切换至 "中华医学电子期刊资源库"

中华损伤与修复杂志(电子版) ›› 2021, Vol. 16 ›› Issue (04) : 353 -357. doi: 10.3877/cma.j.issn.1673-9450.2021.04.013

综述

成纤维细胞的异质性及其在创面愈合和瘢痕形成中的作用
王珏1, 胡晓红1, 贺伟峰1,()   
  1. 1. 400038 重庆,陆军军医大学(第三军医大学)第一附属医院全军烧伤研究所,创伤、烧伤与复合伤国家重点实验室,重庆市疾病蛋白质组学重点实验室
  • 收稿日期:2021-05-19 出版日期:2021-08-05
  • 通信作者: 贺伟峰

Role of fibroblasts heterogeneity in wound healing and scar formation

Jue Wang1, Xiaohong Hu1, Weifeng He1,()   

  1. 1. State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Burn Research, First Affiliated Hospital of Army Medical University (Third Military Medical University), Chongqing Key Laboratory for Disease Proteomics, Chongqing 400038, China
  • Received:2021-05-19 Published:2021-08-05
  • Corresponding author: Weifeng He
引用本文:

王珏, 胡晓红, 贺伟峰. 成纤维细胞的异质性及其在创面愈合和瘢痕形成中的作用[J]. 中华损伤与修复杂志(电子版), 2021, 16(04): 353-357.

Jue Wang, Xiaohong Hu, Weifeng He. Role of fibroblasts heterogeneity in wound healing and scar formation[J]. Chinese Journal of Injury Repair and Wound Healing(Electronic Edition), 2021, 16(04): 353-357.

成纤维细胞是创面愈合过程中重要的效应细胞之一,参与了多个重要环节。成纤维细胞的不同亚群根据其解剖定位、细胞表面标志和功能表型等不同方面表现出强烈的异质性,本文就成纤维细胞的异质性特点及其在创面愈合及瘢痕形成中的作用作一综述,旨在在为创面修复治疗提供新的理论基础。

Fibroblasts are one of the important effector cells in the wound healing process and are involved in several important aspects. Different subpopulations of fibroblasts exhibit strong heterogeneity depending on different aspects of their anatomical localization, cell surface markers, and functional phenotypes. This paper reviews the heterogeneous characteristics of fibroblasts and their role in wound healing and scar formation, with the aim of providing a new theoretical basis for wound repair therapy.

