切换至 "中华医学电子期刊资源库"

中华损伤与修复杂志(电子版) ›› 2021, Vol. 16 ›› Issue (05) : 441 -444. doi: 10.3877/cma.j.issn.1673-9450.2021.05.012

综述

角质形成细胞来源的胞外囊泡在创面修复中的研究进展
陆剑瑜1, 肖仕初1(), 夏照帆1,()   
  1. 1. 200433 上海,海军军医大学第一附属医院烧伤外科 全军烧伤研究所 中国医学科学院烧伤暨烧创复合伤救治关键技术创新单元
  • 收稿日期:2021-07-10 出版日期:2021-10-01
  • 通信作者: 肖仕初, 夏照帆
  • 基金资助:
    国家自然科学基金(81930057, 81772076); 中国医学科学院医学与健康科技创新工程项目(2019-I2M-5-076); 海军军医大学高等级成果培植计划(2018-CGPZ-B03)

Research progress of extracellular vesicles derived from keratinocytes in wound healing

Jianyu Lu1, Shichu Xiao1,(), Zhaofan Xia1()   

  1. 1. Department of Burn Surgery, First Affiliated Hospital of Naval Medical University, Shanghai, People’s Republic of China; Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai 200433, China
  • Received:2021-07-10 Published:2021-10-01
  • Corresponding author: Shichu Xiao, Zhaofan Xia
引用本文:

陆剑瑜, 肖仕初, 夏照帆. 角质形成细胞来源的胞外囊泡在创面修复中的研究进展[J]. 中华损伤与修复杂志(电子版), 2021, 16(05): 441-444.

Jianyu Lu, Shichu Xiao, Zhaofan Xia. Research progress of extracellular vesicles derived from keratinocytes in wound healing[J]. Chinese Journal of Injury Repair and Wound Healing(Electronic Edition), 2021, 16(05): 441-444.

胞外囊泡(EV)是细胞分泌的内含大量生物活性分子的膜性囊泡,作为细胞间通讯的主要媒介,参与调控细胞的生理进程。大量研究证明,EV在创面修复中具有极大潜力,主要通过参与调控创面的急慢性炎症反应、促进细胞增殖、分化、迁移及新生血管生成、调控创面重塑阶段等多方面来促进创面愈合。而角质形成细胞作为皮肤表皮中最主要的细胞,通过分泌EV来与其他皮肤细胞交流,参与皮肤创面愈合的过程。因此,本文对近年来角质形成细胞EV作用于创面修复和再上皮化的研究进展进行综述,为临床创面修复治疗提供一种新的干预手段或方式。

Extracellular vesicles(EV) are membranous structures secreted by cells containing a large number of biologically active molecules. As the main mediator of intercellular communication, it participate in the regulation of cell physiological processes. A large number of studies have proved that EV have great potential in wound repair. They mainly promote wound healing by regulating wound inflammation, cell proliferation, migration, and angiogenesis, and wound remodeling. Keratinocytes, as the most important cells in the epidermis, communicate with other skin cells by secreting EV and take part in the wound healing process. Therefore, this paper reviews the recent research progress of keratinocyte-derived EV in wound healing and aims to provide a new sight for their use in related therapeutic approaches.

