切换至 "中华医学电子期刊资源库"

中华损伤与修复杂志(电子版) ›› 2021, Vol. 16 ›› Issue (05) : 441 -444. doi: 10.3877/cma.j.issn.1673-9450.2021.05.012

综述

角质形成细胞来源的胞外囊泡在创面修复中的研究进展
陆剑瑜1, 肖仕初1(), 夏照帆1,()   
  1. 1. 200433 上海,海军军医大学第一附属医院烧伤外科 全军烧伤研究所 中国医学科学院烧伤暨烧创复合伤救治关键技术创新单元
  • 收稿日期:2021-07-10 出版日期:2021-10-01
  • 通信作者: 肖仕初, 夏照帆
  • 基金资助:
    国家自然科学基金(81930057, 81772076); 中国医学科学院医学与健康科技创新工程项目(2019-I2M-5-076); 海军军医大学高等级成果培植计划(2018-CGPZ-B03)

Research progress of extracellular vesicles derived from keratinocytes in wound healing

Jianyu Lu1, Shichu Xiao1,(), Zhaofan Xia1()   

  1. 1. Department of Burn Surgery, First Affiliated Hospital of Naval Medical University, Shanghai, People’s Republic of China; Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai 200433, China
  • Received:2021-07-10 Published:2021-10-01
  • Corresponding author: Shichu Xiao, Zhaofan Xia
引用本文:

陆剑瑜, 肖仕初, 夏照帆. 角质形成细胞来源的胞外囊泡在创面修复中的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2021, 16(05): 441-444.

Jianyu Lu, Shichu Xiao, Zhaofan Xia. Research progress of extracellular vesicles derived from keratinocytes in wound healing[J/OL]. Chinese Journal of Injury Repair and Wound Healing(Electronic Edition), 2021, 16(05): 441-444.

胞外囊泡(EV)是细胞分泌的内含大量生物活性分子的膜性囊泡,作为细胞间通讯的主要媒介,参与调控细胞的生理进程。大量研究证明,EV在创面修复中具有极大潜力,主要通过参与调控创面的急慢性炎症反应、促进细胞增殖、分化、迁移及新生血管生成、调控创面重塑阶段等多方面来促进创面愈合。而角质形成细胞作为皮肤表皮中最主要的细胞,通过分泌EV来与其他皮肤细胞交流,参与皮肤创面愈合的过程。因此,本文对近年来角质形成细胞EV作用于创面修复和再上皮化的研究进展进行综述,为临床创面修复治疗提供一种新的干预手段或方式。

Extracellular vesicles(EV) are membranous structures secreted by cells containing a large number of biologically active molecules. As the main mediator of intercellular communication, it participate in the regulation of cell physiological processes. A large number of studies have proved that EV have great potential in wound repair. They mainly promote wound healing by regulating wound inflammation, cell proliferation, migration, and angiogenesis, and wound remodeling. Keratinocytes, as the most important cells in the epidermis, communicate with other skin cells by secreting EV and take part in the wound healing process. Therefore, this paper reviews the recent research progress of keratinocyte-derived EV in wound healing and aims to provide a new sight for their use in related therapeutic approaches.

