切换至 "中华医学电子期刊资源库"

中华损伤与修复杂志(电子版) ›› 2022, Vol. 17 ›› Issue (01) : 85 -88. doi: 10.3877/cma.j.issn.1673-9450.2022.01.016

综述

中性粒细胞胞外诱捕网在创面愈合过程中作用的研究进展
程彬1, 吴浠鑫1, 谢天2,()   
  1. 1. 518000 华中科技大学协和深圳医院烧伤整形科
    2. 518000 华中科技大学协和深圳医院普外科
  • 收稿日期:2021-10-01 出版日期:2022-02-01
  • 通信作者: 谢天

Research progress on the effect of neutrophil extracellular traps in wound healing

Bin Cheng1, Xixin Wu1, Tian Xie2,()   

  1. 1. Department of Burns and Plastic Surgery, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518000, China
    2. Department of General Surgery, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518000, China
  • Received:2021-10-01 Published:2022-02-01
  • Corresponding author: Tian Xie
引用本文:

程彬, 吴浠鑫, 谢天. 中性粒细胞胞外诱捕网在创面愈合过程中作用的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2022, 17(01): 85-88.

Bin Cheng, Xixin Wu, Tian Xie. Research progress on the effect of neutrophil extracellular traps in wound healing[J/OL]. Chinese Journal of Injury Repair and Wound Healing(Electronic Edition), 2022, 17(01): 85-88.

创面愈合与免疫及炎症反应密切相关。中性粒细胞作为炎症反应的主要效应细胞之一,已被证明在糖尿病足等创面愈合的病理生理过程中起着重要的作用。尤其是新近研究发现中性粒细胞在炎症、损伤等的刺激下,可以通过释放中性粒细胞胞外诱捕网(NET),抑制或阻碍创面的愈合,在创面愈合过程中起着重要的作用。然而,NET在不同类型的创面愈合中的作用还未完全阐明。本文将围绕免疫反应与炎症反应等在创面愈合中的最新研究进展,就NET在不同类型的创面愈合过程中的作用作一综述。

Wound healing is closely related to immunity and inflammation. As one of the main effector cells of inflammation, neutrophils have been proved to play an important role in the pathophysiological process of diabetic foot and other types of wound healing. Recent studies have proven that neutrophils can inhibit or hinder wound healing by releasing neutrophil extracellular trap(NET) under the stimulation of inflammation and injury, and play an important role in the process of wound healing. However, the role of NET in different types of wound healing has not been fully elucidated. This article will focus on the latest research progress of immune response and inflammatory response in wound healing, combined with the role of NET in the wound healing of different types to make a review.