[1]
Driskell RR, Watt FM. Understanding fibroblast heterogeneity in the skin[J]. Trends Cell Biol, 2015, 25(2): 92-99.
[2]
Sriram G, Bigliardi PL, Bigliardi-Qi M. Fibroblast heterogeneity and its implications for engineering organotypic skin models in vitro[J]. Eur J Cell Biol, 2015, 94(11): 483-512.
[3]
Rinkevich Y, Walmsley GG, Hu MS, et al. Skin fibrosis: identification and isolation of a dermal lineage with intrinsic fibrogenic potential[J]. Science, 2015, 348(6232): aaa2151.
[4]
Tabib T, Morse C, Wang T, et al. SFRP2/DPP4 and FMO1/LSP1 define major fibroblast populations in human skin[J]. J Invest Dermatol, 2018, 138(4): 802-810.
[5]
Bordin S, Page RC, Narayanan AS. Heterogeneity of normal human diploid fibroblasts: isolation and characterization of one phenotype[J]. Science, 1984, 223(4632): 171-173.
[6]
Goldring SR, Stephenson ML, Downie E, et al. Heterogeneity in hormone responses and patterns of collagen synthesis in cloned dermal fibroblasts[J].J Clin Invest, 1990, 85(3): 798-803.
[7]
Goffin JM, Pittet P, Csucs G, et al. Focal adhesion size controls tension-dependent recruitment of α-smooth muscle actin to stress fibers[J]. J Cell Biol, 2006, 172(2): 259-268.
[8]
Honardoust D, Ding J, Varkey M, et al. Deep dermal fibroblasts refractory to migration and decorin-induced apoptosis contribute to hypertrophic scarring[J]. J Burn Care Res, 2012, 33(5): 668-677.
[9]
Huang HI, Chen SK, Ling QD, et al. Multilineage differentiation potential of fibroblast-like stromal cells derived from human skin[J]. Tissue Eng Part A, 2010, 16(5): 1491-1501.
[10]
Halfon S, Abramov N, Grinblat B, et al. Markers Distinguishing Mesenchymal Stem Cells from Fibroblasts Are Downregulated with Passaging[J]. Stem Cells Dev, 2011, 20(1): 53-66.
[11]
Brohem CA, de Carvalho CM, Radoski CL, et al. Comparison between fibroblasts and mesenchymal stem cells derived from dermal and adipose tissue[J]. Int J Cosmet Sci, 2013, 35(5): 448-457.
[12]
Chinnici CM, Amico G, Monti M, et al. Isolation and characterization of multipotent cells from human fetal dermis[J]. Cell Transplant, 2014, 23(10): 1169-1185.
[13]
Bayreuther K, Rodemann HP, Hommel R, et al. Human Skin Fibroblasts in vitro Differentiate along a Terminal Cell Lineage[J]. Proc Natl Acad Sci U S A, 1988, 85(14): 5112-5116.
[14]
Lekic PC, Pender N, Mcculloch CA. Is Fibroblast Heterogeneity Relevant To the Health, Diseases, and Treatments of Periodontal Tissues?[J]. Crit Rev Oral Biol Med, 1997, 8(3): 253-268.
[15]
Desmoulière A, Gabbiani G. Modulation of fibroblastic cytoskeletal features during pathological situations: The role of extracellular matrix and cytokines[J]. Cell Motil Cytoskeleton, 1994, 29(3): 195-203.
[16]
Boström H, Willetts K, Pekny M, et al. PDGF-A signaling is a critical event in lung alveolar myofibroblast development and alveogenesis[J]. Cell, 1996, 85(6): 863-873.
[17]
Xu Y, Koya R, Ask K, et al. Engineered Microenvironment for the Study of Myofibroblast Mechanobiology[J]. Wound Repair Regen, 2021, 29(4): 588-596.
[18]
Philippeos C, Telerman SB, Oulès B, et al. Spatial and Single-Cell Transcriptional Profiling Identifies Functionally Distinct Human Dermal Fibroblast Subpopulations[J]. J Invest Dermatol, 2018, 138(4): 811-825.