[1]
Hay RJ, Johns NE, Williams HC, et al. The global burden of skin disease in 2010: an analysis of the prevalence and impact of skin conditions[J]. J Invest Dermatol, 2014, 134(6): 1527-1534.
[2]
Blanpain C, Fuchs E. Epidermal stem cells of the skin[J]. Annu Rev Cell Dev Biol, 2006, 22: 339-373.
[3]
Shedoeva A, Leavesley D, Upton Z, et al. Wound Healing and the Use of Medicinal Plants[J]. Evid Based Complement Alternat Med, 2019, 2019: 2684108.
[4]
Laberge A, Arif S, Moulin VJ. Microvesicles: Intercellular messengers in cutaneous wound healing[J]. J Cell Physiol, 2018, 233(8): 5550-5563.
[5]
Cabral J, Ryan AE, Griffin MD, et al. Extracellular vesicles as modulators of wound healing[J]. Adv Drug Deliv Rev, 2018, 129: 394-406.
[6]
van Niel G, D′Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles[J]. Nat Rev Mol Cell Biol, 2018, 19(4): 213-228.
[7]
French KC, Antonyak MA, Cerione RA. Extracellular vesicle docking at the cellular port: Extracellular vesicle binding and uptake[J]. Semin Cell Dev Biol, 2017, 67: 48-55.
[8]
Basu J, Ludlow JW. Exosomes for repair, regeneration and rejuvenation[J]. Expert Opin Biol Ther, 2016, 16(4): 489-506.
[9]
Sjöqvist S, Imafuku A, Gupta D, et al. Isolation and Characterization of Extracellular Vesicles from Keratinocyte Cultures[J]. Methods Mol Biol, 2020, 2109: 35-44.
[10]
Mathieu M, Martin-Jaular L, Lavieu G, et al. Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication[J]. Nat Cell Biol, 2019, 21(1): 9-17.
[11]
Than UTT, Guanzon D, Broadbent JA, et al. Differential Expression of Keratinocyte-Derived Extracellular Vesicle Mirnas Discriminate Exosomes From Apoptotic Bodies and Microvesicles[J]. Front Endocrinol (Lausanne), 2018, 9: 535.
[12]
Nasiri G, Azarpira N, Alizadeh A, et al. Shedding light on the role of keratinocyte-derived extracellular vesicles on skin-homing cells[J]. Stem Cell Res Ther, 2020, 11(1): 421.
[13]
Than UTT, Leavesley DI, Parker TJ. Characteristics and roles of extracellular vesicles released by epidermal keratinocytes[J]. J Eur Acad Dermatol Venereol, 2019, 33(12): 2264-2272.
[14]
Chavez-Muñoz C, Kilani RT, Ghahary A. Profile of exosomes related proteins released by differentiated and undifferentiated human keratinocytes[J]. J Cell Physiol, 2009, 221(1): 221-231.
[15]
Sun F, Bi Q, Wang X, et al. Down-regulation of mir-27b promotes angiogenesis and fibroblast activation through activating PI3K/AKT signaling pathway[J]. Wound Repair Regen, 2020, 28(1): 39-48.
[16]
Suh EJ, Remillard MY, Legesse-Miller A, et al. A microRNA network regulates proliferative timing and extracellular matrix synthesis during cellular quiescence in fibroblasts[J]. Genome Biol, 2012, 13(12): R121.
[17]
Wang PH, Huang BS, Horng HC, et al. Wound healing[J]. J Chin Med Assoc, 2018, 81(2): 94-101.
[18]
Zhao R, Liang H, Clarke E, et al. Inflammation in Chronic Wounds[J]. Int J Mol Sci, 2016, 17(12): 2085.
[19]
Han G, Ceilley R. Chronic Wound Healing: A Review of Current Management and Treatments[J]. Adv Ther, 2017, 34(3): 599-610.
[20]
Than UTT, Guanzon D, Leavesley D, et al. Association of Extracellular Membrane Vesicles with Cutaneous Wound Healing[J]. Int J Mol Sci. 2017, 18(5): 956.
[21]
Jiang M, Fang H, Shao S, et al. Keratinocyte exosomes activate neutrophils and enhanc e skin inflammation in psoriasis[J]. FASEB J, 2019, 33(12): 13241-13253.
[22]
Zhou X, Brown BA, Siegel AP, et al. Exosome-Mediated Crosstalk between Keratinocytes and Macrophages in Cutaneous Wound Healing[J]. ACS Nano, 2020, 14(10): 12732-12748.
[23]
Kotzerke K, Mempel M, Aung T, et al. Immunostimulatory activity of murine keratinocyte-derived exosomes[J]. Exp Dermatol, 2013, 22(10): 650-655.
[24]
Piipponen M, Li D, Landén NX. The Immune Functions of Keratinocytes in Skin Wound Healing[J]. Int J Mol Sci, 2020, 21(22): 8790.
