切换至 "中华医学电子期刊资源库"

中华损伤与修复杂志(电子版) ›› 2022, Vol. 17 ›› Issue (01) : 85 -88. doi: 10.3877/cma.j.issn.1673-9450.2022.01.016

综述

中性粒细胞胞外诱捕网在创面愈合过程中作用的研究进展
程彬1, 吴浠鑫1, 谢天2,()   
  1. 1. 518000 华中科技大学协和深圳医院烧伤整形科
    2. 518000 华中科技大学协和深圳医院普外科
  • 收稿日期:2021-10-01 出版日期:2022-02-01
  • 通信作者: 谢天

Research progress on the effect of neutrophil extracellular traps in wound healing

Bin Cheng1, Xixin Wu1, Tian Xie2,()   

  1. 1. Department of Burns and Plastic Surgery, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518000, China
    2. Department of General Surgery, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518000, China
  • Received:2021-10-01 Published:2022-02-01
  • Corresponding author: Tian Xie
引用本文:

程彬, 吴浠鑫, 谢天. 中性粒细胞胞外诱捕网在创面愈合过程中作用的研究进展[J]. 中华损伤与修复杂志(电子版), 2022, 17(01): 85-88.

Bin Cheng, Xixin Wu, Tian Xie. Research progress on the effect of neutrophil extracellular traps in wound healing[J]. Chinese Journal of Injury Repair and Wound Healing(Electronic Edition), 2022, 17(01): 85-88.

创面愈合与免疫及炎症反应密切相关。中性粒细胞作为炎症反应的主要效应细胞之一,已被证明在糖尿病足等创面愈合的病理生理过程中起着重要的作用。尤其是新近研究发现中性粒细胞在炎症、损伤等的刺激下,可以通过释放中性粒细胞胞外诱捕网(NET),抑制或阻碍创面的愈合,在创面愈合过程中起着重要的作用。然而,NET在不同类型的创面愈合中的作用还未完全阐明。本文将围绕免疫反应与炎症反应等在创面愈合中的最新研究进展,就NET在不同类型的创面愈合过程中的作用作一综述。

Wound healing is closely related to immunity and inflammation. As one of the main effector cells of inflammation, neutrophils have been proved to play an important role in the pathophysiological process of diabetic foot and other types of wound healing. Recent studies have proven that neutrophils can inhibit or hinder wound healing by releasing neutrophil extracellular trap(NET) under the stimulation of inflammation and injury, and play an important role in the process of wound healing. However, the role of NET in different types of wound healing has not been fully elucidated. This article will focus on the latest research progress of immune response and inflammatory response in wound healing, combined with the role of NET in the wound healing of different types to make a review.

