li H, Wang JJ, et al. IL-18 cleavage triggers cardiac inflammation and fibrosis upon beta-adrenergic insult[J]. Eur Heart J, 2018, 39(1): 60-69.
[23]
Zhang LM, Zhang J, Zhang Y, et al. Interleukin-18 binding protein attenuates lipopolysaccharide-induced acute lung injury in mice via suppression NF-kappaB and activation Nrf2 pathway[J]. Biochem Biophys Res Commun, 2018, 505(3): 837-842.
[24]
Pilkington SM, Barron MJ, Watson R, et al. Aged human skin accumulates mast cells with altered functionality that localize to macrophages and vasoactive intestinal peptide-positive nerve fibres[J]. Br J Dermatol, 2019, 180(4): 849-858.
[25]
Campos TM, Novais FO, Saldanha M, et al. Granzyme B Produced by Natural Killer Cells Enhances Inflammatory Response and Contributes to the Immunopathology of Cutaneous Leishmaniasis[J]. J Infect Dis, 2020, 221(6): 973-982.
[26]
Qiao J, Zhou M, Li Z, et al. Elevated serum granzyme B levels are associated with disease activity and joint damage in patients with rheumatoid arthritis[J]. J Int Med Res, 2020, 48(11): 300060520962954.
[27]
Jackson JR, Seed MP, Kircher CH, et al. The codependence of angiogenesis and chronic inflammation[J]. FASEB J, 1997, 11(6): 457-465.
[28]
Hendel A, Granville DJ. Granzyme B cleavage of fibronectin disrupts endothelial cell adhesion, migration and capillary tube formation[J]. Matrix Biol, 2013, 32(1): 14-22.
[29]
Nagy JA, Dvorak AM, Dvorak HF. VEGF-A and the induction of pathological angiogenesis[J]. Annu Rev Pathol, 2007, 2: 251-275.
[30]
Chamberlain CM, Ang LS, Boivin WA, et al. Perforin-independent extracellular granzyme B activity contributes to abdominal aortic aneurysm[J]. Am J Pathol, 2010, 176(2): 1038-1049.
[31]
Gross CC, Meyer C, Bhatia U, et al. CD8(+) T cell-mediated endotheliopathy is a targetable mechanism of neuro-inflammation in Susac syndrome[J]. Nat Commun, 2019, 10(1): 5779.
[32]
Matsubara JA, Tian Y, Cui JZ, et al. Retinal Distribution and Extracellular Activity of Granzyme B: A Serine Protease That Degrades Retinal Pigment Epithelial Tight Junctions and Extracellular Matrix Proteins[J]. Front Immunol, 2020, 11: 574.
[33]
Mulligan-Kehoe MJ, Drinane MC, Mollmark J, et al. Antiangiogenic plasma activity in patients with systemic sclerosis[J]. Arthritis Rheum, 2007, 56(10): 3448-3458.
[34]
Buzza MS, Zamurs L, Sun J, et al. Extracellular matrix remodeling by human granzyme B via cleavage of vitronectin, fibronectin, and laminin[J]. J Biol Chem, 2005, 280(25): 23549-23558.
[35]
Perl M, Denk S, Kalbitz M, et al. Granzyme B: a new crossroad of complement and apoptosis[J]. Adv Exp Med Biol, 2012, 946: 135-146.
[36]
Prakash MD, Munoz MA, Jain R, et al. Granzyme B promotes cytotoxic lymphocyte transmigration via basement membrane remodeling[J]. Immunity, 2014, 41(6): 960-972.
[37]
Merkulova Y, Shen Y, Parkinson LG, et al. Granzyme B inhibits keratinocyte migration by disrupting epidermal growth factor receptor (EGFR)-mediated signaling[J]. Biol Chem, 2016, 397(9): 883-895.
[38]
Turner CT, Zeglinski MR, Richardson KC, et al. Granzyme B Contributes to Barrier Dysfunction in Oxazolone-Induced Skin Inflammation through E-Cadherin and FLG Cleavage[J]. J Invest Dermatol, 2021, 141(1): 36-47.
[39]
Russo V, Klein T, Lim DJ, et al. Granzyme B is elevated in autoimmune blistering diseases and cleaves key anchoring proteins of the dermal-epidermal junction[J]. Sci Rep, 2018, 8(1): 9690.
[40]
Hu HH, Chen DQ, Wang YN, et al. New insights into TGF-beta/Smad signaling in tissue fibrosis[J]. Chem Biol Interact, 2018, 292: 76-83.
[41]
Boivin WA, Shackleford M, Vanden HA, et al. Granzyme B cleaves decorin, biglycan and soluble betaglycan, releasing active transforming growth factor-beta1[J]. PLoS One, 2012, 7(3): e33163.
[42]
孙云晖,王一新,马雪梅,等. 大鼠肺纤维化模型中NLRP3、IL-18表达及意义的探讨[J]. 临床肺科杂志2018, 23(5): 817-820.