[1]
Hay RJ, Johns NE, Williams HC, et al. The global burden of skin disease in 2010: an analysis of the prevalence and impact of skin conditions[J]. J Invest Dermatol, 2014, 134(6): 1527-1534.
[2]
Blanpain C, Fuchs E. Epidermal stem cells of the skin[J]. Annu Rev Cell Dev Biol, 2006, 22: 339-373.
[3]
Shedoeva A, Leavesley D, Upton Z, et al. Wound Healing and the Use of Medicinal Plants[J]. Evid Based Complement Alternat Med, 2019, 2019: 2684108.
[4]
Laberge A, Arif S, Moulin VJ. Microvesicles: Intercellular messengers in cutaneous wound healing[J]. J Cell Physiol, 2018, 233(8): 5550-5563.
[5]
Cabral J, Ryan AE, Griffin MD, et al. Extracellular vesicles as modulators of wound healing[J]. Adv Drug Deliv Rev, 2018, 129: 394-406.
[6]
van Niel G, D′Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles[J]. Nat Rev Mol Cell Biol, 2018, 19(4): 213-228.
[7]
French KC, Antonyak MA, Cerione RA. Extracellular vesicle docking at the cellular port: Extracellular vesicle binding and uptake[J]. Semin Cell Dev Biol, 2017, 67: 48-55.
[8]
Basu J, Ludlow JW. Exosomes for repair, regeneration and rejuvenation[J]. Expert Opin Biol Ther, 2016, 16(4): 489-506.
[9]
Sjöqvist S, Imafuku A, Gupta D, et al. Isolation and Characterization of Extracellular Vesicles from Keratinocyte Cultures[J]. Methods Mol Biol, 2020, 2109: 35-44.
[10]
Mathieu M, Martin-Jaular L, Lavieu G, et al. Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication[J]. Nat Cell Biol, 2019, 21(1): 9-17.
[11]
Than UTT, Guanzon D, Broadbent JA, et al. Differential Expression of Keratinocyte-Derived Extracellular Vesicle Mirnas Discriminate Exosomes From Apoptotic Bodies and Microvesicles[J]. Front Endocrinol (Lausanne), 2018, 9: 535.
[12]
Nasiri G, Azarpira N, Alizadeh A, et al. Shedding light on the role of keratinocyte-derived extracellular vesicles on skin-homing cells[J]. Stem Cell Res Ther, 2020, 11(1): 421.
[13]
Than UTT, Leavesley DI, Parker TJ. Characteristics and roles of extracellular vesicles released by epidermal keratinocytes[J]. J Eur Acad Dermatol Venereol, 2019, 33(12): 2264-2272.
[14]
Chavez-Muñoz C, Kilani RT, Ghahary A. Profile of exosomes related proteins released by differentiated and undifferentiated human keratinocytes[J]. J Cell Physiol, 2009, 221(1): 221-231.
[15]
Sun F, Bi Q, Wang X, et al. Down-regulation of mir-27b promotes angiogenesis and fibroblast activation through activating PI3K/AKT signaling pathway[J]. Wound Repair Regen, 2020, 28(1): 39-48.
[16]
Suh EJ, Remillard MY, Legesse-Miller A, et al. A microRNA network regulates proliferative timing and extracellular matrix synthesis during cellular quiescence in fibroblasts[J]. Genome Biol, 2012, 13(12): R121.
[17]
Wang PH, Huang BS, Horng HC, et al. Wound healing[J]. J Chin Med Assoc, 2018, 81(2): 94-101.
[18]
Zhao R, Liang H, Clarke E, et al. Inflammation in Chronic Wounds[J]. Int J Mol Sci, 2016, 17(12): 2085.
[19]
Han G, Ceilley R. Chronic Wound Healing: A Review of Current Management and Treatments[J]. Adv Ther, 2017, 34(3): 599-610.
[20]
Than UTT, Guanzon D, Leavesley D, et al. Association of Extracellular Membrane Vesicles with Cutaneous Wound Healing[J]. Int J Mol Sci. 2017, 18(5): 956.
[21]
Jiang M, Fang H, Shao S, et al. Keratinocyte exosomes activate neutrophils and enhanc e skin inflammation in psoriasis[J]. FASEB J, 2019, 33(12): 13241-13253.
[22]
Zhou X, Brown BA, Siegel AP, et al. Exosome-Mediated Crosstalk between Keratinocytes and Macrophages in Cutaneous Wound Healing[J]. ACS Nano, 2020, 14(10): 12732-12748.
[23]
Kotzerke K, Mempel M, Aung T, et al. Immunostimulatory activity of murine keratinocyte-derived exosomes[J]. Exp Dermatol, 2013, 22(10): 650-655.
[24]