[25]
Velnar T, Gradisnik L. Tissue Augmentation in Wound Healing: the Role of Endothelial and Epithelial Cells[J]. Med Arch, 2018, 72(6): 444-448.
[26]
Takeo M, Lee W, Ito M. Wound healing and skin regeneration[J]. Cold Spring Harb Perspect Med, 2015, 5(1): a023267.
[27]
Guo J, Chang C, Li W. The role of secreted heat shock protein-90 (Hsp90) in wound healing - how could it shape future therapeutics[J]. Expert Rev Proteomics, 2017, 14(8): 665-675.
[28]
Werner S, Krieg T, Smola H. Keratinocyte-fibroblast interactions in wound healing[J]. J Invest Dermatol, 2007, 127(5): 998-1008.
[29]
Li Q, Zhao H, Chen W, et al. Human keratinocyte-derived microvesicle miRNA-21 promotes skin wound healing in diabetic rats through facilitating fibroblast function and angiogenesis[J]. Int J Biochem Cell Biol, 2019, 114: 105570.
[30]
Rodrigues M, Kosaric N, Bonham CA, et al. Wound Healing: A Cellular Perspective[J]. Physiol Rev, 2019, 99(1): 665-706.
[31]
Sorg H, Tilkorn DJ, Hager S, et al. Skin Wound Healing: An Update on the Current Knowledge and Concepts[J]. Eur Surg Res, 2017, 58(1/2): 81-94.
[32]
Gallant-Behm CL, Piper J, Lynch JM, et al. A MicroRNA-29 Mimic (Remlarsen) Represses Extracellular Matrix Expression and Fibroplasia in the Skin[J]. J Invest Dermatol, 2019, 139(5): 1073-1081.
[33]
Sjöqvist S, Ishikawa T, Shimura D, et al. Exosomes derived from clinical-grade oral mucosal epithelial cell sheets promote wound healing[J]. J Extracell Vesicles, 2019, 8(1): 1565264.
[34]
Pessolano E, Belvedere R, Bizzarro V, et al. Annexin A1 Contained in Extracellular Vesicles Promotes the Activation of Keratinocytes by Mesoglycan Effects: An Autocrine Loop Through FPRs[J]. Cells, 2019, 8(7): 753.
[35]
Wang C, Wang M, Xu T, et al. Engineering Bioactive Self-Healing Antibacterial Exosomes Hydrogel for Promoting Chronic Diabetic Wound Healing and Complete Skin Regeneration[J]. Theranostics, 2019, 9(1): 65-76.
[1] 蚁淳, 袁冬生, 熊学军. 系统免疫炎症指数与骨密度降低和骨质疏松的关联[J/OL]. 中华关节外科杂志(电子版), 2024, 18(05): 609-617.
[2] 黄蓉, 梁自毓, 祁文瑾. NLRP3炎症小体在胎膜早破孕妇血清中的表达及其意义[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(05): 540-548.
[3] 王振宇, 张洪美, 荆琳, 何名江, 闫奇. 膝骨关节炎相关炎症因子与血浆代谢物间的因果关系及中介效应[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 467-473.
[4] 张洁, 罗小霞, 余鸿. 系统性免疫炎症指数对急性胰腺炎患者并发器官功能损伤的预测价值[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 68-71.
[5] 唐梅, 周丽, 牛岑月, 周小童, 王倩. ICG荧光导航的腹腔镜肝切除术临床意义[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 655-658.
[6] 付成旺, 杨大刚, 王榕, 李福堂. 营养与炎症指标在可切除胰腺癌中的研究进展[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 704-708.
[7] 唐亦骁, 陈峻, 连正星, 胡海涛, 鲁迪, 徐骁, 卫强. 白果内酯对小鼠肝缺血再灌注损伤保护作用研究[J/OL]. 中华移植杂志(电子版), 2024, 18(05): 278-282.
[8] 高娟, 徐建庆, 闫芳, 丁盛华, 刘霞. Rutkow、TAPP、TEP 手术治疗单侧腹股沟疝患者的临床疗效及对血清炎症因子水平的影响[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(06): 675-680.
[9] 邢嘉翌, 龚佳晟, 祝佳佳, 陆群. 肺癌化疗患者继发肺部感染的病原菌耐药性及炎症因子变化分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 714-718.
[10] 李智, 冯芸. NF-κB 与MAPK 信号通路及其潜在治疗靶点在急性呼吸窘迫综合征中的研究进展[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 840-843.
[11] 孙璐, 蒋亚玲, 陈凌君. 布托啡诺对脑缺血再灌注损伤大鼠神经炎症和JAK2/STAT3信号通路的影响[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 344-350.
[12] 杜霞, 马梦青, 曹长春. 造影剂诱导的急性肾损伤的发病机制及干预靶点研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(05): 279-282.
[13] 王湛, 李文坤, 杨奕, 徐芳, 周敏思, 苏珈仪, 王亚丹, 吴静. 炎症指标在早发性结直肠肿瘤中的应用[J/OL]. 中华临床医师杂志(电子版), 2024, 18(09): 802-810.
[14] 欧春影, 李晓宾, 郭靖, 朱亮, 许可, 王梦, 安晓雷. 丁苯酞对血管性认知障碍大鼠炎症因子的影响及对认知障碍的改善作用[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(05): 483-487.
[15] 牟磊, 徐东成, 韩鑫, 徐长江, 韩坤锜, 薛叶潇, 牟媛, 秦文玲, 刘相静, 陈哲, 高楠. 五虫通络胶囊防治椎动脉开口支架术后再狭窄发生的效果[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(05): 467-472.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?