[1]
Sidhu GS, Mani H, Gaddipati JP, et al. Curcumin enhances wound healing in streptozotocin induced diabetic rats and genetically diabetic mice[J]. Wound Repair Regen, 1999, 7(5): 362-374.
[2]
Kasuya A, Tokura Y. Attempts to accelerate wound healing[J]. J Dermatol Sci, 2014, 76(3): 169-172.
[3]
钱昕,杨硕菲,齐昊喆,等. 中性粒细胞胞外陷阱网致糖尿病创面愈合延迟的研究进展[J]. 中华普通外科杂志2018, 33(7): 622-624.
[4]
Brinkmann V, Reichard U, Goosmann C, et al. Neutrophil Extracellular Traps Kill Bacteria[J]. Science, 2004, 303(5663): 1532-1535.
[5]
吴腾飞,陈福广,黄清华,等. 中性粒细胞杀灭病原体的新途径:胞外诱捕网[J]. 免疫学杂志2013, 29(2): 173-176.
[6]
Byrd AS, O′Brien XM, Johnson CM, et al. An extracellular matrix-based mechanism of rapid neutrophil extracellular trap formation in response to Candida albicans[J]. J Immunol, 2013, 190(8): 4136-4148.
[7]
Funchal GA, Jaeger N, Czepielewski RS, et al. Respiratory Syncytial Virus Fusion Protein Promotes TLR-4-Dependent Neutrophil Extracellular Trap Formation by Human Neutrophils[J]. PloS One, 2015, 10(4): e0124082.
[8]
Kaplan MJ, Radic M. Neutrophil extracellular traps: double-edged swords of innate immunity[J]. J Immunol, 2012, 189(6): 2689-2695.
[9]
宋向楠,刘彦虹. 中性粒细胞胞外诱捕网与相关疾病的研究进展[J]. 国际免疫学杂志2017, 40(1): 57-60.
[10]
Caudrillier A, Kessenbrock K, Gilliss BM, et al. Platelets induce neutrophil extracellular traps in transfusion-related acute lung injury[J]. J Clin Invest, 2012, 122(7): 2661-2671.
[11]
Huang H, Tohme S, Al-Khafaji AB, et al. DAMPs-activated neutrophil extracellular trap exacerbates sterile inflammatory liver injury[J]. Hepatology, 2015, 62(2): 600-614.
[12]
Papayannopoulos V. Neutrophil extracellular traps in immunity and disease[J]. Nat Rev Immunol, 2018, 18(2): 134-147.
[13]
Madhi R, Rahman M, Taha D, et al. Targeting peptidylarginine deiminase reduces neutrophil extracellular trap formation and tissue injury in severe acute pancreatitis[J]. J Cell Physiol, 2019, 234(7): 11850-11860.
[14]
Miura T, Kawakami K, Kanno E, et al. Dectin-2-mediated signaling leads to delayed skin wound healing through enhanced neutrophilic inflammatory response and neutrophil extracellular traps formation[J]. J Invest Dermatol, 2019, 139(3): 702-711.
[15]
de Oliveira S, Rosowski EE, Huttenlocher A. Neutrophil migration in infection and wound repair: going forward in reverse[J]. Nat Rev Immunol, 2016, 16(6): 378-391.
[16]
Bao Y, Ledderose C, Graf AF, et al. mTOR and differential activation of mitochondria orchestrate neutrophilchemotaxis[J]. J Cell Biol, 2015, 210(7): 1153-1164.
[17]
Itakura A, McCarty OJ. Pivotal role for the mTOR pathway in the formation of neutrophil extracellular traps via regulation of autophagy[J]. Am J Physiol Cell Physiol, 2013, 305(3): C348-C354.
[18]
Lecut C, Frederix K, Johnson DM, et al. P2X1 ion channels promote neutrophil chemotaxis through Rho kinaseactivation[J]. J Immunol, 2009, 183(4): 2801-2809.
[19]
Amini P, Stojkov D, Felser A, et al. Neutrophil extracellular trap formation requires OPA1-dependent glycolytic ATP production[J]. Nat Commun, 2018, 9(1): 2958.