Piipponen M, Li D, Landén NX. The Immune Functions of Keratinocytes in Skin Wound Healing[J]. Int J Mol Sci, 2020, 21(22): 8790.
[25]
Velnar T, Gradisnik L. Tissue Augmentation in Wound Healing: the Role of Endothelial and Epithelial Cells[J]. Med Arch, 2018, 72(6): 444-448.
[26]
Takeo M, Lee W, Ito M. Wound healing and skin regeneration[J]. Cold Spring Harb Perspect Med, 2015, 5(1): a023267.
[27]
Guo J, Chang C, Li W. The role of secreted heat shock protein-90 (Hsp90) in wound healing - how could it shape future therapeutics[J]. Expert Rev Proteomics, 2017, 14(8): 665-675.
[28]
Werner S, Krieg T, Smola H. Keratinocyte-fibroblast interactions in wound healing[J]. J Invest Dermatol, 2007, 127(5): 998-1008.
[29]
Li Q, Zhao H, Chen W, et al. Human keratinocyte-derived microvesicle miRNA-21 promotes skin wound healing in diabetic rats through facilitating fibroblast function and angiogenesis[J]. Int J Biochem Cell Biol, 2019, 114: 105570.
[30]
Rodrigues M, Kosaric N, Bonham CA, et al. Wound Healing: A Cellular Perspective[J]. Physiol Rev, 2019, 99(1): 665-706.
[31]
Sorg H, Tilkorn DJ, Hager S, et al. Skin Wound Healing: An Update on the Current Knowledge and Concepts[J]. Eur Surg Res, 2017, 58(1/2): 81-94.
[32]
Gallant-Behm CL, Piper J, Lynch JM, et al. A MicroRNA-29 Mimic (Remlarsen) Represses Extracellular Matrix Expression and Fibroplasia in the Skin[J]. J Invest Dermatol, 2019, 139(5): 1073-1081.
[33]
Sjöqvist S, Ishikawa T, Shimura D, et al. Exosomes derived from clinical-grade oral mucosal epithelial cell sheets promote wound healing[J]. J Extracell Vesicles, 2019, 8(1): 1565264.
[34]
Pessolano E, Belvedere R, Bizzarro V, et al. Annexin A1 Contained in Extracellular Vesicles Promotes the Activation of Keratinocytes by Mesoglycan Effects: An Autocrine Loop Through FPRs[J]. Cells, 2019, 8(7): 753.
[35]
Wang C, Wang M, Xu T, et al. Engineering Bioactive Self-Healing Antibacterial Exosomes Hydrogel for Promoting Chronic Diabetic Wound Healing and Complete Skin Regeneration[J]. Theranostics, 2019, 9(1): 65-76.
[1] 韩圣瑾, 周正武, 翁云龙, 黄鑫. 碳酸氢钠林格液联合连续性肾脏替代疗法对创伤合并急性肾损伤患者炎症水平及肾功能的影响[J]. 中华危重症医学杂志(电子版), 2023, 16(05): 376-381.
[2] 韩媛媛, 热孜亚·萨贝提, 冒智捷, 穆福娜依·艾尔肯, 陆晨, 桑晓红, 阿尔曼·木拉提, 张丽. 组合式血液净化治疗对脓毒症患者血清炎症因子水平和临床预后的影响[J]. 中华危重症医学杂志(电子版), 2023, 16(04): 272-278.
[3] 代雯荣, 赵丽娟, 李智慧. 细胞外囊泡对胚胎着床影响的研究进展[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 616-620.
[4] 魏徐, 张鸽, 伍金林. 新生儿脓毒症相关性凝血病的监测和治疗[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(04): 379-386.
[5] 周子慧, 李恭驰, 李炳辉, 王知, 刘慧真, 王卉, 邹利军. 细胞自噬在创面愈合中作用的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 542-546.
[6] 陈继秋, 朱世辉. 皮肤牵张装置的临床应用现状[J]. 中华损伤与修复杂志(电子版), 2023, 18(05): 451-453.
[7] 陈大敏, 曹晓刚, 曹能琦. 肥胖对胃癌患者手术治疗效果的影响研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 651-653.
[8] 贾成朋, 王代宏, 陈华, 孙备. 可切除性胰腺癌预后术前预测模型的建立及应用[J]. 中华普外科手术学杂志(电子版), 2023, 17(05): 566-570.
[9] 伍学成, 李远伟, 袁武雄, 王建松, 石泳中, 卢强, 李卓, 陈佳, 刘哲, 滕伊漓, 高智勇. 炎症介质谱联合降钙素原在尿源性脓毒血症中的诊断价值[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(05): 476-480.
[10] 王可, 范彬, 李多富, 刘奎. 两种疝囊残端处理方法在经腹腹膜前腹股沟疝修补术中的疗效比较[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 692-696.
[11] 邹勇, 顾应江, 丁昊, 杨呈浩, 陈岷辉, 蔡昱. 基于Nrf2/HO-1及NF-κB信号通路探讨葛根素对大鼠脑出血后早期炎症反应及氧化应激反应的影响[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 271-277.
[12] 屈霄, 王靓, 陆萍, 何斌, 孙敏. 外周血炎症因子及肠道菌群特征与活动性溃疡性结肠炎患者病情的相关性分析[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 466-470.
[13] 朱风尚, 舍玲, 丁永年, 杨长青. 警惕炎症性肠病与少见肠道疾病的鉴别诊断[J]. 中华消化病与影像杂志(电子版), 2023, 13(05): 273-276.
[14] 刘感哲, 艾芬. MiRNA-210通过抑制HIF-1α的表达改善大鼠血管性认知功能障碍[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 489-494.
[15] 刘天姿, 王宝军. Toll样受体4在阿尔茨海默病中的研究进展[J]. 中华脑血管病杂志(电子版), 2023, 17(04): 404-409.
阅读次数
全文


摘要