[1] |
Driskell RR, Watt FM. Understanding fibroblast heterogeneity in the skin[J]. Trends Cell Biol, 2015, 25(2): 92-99.
|
[2] |
Sriram G, Bigliardi PL, Bigliardi-Qi M. Fibroblast heterogeneity and its implications for engineering organotypic skin models in vitro[J]. Eur J Cell Biol, 2015, 94(11): 483-512.
|
[3] |
Rinkevich Y, Walmsley GG, Hu MS, et al. Skin fibrosis: identification and isolation of a dermal lineage with intrinsic fibrogenic potential[J]. Science, 2015, 348(6232): aaa2151.
|
[4] |
Tabib T, Morse C, Wang T, et al. SFRP2/DPP4 and FMO1/LSP1 define major fibroblast populations in human skin[J]. J Invest Dermatol, 2018, 138(4): 802-810.
|
[5] |
Bordin S, Page RC, Narayanan AS. Heterogeneity of normal human diploid fibroblasts: isolation and characterization of one phenotype[J]. Science, 1984, 223(4632): 171-173.
|
[6] |
Goldring SR, Stephenson ML, Downie E, et al. Heterogeneity in hormone responses and patterns of collagen synthesis in cloned dermal fibroblasts[J].J Clin Invest, 1990, 85(3): 798-803.
|
[7] |
Goffin JM, Pittet P, Csucs G, et al. Focal adhesion size controls tension-dependent recruitment of α-smooth muscle actin to stress fibers[J]. J Cell Biol, 2006, 172(2): 259-268.
|
[8] |
Honardoust D, Ding J, Varkey M, et al. Deep dermal fibroblasts refractory to migration and decorin-induced apoptosis contribute to hypertrophic scarring[J]. J Burn Care Res, 2012, 33(5): 668-677.
|
[9] |
Huang HI, Chen SK, Ling QD, et al. Multilineage differentiation potential of fibroblast-like stromal cells derived from human skin[J]. Tissue Eng Part A, 2010, 16(5): 1491-1501.
|
[10] |
Halfon S, Abramov N, Grinblat B, et al. Markers Distinguishing Mesenchymal Stem Cells from Fibroblasts Are Downregulated with Passaging[J]. Stem Cells Dev, 2011, 20(1): 53-66.
|
[11] |
Brohem CA, de Carvalho CM, Radoski CL, et al. Comparison between fibroblasts and mesenchymal stem cells derived from dermal and adipose tissue[J]. Int J Cosmet Sci, 2013, 35(5): 448-457.
|
[12] |
Chinnici CM, Amico G, Monti M, et al. Isolation and characterization of multipotent cells from human fetal dermis[J]. Cell Transplant, 2014, 23(10): 1169-1185.
|
[13] |
Bayreuther K, Rodemann HP, Hommel R, et al. Human Skin Fibroblasts in vitro Differentiate along a Terminal Cell Lineage[J]. Proc Natl Acad Sci U S A, 1988, 85(14): 5112-5116.
|
[14] |
Lekic PC, Pender N, Mcculloch CA. Is Fibroblast Heterogeneity Relevant To the Health, Diseases, and Treatments of Periodontal Tissues?[J]. Crit Rev Oral Biol Med, 1997, 8(3): 253-268.
|
[15] |
Desmoulière A, Gabbiani G. Modulation of fibroblastic cytoskeletal features during pathological situations: The role of extracellular matrix and cytokines[J]. Cell Motil Cytoskeleton, 1994, 29(3): 195-203.
|
[16] |
Boström H, Willetts K, Pekny M, et al. PDGF-A signaling is a critical event in lung alveolar myofibroblast development and alveogenesis[J]. Cell, 1996, 85(6): 863-873.
|
[17] |
Xu Y, Koya R, Ask K, et al. Engineered Microenvironment for the Study of Myofibroblast Mechanobiology[J]. Wound Repair Regen, 2021, 29(4): 588-596.
|
[18] |
Philippeos C, Telerman SB, Oulès B, et al. Spatial and Single-Cell Transcriptional Profiling Identifies Functionally Distinct Human Dermal Fibroblast Subpopulations[J]. J Invest Dermatol, 2018, 138(4): 811-825.
|
[19] |
Fries KM, Blieden T, Looney RJ, et al. Evidence of fibroblast heterogeneity and the role of fibroblast subpopulations in fibrosis[J]. Clin Immunol Immunopathol, 1994, 72(3): 283-292.
|
[20] |
Driskell RR, Lichtenberger BM, Hoste E, et al. Distinct fibroblast lineages determine dermal architecture in skin development and repair[J]. Nature, 2013, 504(7479): 277-281.
|
[21] |
Messenger AG, Elliott K, Westgate GE, et al. Distribution of Extracellular Matrix Molecules in Human Hair Follicles[J]. Ann N Y Acad Sci, 1991, 642: 253-262.
|
[22] |
Sennett R, Rendl M. Mesenchymal-epithelial interactions during hair follicle morphogenesis and cycling[J]. Semin Cell Dev Biol, 2012, 23(8): 917-927.