[20]
Tadie JM, Bae HB, Jiang S, et al. HMGB1 promotes neutrophilextracellular trap formation through interactions with Toll-like receptor 4[J]. Am J Physiol Lung Cell Mol Physiol, 2013, 304(5): L342-L349.
[21]
Huebener P, Pradere JP, Hernandez C, et al. The HMGB1/RAGE axis triggers neutrophil-mediated injury amplification following necrosis[J]. J Clin Invest, 2015, 125(2): 539-550.
[22]
DeSouza-Vieira T, Guimarães-Costa A, Rochael NC, et al. Neutrophil extracellular traps release induced by Leishmania: role of PI3Kγ,ERK, PI3Kσ,PKC, and [Ca2+][J]. J Leukoc Biol, 2016, 100(4): 801-810.
[23]
Isailovic N, Daigo K, Mantovani A, et al. Interleukin-17 and innate immunity in infections and chronic inflammation[J]. J Autoimmun, 2015, 60: 1-11.
[24]
Honda M, Kubes P. Neutrophils and neutrophil extracellular traps in the liver and gastrointestinal system[J]. Nat Rev Gastroenterol Hepatol, 2018, 15(4): 206-221.
[25]
Pilsczek FH, Salina D, Poon KK, et al. A Novel Mechanism of Rapid Nuclear Neutrophil Extracellular Trap Formation in Response to Staphylococcus aureus[J]. J Immunol, 2010, 185(12): 7413-7425.
[26]
Thammavongsa V, Missiakas DM, Schneewind O. Staphylococcus aureus Degrades Neutrophil Extracellular Traps to Promote Immune Cell Death[J]. Science, 2013, 342(6160): 863-866.
[27]
Pereira GG, Detoni CB, Balducci AG, et al. Hyaluronate nanoparticles included in polymer films for the prolonged release of vitamin E for the management of skin wounds[J]. Eur J Pharm Sci, 2016, 83: 203-211.
[28]
Van Avondt K, Hartl D. Mechanisms and disease relevance of neutrophil extracellular trap formation[J]. Eur J Clin Invest, 2018, 48 Suppl 2: e12919.
[29]
Ravindran M, Khan MA, Palaniyar N. Neutrophil Extracellular Trap Formation: Physiology, Pathology, and Pharmacology[J]. Biomolecules, 2019, 9(8): 365.
[30]
Dovi JV, He LK, DiPietro LA. Accelerated wound closure in neutrophil-depleted mice[J]. J Leukoc Biol, 2003, 73(4):448-455.
[31]
Wong SL, Demers M, Martinod K, et al. Diabetes primes neutrophils to undergo NETosis, which impairs wound healing[J]. Nat Med, 2015, 21(7): 815-819.
[32]
Fadini GP, Menegazzo L, Rigato M, et al. NETosis Delays Diabetic Wound Healing in Mice and Humans[J]. Diabetes, 2016, 65(4): 1061-1071.
[33]
Sollberger G, Choidas A, Burn GL, et al. Gasdermin D plays a vital role in the generation of neutrophil extracellular traps[J]. Sci Immunol, 2018, 3(26): eaar668.
[34]
Lee SK, Lee SS, Song IS, et al. Paradoxical effects of elastase inhibitor guamerin on the tissue repair of two different wound models: sealed cutaneous and exposed tongue wounds[J]. Exp Mol Med, 2004, 36(3): 259-267.
[35]
Caley MP, Martins VL, O′Toole EA. Metalloproteinases and Wound Healing[J]. Adv Wound Care (New Rochelle), 2015, 4(4): 225-234.
[36]
Zhu J, Nathan C, Jin W, et al. Conversion of proepithelin to epithelins: roles of SLPI and elastase in host defense and wound repair[J]. Cell, 2002, 111(6): 867-878.
[37]