[19]
Fries KM, Blieden T, Looney RJ, et al. Evidence of fibroblast heterogeneity and the role of fibroblast subpopulations in fibrosis[J]. Clin Immunol Immunopathol, 1994, 72(3): 283-292.
[20]
Driskell RR, Lichtenberger BM, Hoste E, et al. Distinct fibroblast lineages determine dermal architecture in skin development and repair[J]. Nature, 2013, 504(7479): 277-281.
[21]
Messenger AG, Elliott K, Westgate GE, et al. Distribution of Extracellular Matrix Molecules in Human Hair Follicles[J]. Ann N Y Acad Sci, 1991, 642: 253-262.
[22]
Sennett R, Rendl M. Mesenchymal-epithelial interactions during hair follicle morphogenesis and cycling[J]. Semin Cell Dev Biol, 2012, 23(8): 917-927.
[23]
Anan T, Sonoda T, Asada Y, et al. Protease-activated receptor-1 (thrombin receptor) is expressed in mesenchymal portions of human hair follicle[J]. J Invest Dermatol, 2003, 121(4): 669-673.
[24]
Ito Y, Hamazaki TS, Ohnuma K, et al. Isolation of Murine Hair-Inducing Cells Using the Cell Surface Marker Prominin-1/CD133[J]. J Invest Dermatol, 2007, 127(5): 1052-1060.
[25]
Rendl M, Lewis L, Fuchs E. Molecular Dissection of Mesenchymal-Epithelial Interactions in the Hair Follicle[J]. PLoS Biol, 2005, 3(11):e331.
[26]
Lesko MH, Driskell RR, Kretzschmar K, et al. Sox2 modulates the function of two distinct cell lineages in mouse skin[J]. Dev Biol, 2013, 382(1): 15-26.
[27]
Collins CA, Watt FM. Dynamic regulation of retinoic acid-binding proteins in developing, adult and neoplastic skin reveals roles for β-catenin and Notch signalling[J]. Dev Biol, 2008, 324(1): 55-67.
[28]
Driskell RR, Juneja VR, Connelly JT, et al. Clonal Growth of Dermal Papilla Cells in Hydrogels Reveals Intrinsic Differences between Sox2-Positive and -Negative Cells In Vitro and In Vivo[J]. J Invest Dermatol, 2012, 132(4): 1084-1093.
[29]
McElwee KJ, Kissling S, Wenzel E, et al. Cultured peribulbar dermal sheath cells can induce hair follicle development and contribute to the dermal sheath and dermal papilla[J]. J Invest Dermatol, 2003, 121(6): 1267-1275.
[30]
李幼忱,刘杰,王德文,等. 毛囊真皮鞘细胞在皮肤创伤愈合中作用的实验研究[J]. 军事医学科学院院刊2009, 33(2): 144-147.
[31]
Paquet-Fifield S, Schlüter H, Li A, et al. A role for pericytes as microenvironmental regulators of human skin tissue regeneration[J]. J Clin Invest, 2009, 119(9): 2795-2806.
[32]
Cho H, Kozasa T, Bondjers C, et al. Pericyte-specific expression of Rgs5: implications for PDGF and EDG receptor signaling during vascular maturation[J]. FASEB J, 2003, 17(3): 440-442.
[33]
Bondjers C, Kalén M, Hellström M, et al. Transcription profiling of platelet-derived growth factor-B-deficient mouse embryos identifies RGS5 as a novel marker for pericytes and vascular smooth muscle cells[J]. Am J Pathol, 2003, 162(3): 721-729.
[34]
Schmidt BA, Horsley V. Intradermal adipocytes mediate fibroblast recruitment during skin wound healing[J]. Development, 2013, 140(7): 1517-1527.
[35]
Martin P. Wound Healing--Aiming for Perfect Skin Regeneration[J]. Science, 1997, 276(5309): 75-81.
[36]
Darby IA, Laverdet B, Bonté F, et al. Fibroblasts and myofibroblasts in wound healing[J]. Clin Cosmet Investig Dermatol, 2014, 7: 301-311.