|
[23] |
Anan T, Sonoda T, Asada Y, et al. Protease-activated receptor-1 (thrombin receptor) is expressed in mesenchymal portions of human hair follicle[J]. J Invest Dermatol, 2003, 121(4): 669-673.
|
[24] |
Ito Y, Hamazaki TS, Ohnuma K, et al. Isolation of Murine Hair-Inducing Cells Using the Cell Surface Marker Prominin-1/CD133[J]. J Invest Dermatol, 2007, 127(5): 1052-1060.
|
[25] |
Rendl M, Lewis L, Fuchs E. Molecular Dissection of Mesenchymal-Epithelial Interactions in the Hair Follicle[J]. PLoS Biol, 2005, 3(11):e331.
|
[26] |
Lesko MH, Driskell RR, Kretzschmar K, et al. Sox2 modulates the function of two distinct cell lineages in mouse skin[J]. Dev Biol, 2013, 382(1): 15-26.
|
[27] |
Collins CA, Watt FM. Dynamic regulation of retinoic acid-binding proteins in developing, adult and neoplastic skin reveals roles for β-catenin and Notch signalling[J]. Dev Biol, 2008, 324(1): 55-67.
|
[28] |
Driskell RR, Juneja VR, Connelly JT, et al. Clonal Growth of Dermal Papilla Cells in Hydrogels Reveals Intrinsic Differences between Sox2-Positive and -Negative Cells In Vitro and In Vivo[J]. J Invest Dermatol, 2012, 132(4): 1084-1093.
|
[29] |
McElwee KJ, Kissling S, Wenzel E, et al. Cultured peribulbar dermal sheath cells can induce hair follicle development and contribute to the dermal sheath and dermal papilla[J]. J Invest Dermatol, 2003, 121(6): 1267-1275.
|
[30] |
李幼忱,刘杰,王德文,等. 毛囊真皮鞘细胞在皮肤创伤愈合中作用的实验研究[J]. 军事医学科学院院刊,2009, 33(2): 144-147.
|
[31] |
Paquet-Fifield S, Schlüter H, Li A, et al. A role for pericytes as microenvironmental regulators of human skin tissue regeneration[J]. J Clin Invest, 2009, 119(9): 2795-2806.
|
[32] |
Cho H, Kozasa T, Bondjers C, et al. Pericyte-specific expression of Rgs5: implications for PDGF and EDG receptor signaling during vascular maturation[J]. FASEB J, 2003, 17(3): 440-442.
|
[33] |
Bondjers C, Kalén M, Hellström M, et al. Transcription profiling of platelet-derived growth factor-B-deficient mouse embryos identifies RGS5 as a novel marker for pericytes and vascular smooth muscle cells[J]. Am J Pathol, 2003, 162(3): 721-729.
|
[34] |
Schmidt BA, Horsley V. Intradermal adipocytes mediate fibroblast recruitment during skin wound healing[J]. Development, 2013, 140(7): 1517-1527.
|
[35] |
Martin P. Wound Healing--Aiming for Perfect Skin Regeneration[J]. Science, 1997, 276(5309): 75-81.
|
[36] |
Darby IA, Laverdet B, Bonté F, et al. Fibroblasts and myofibroblasts in wound healing[J]. Clin Cosmet Investig Dermatol, 2014, 7: 301-311.
|
[37] |
Cullen B, Silcock D, Brown LJ, et al. The differential regulation and secretion of proteinases from fetal and neonatal fibroblasts by growth factors[J]. Int J Biochem Cell Biol, 1997, 29(1): 241-250.
|
[38] |
Eckes B, Zigrino P, Kessler D, et al. Fibroblast-matrix interactions in wound healing and fibrosis[J]. Matrix Biol, 2000, 19(4): 325-332.
|
[39] |
Jahoda CA, Whitehouse J, Reynolds AJ, et al. Hair follicle dermal cells differentiate into adipogenic and osteogenic lineages[J]. Exp Dermatol, 2003, 12(6): 849-859.
|
[40] |
Rinn JL, Wang JK, Allen N, et al. A dermal HOX transcriptional program regulates site-specific epidermal fate[J]. Genes Dev, 2008, 22(3): 303-307.
|
[41] |
Ito M, Yang Z, Andl T, et al. Wnt-dependent de novo hair follicle regeneration in adult mouse skin after wounding.[J]. Nature, 2007, 447(7142): 316-320.
|
[42] |
Collins CA, Jensen KB, Macrae EJ, et al. Polyclonal origin and hair induction ability of dermal papillae in neonatal and adult mouse back skin[J]. Dev Biol, 2012, 366(2): 290-297.
|
[43] |
Wang JF, Dodd C, Shankowsky HA, et al. Deep dermal fibroblasts contribute to hypertrophic scarring[J]. Lab Invest, 2008, 88(12): 1278-1290.
|
[44] |
Aarabi S, Bhatt KA, Shi Y, et al. Mechanical load initiates hypertrophic scar formation through decreased cellular apoptosis[J]. FASEB J, 2007, 21(12): 3250-3261.
|
[45] |
Supp DM, Hahn JM, Glaser K, et al. Deep and superficial keloid fibroblasts contribute differentially to tissue phenotype in a novel in vivo model of keloid scar[J]. Plast Reconstr Surg, 2012, 129(6): 1259-1271.
|