Olza J, Aguilera CM, Gil-Campos M, et al. Myeloperoxidase Is an Early Biomarker of Inflammation and Cardiovascular Risk in Prepubertal Obese Children[J]. Diabetes Care, 2012, 35(11): 2373-2376.
[38]
Klebanoff SJ. Myeloperoxidase[J]. Proc Assoc Am Physicians, 1999, 111(5): 383-389.
[39]
Trengove NJ, Langton SR, Stacey MC. Biochemical analysis of wound fluid from nonhealing and healing chronic leg ulcers[J]. Wound Repair and Regeneration, 1996, 4(2): 234-239.
[40]
Diegelmann RF, Evans MC. Wound healing: an overview of acute, fibrotic and delayed healing[J]. Front Biosci, 2004, 9: 283-289.
[41]
Jain AK, Tewari-Singh N, Inturi S, et al. Myeloperoxidase deficiency attenuates nitrogen mustard-induced skin injuries[J]. Toxicology, 2014, 320: 25-33.
[42]
Gurlek A, Celik M, Parlakpinar H, et al. The protective effect of melatonin on ischemia-reperfusion injury in the groin (inferior epigastric) flap model in rats[J]. J Pineal Res, 2006, 40(4): 312-317.
[43]
Yang J, Ji R, Cheng Y, et al. L-arginine chlorination results in the formation of a nonselective nitric-oxide synthase inhibitor[J]. J Pharmacol Exp Ther, 2006, 318(3): 1044-1049.
[44]
Pitanga TN, de Aragão França L, Rocha VC, et al. Neutrophil-derived microparticles induce myeloperoxidase-mediated damage of vascular endothelial cells[J]. BMC Cell Biol, 2014, 15: 21.
[1] 韩圣瑾, 周正武, 翁云龙, 黄鑫. 碳酸氢钠林格液联合连续性肾脏替代疗法对创伤合并急性肾损伤患者炎症水平及肾功能的影响[J]. 中华危重症医学杂志(电子版), 2023, 16(05): 376-381.
[2] 米洁, 陈晨, 李佳玲, 裴海娜, 张恒博, 李飞, 李东杰. 儿童头面部外伤特点分析[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 511-515.
[3] 周子慧, 李恭驰, 李炳辉, 王知, 刘慧真, 王卉, 邹利军. 细胞自噬在创面愈合中作用的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 542-546.
[4] 陆美琪, 赵洁, 单菲, 王兴蕾, 姜笃银. 药物相关坏疽性脓皮病的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(05): 447-450.
[5] 陈继秋, 朱世辉. 皮肤牵张装置的临床应用现状[J]. 中华损伤与修复杂志(电子版), 2023, 18(05): 451-453.
[6] 陈大敏, 曹晓刚, 曹能琦. 肥胖对胃癌患者手术治疗效果的影响研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 651-653.
[7] 贾成朋, 王代宏, 陈华, 孙备. 可切除性胰腺癌预后术前预测模型的建立及应用[J]. 中华普外科手术学杂志(电子版), 2023, 17(05): 566-570.
[8] 伍学成, 李远伟, 袁武雄, 王建松, 石泳中, 卢强, 李卓, 陈佳, 刘哲, 滕伊漓, 高智勇. 炎症介质谱联合降钙素原在尿源性脓毒血症中的诊断价值[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(05): 476-480.
[9] 王可, 范彬, 李多富, 刘奎. 两种疝囊残端处理方法在经腹腹膜前腹股沟疝修补术中的疗效比较[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 692-696.
[10] 郝然, 魏姗珊, 吴倩如, 李学民, 翟长斌. 干燥综合征血清微量元素变化及其与疾病严重程度的相关性研究[J]. 中华眼科医学杂志(电子版), 2023, 13(04): 215-220.
[11] 邹勇, 顾应江, 丁昊, 杨呈浩, 陈岷辉, 蔡昱. 基于Nrf2/HO-1及NF-κB信号通路探讨葛根素对大鼠脑出血后早期炎症反应及氧化应激反应的影响[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 271-277.
[12] 屈霄, 王靓, 陆萍, 何斌, 孙敏. 外周血炎症因子及肠道菌群特征与活动性溃疡性结肠炎患者病情的相关性分析[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 466-470.
[13] 朱风尚, 舍玲, 丁永年, 杨长青. 警惕炎症性肠病与少见肠道疾病的鉴别诊断[J]. 中华消化病与影像杂志(电子版), 2023, 13(05): 273-276.
[14] 吴萌, 吴国仲, 王贵红, 端靓靓, 施杰, 王旭, 余婷, 刘伟. IgA肾病患者中性粒细胞-淋巴细胞比值与肾小管萎缩/间质纤维化相关性分析[J]. 中华临床医师杂志(电子版), 2023, 17(9): 972-979.
[15] 刘感哲, 艾芬. MiRNA-210通过抑制HIF-1α的表达改善大鼠血管性认知功能障碍[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 489-494.
阅读次数
全文


摘要