[37]
Cullen B, Silcock D, Brown LJ, et al. The differential regulation and secretion of proteinases from fetal and neonatal fibroblasts by growth factors[J]. Int J Biochem Cell Biol, 1997, 29(1): 241-250.
[38]
Eckes B, Zigrino P, Kessler D, et al. Fibroblast-matrix interactions in wound healing and fibrosis[J]. Matrix Biol, 2000, 19(4): 325-332.
[39]
Jahoda CA, Whitehouse J, Reynolds AJ, et al. Hair follicle dermal cells differentiate into adipogenic and osteogenic lineages[J]. Exp Dermatol, 2003, 12(6): 849-859.
[40]
Rinn JL, Wang JK, Allen N, et al. A dermal HOX transcriptional program regulates site-specific epidermal fate[J]. Genes Dev, 2008, 22(3): 303-307.
[41]
Ito M, Yang Z, Andl T, et al. Wnt-dependent de novo hair follicle regeneration in adult mouse skin after wounding.[J]. Nature, 2007, 447(7142): 316-320.
[42]
Collins CA, Jensen KB, Macrae EJ, et al. Polyclonal origin and hair induction ability of dermal papillae in neonatal and adult mouse back skin[J]. Dev Biol, 2012, 366(2): 290-297.
[43]
Wang JF, Dodd C, Shankowsky HA, et al. Deep dermal fibroblasts contribute to hypertrophic scarring[J]. Lab Invest, 2008, 88(12): 1278-1290.
[44]
Aarabi S, Bhatt KA, Shi Y, et al. Mechanical load initiates hypertrophic scar formation through decreased cellular apoptosis[J]. FASEB J, 2007, 21(12): 3250-3261.
[45]
Supp DM, Hahn JM, Glaser K, et al. Deep and superficial keloid fibroblasts contribute differentially to tissue phenotype in a novel in vivo model of keloid scar[J]. Plast Reconstr Surg, 2012, 129(6): 1259-1271.
[1] 陈玲, 李楠, 杨建乐. 微小RNA-377-3p调控自噬改善脂多糖/D-半乳糖胺诱导的急性肝衰竭的机制研究[J]. 中华危重症医学杂志(电子版), 2023, 16(02): 89-97.
[2] 居晓庆, 金蕴洁, 王晓燕. 剖宫产术后瘢痕子宫患者再次妊娠阴道分娩发生子宫破裂的影响因素分析[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 575-581.
[3] 杨一君, 董雯, 刘晓平, 石灿, 张磊, 谷琎, 龚咪, 华馥. 腹腔镜折叠对接缝合联合宫腔镜憩室开渠法治疗剖宫产瘢痕憩室的疗效[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(03): 330-337.
[4] 李敏, 杨凡. 肌细胞因子在儿童肥胖症患儿运动减脂中的作用研究现状[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(02): 125-131.
[5] 周子慧, 李恭驰, 李炳辉, 王知, 刘慧真, 王卉, 邹利军. 细胞自噬在创面愈合中作用的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 542-546.
[6] 何雪锋, 赵世新, 李珮珊, 刘恒登, 谢举临. 卡奴卡叶提取物通过增强真皮成纤维细胞功能促进大鼠创面修复的效果观察[J]. 中华损伤与修复杂志(电子版), 2023, 18(05): 405-412.
[7] 陈继秋, 朱世辉. 皮肤牵张装置的临床应用现状[J]. 中华损伤与修复杂志(电子版), 2023, 18(05): 451-453.
[8] 黄瑞娟, 德奇, 巴特, 周彪. 对人脐带间充质干细胞外泌体影响热损伤人皮肤成纤维细胞迁移的分析[J]. 中华损伤与修复杂志(电子版), 2023, 18(03): 229-234.
[9] 甄妙, 李婧婷, 王鹏, 舒斌. 对表皮干细胞外泌体影响增生性瘢痕成纤维细胞作用的观察[J]. 中华损伤与修复杂志(电子版), 2023, 18(02): 134-143.
[10] 魏忠玲, 陈赟, 叶美霞, 杨珺雯, 袁竺方. 不同种类敷料治疗糖尿病足疗效比较的网状荟萃分析[J]. 中华损伤与修复杂志(电子版), 2023, 18(02): 157-165.
[11] 葛盈盈, 岳金, 薛令法, 许尧祥, 赵浩然, 崔明雪, 肖文林. 靶向p38丝裂素活化蛋白激酶对兔唇裂术后瘢痕增生的影响[J]. 中华口腔医学研究杂志(电子版), 2023, 17(01): 37-44.
[12] 孙龙, 政红卫, 俞玲玲, 甄杰. 非小细胞肺癌FGFR3及CyclinD1表达与临床病理特征及预后分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(01): 64-66.
[13] 李颖思, 符芳, 杨昕, 邓琼, 周航, 程肯, 李东至, 廖灿. 单细胞RNA测序技术探究CCN2基因在特纳综合征胎儿颈部淋巴水囊瘤中的关键作用[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 220-228.
[14] 那迪娜·帕尔哈提, 黄陈. 肿瘤相关成纤维细胞在结直肠癌发生与发展及化疗耐药中的作用研究进展[J]. 中华结直肠疾病电子杂志, 2023, 12(03): 241-247.
[15] 王苏贵, 皇立媛, 姜福金, 吴自余, 张先云, 李强, 严大理. 异质性细胞核核糖蛋白A2B1在前列腺癌中的作用及其靶向中药活性成分筛选研究[J]. 中华临床医师杂志(电子版), 2023, 17(06): 731-736.
阅读次数
全文


摘要