[43]
Zhang LM, Zhang Y, Fei C, et al. Neutralization of IL-18 by IL-18 binding protein ameliorates bleomycin-induced pulmonary fibrosis via inhibition of epithelial-mesenchymal transition[J]. Biochem Biophys Res Commun, 2019, 508(2): 660-666.
[44]
Xiao H, Li H, Wang JJ, et al. IL-18 cleavage triggers cardiac inflammation and fibrosis upon beta-adrenergic insult[J]. Eur Heart J, 2018, 39(1): 60-69.
[45]
Fix C, Bingham K, Carver W. Effects of interleukin-18 on cardiac fibroblast function and gene expression[J]. Cytokine, 2011, 53(1): 19-28.
[46]
Platis A, Yu Q, Moore D, et al. The effect of daily administration of IL-18 on cardiac structure and function[J]. Perfusion, 2008, 23(4): 237-242.
[47]
Reese SP, Underwood CJ, Weiss JA. Effects of decorin proteoglycan on fibrillogenesis, ultrastructure, and mechanics of type I collagen gels[J]. Matrix Biol, 2013, 32(7/8): 414-423.
[48]
Danielson KG, Baribault H, Holmes DF, et al. Targeted disruption of decorin leads to abnormal collagen fibril morphology and skin fragility[J]. J Cell Biol, 1997, 136(3): 729-743.
[49]
Shen Y, Zeglinski MR, Turner CT, et al. Topical small molecule granzyme B inhibitor improves remodeling in a murine model of impaired burn wound healing[J]. Exp Mol Med, 2018, 50(5): 1-11.
[1] 高建松, 陈晓晓, 冯婷, 包剑锋, 魏淑芳, 潘林. 基于超声瞬时弹性成像的多参数决策树模型评估慢性乙型肝炎患者肝纤维化等级[J]. 中华医学超声杂志(电子版), 2023, 20(09): 923-929.
[2] 韩圣瑾, 周正武, 翁云龙, 黄鑫. 碳酸氢钠林格液联合连续性肾脏替代疗法对创伤合并急性肾损伤患者炎症水平及肾功能的影响[J]. 中华危重症医学杂志(电子版), 2023, 16(05): 376-381.
[3] 李安琪, 徐祎琳, 向天新. 新型冠状病毒感染后肺纤维化病变诊治进展[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(05): 294-298.
[4] 陈大敏, 曹晓刚, 曹能琦. 肥胖对胃癌患者手术治疗效果的影响研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 651-653.
[5] 贾成朋, 王代宏, 陈华, 孙备. 可切除性胰腺癌预后术前预测模型的建立及应用[J]. 中华普外科手术学杂志(电子版), 2023, 17(05): 566-570.
[6] 伍学成, 李远伟, 袁武雄, 王建松, 石泳中, 卢强, 李卓, 陈佳, 刘哲, 滕伊漓, 高智勇. 炎症介质谱联合降钙素原在尿源性脓毒血症中的诊断价值[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(05): 476-480.
[7] 王可, 范彬, 李多富, 刘奎. 两种疝囊残端处理方法在经腹腹膜前腹股沟疝修补术中的疗效比较[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 692-696.
[8] 刘小燕, 龙乾发, 席俊秀, 杜明皓, 黄晓欢. 细胞外囊泡介导的胶质细胞交互作用对神经炎症的调节意义及研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 235-241.
[9] 刘卓, 段虎斌. 生物电相关疗法在神经损伤修复中的应用进展[J]. 中华神经创伤外科电子杂志, 2023, 09(05): 257-260.
[10] 邹勇, 顾应江, 丁昊, 杨呈浩, 陈岷辉, 蔡昱. 基于Nrf2/HO-1及NF-κB信号通路探讨葛根素对大鼠脑出血后早期炎症反应及氧化应激反应的影响[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 271-277.
[11] 屈霄, 王靓, 陆萍, 何斌, 孙敏. 外周血炎症因子及肠道菌群特征与活动性溃疡性结肠炎患者病情的相关性分析[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 466-470.
[12] 朱风尚, 舍玲, 丁永年, 杨长青. 警惕炎症性肠病与少见肠道疾病的鉴别诊断[J]. 中华消化病与影像杂志(电子版), 2023, 13(05): 273-276.
[13] 吴萌, 吴国仲, 王贵红, 端靓靓, 施杰, 王旭, 余婷, 刘伟. IgA肾病患者中性粒细胞-淋巴细胞比值与肾小管萎缩/间质纤维化相关性分析[J]. 中华临床医师杂志(电子版), 2023, 17(9): 972-979.
[14] 张赟辉, 罗军, 刘栗丽, 汪宏, 耿克明. 腹膜透析与血液透析对老年终末期肾病患者营养状况及炎症反应的影响[J]. 中华临床医师杂志(电子版), 2023, 17(04): 419-423.
[15] 刘感哲, 艾芬. MiRNA-210通过抑制HIF-1α的表达改善大鼠血管性认知功能障碍[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 489-494.
阅读次数
全文


摘要