[1]
Sidhu GS, Mani H, Gaddipati JP, et al. Curcumin enhances wound healing in streptozotocin induced diabetic rats and genetically diabetic mice[J]. Wound Repair Regen, 1999, 7(5): 362-374.
[2]
Kasuya A, Tokura Y. Attempts to accelerate wound healing[J]. J Dermatol Sci, 2014, 76(3): 169-172.
[3]
钱昕,杨硕菲,齐昊喆,等. 中性粒细胞胞外陷阱网致糖尿病创面愈合延迟的研究进展[J]. 中华普通外科杂志2018, 33(7): 622-624.
[4]
Brinkmann V, Reichard U, Goosmann C, et al. Neutrophil Extracellular Traps Kill Bacteria[J]. Science, 2004, 303(5663): 1532-1535.
[5]
吴腾飞,陈福广,黄清华,等. 中性粒细胞杀灭病原体的新途径:胞外诱捕网[J]. 免疫学杂志2013, 29(2): 173-176.
[6]
Byrd AS, O′Brien XM, Johnson CM, et al. An extracellular matrix-based mechanism of rapid neutrophil extracellular trap formation in response to Candida albicans[J]. J Immunol, 2013, 190(8): 4136-4148.
[7]
Funchal GA, Jaeger N, Czepielewski RS, et al. Respiratory Syncytial Virus Fusion Protein Promotes TLR-4-Dependent Neutrophil Extracellular Trap Formation by Human Neutrophils[J]. PloS One, 2015, 10(4): e0124082.
[8]
Kaplan MJ, Radic M. Neutrophil extracellular traps: double-edged swords of innate immunity[J]. J Immunol, 2012, 189(6): 2689-2695.
[9]
宋向楠,刘彦虹. 中性粒细胞胞外诱捕网与相关疾病的研究进展[J]. 国际免疫学杂志2017, 40(1): 57-60.
[10]
Caudrillier A, Kessenbrock K, Gilliss BM, et al. Platelets induce neutrophil extracellular traps in transfusion-related acute lung injury[J]. J Clin Invest, 2012, 122(7): 2661-2671.
[11]
Huang H, Tohme S, Al-Khafaji AB, et al. DAMPs-activated neutrophil extracellular trap exacerbates sterile inflammatory liver injury[J]. Hepatology, 2015, 62(2): 600-614.
[12]
Papayannopoulos V. Neutrophil extracellular traps in immunity and disease[J]. Nat Rev Immunol, 2018, 18(2): 134-147.
[13]
Madhi R, Rahman M, Taha D, et al. Targeting peptidylarginine deiminase reduces neutrophil extracellular trap formation and tissue injury in severe acute pancreatitis[J]. J Cell Physiol, 2019, 234(7): 11850-11860.
[14]
Miura T, Kawakami K, Kanno E, et al. Dectin-2-mediated signaling leads to delayed skin wound healing through enhanced neutrophilic inflammatory response and neutrophil extracellular traps formation[J]. J Invest Dermatol, 2019, 139(3): 702-711.
[15]
de Oliveira S, Rosowski EE, Huttenlocher A. Neutrophil migration in infection and wound repair: going forward in reverse[J]. Nat Rev Immunol, 2016, 16(6): 378-391.
[16]
Bao Y, Ledderose C, Graf AF, et al. mTOR and differential activation of mitochondria orchestrate neutrophilchemotaxis[J]. J Cell Biol, 2015, 210(7): 1153-1164.
[17]
Itakura A, McCarty OJ. Pivotal role for the mTOR pathway in the formation of neutrophil extracellular traps via regulation of autophagy[J]. Am J Physiol Cell Physiol, 2013, 305(3): C348-C354.
[18]
Lecut C, Frederix K, Johnson DM, et al. P2X1 ion channels promote neutrophil chemotaxis through Rho kinaseactivation[J]. J Immunol, 2009, 183(4): 2801-2809.
[19]
Amini P, Stojkov D, Felser A, et al. Neutrophil extracellular trap formation requires OPA1-dependent glycolytic ATP production[J]. Nat Commun, 2018, 9(1): 2958.
[20]
Tadie JM, Bae HB, Jiang S, et al. HMGB1 promotes neutrophilextracellular trap formation through interactions with Toll-like receptor 4[J]. Am J Physiol Lung Cell Mol Physiol, 2013, 304(5): L342-L349.
[21]
Huebener P, Pradere JP, Hernandez C, et al. The HMGB1/RAGE axis triggers neutrophil-mediated injury amplification following necrosis[J]. J Clin Invest, 2015, 125(2): 539-550.
[22]
DeSouza-Vieira T, Guimarães-Costa A, Rochael NC, et al. Neutrophil extracellular traps release induced by Leishmania: role of PI3Kγ,ERK, PI3Kσ,PKC, and [Ca2+][J]. J Leukoc Biol, 2016, 100(4): 801-810.
[23]
Isailovic N, Daigo K, Mantovani A, et al. Interleukin-17 and innate immunity in infections and chronic inflammation[J]. J Autoimmun, 2015, 60: 1-11.
[24]
Honda M, Kubes P. Neutrophils and neutrophil extracellular traps in the liver and gastrointestinal system[J]. Nat Rev Gastroenterol Hepatol, 2018, 15(4): 206-221.
[25]
Pilsczek FH, Salina D, Poon KK, et al. A Novel Mechanism of Rapid Nuclear Neutrophil Extracellular Trap Formation in Response to Staphylococcus aureus[J]. J Immunol, 2010, 185(12): 7413-7425.
[26]
Thammavongsa V, Missiakas DM, Schneewind O. Staphylococcus aureus Degrades Neutrophil Extracellular Traps to Promote Immune Cell Death[J]. Science, 2013, 342(6160): 863-866.
[27]
Pereira GG, Detoni CB, Balducci AG, et al. Hyaluronate nanoparticles included in polymer films for the prolonged release of vitamin E for the management of skin wounds[J]. Eur J Pharm Sci, 2016, 83: 203-211.
[28]
Van Avondt K, Hartl D. Mechanisms and disease relevance of neutrophil extracellular trap formation[J]. Eur J Clin Invest, 2018, 48 Suppl 2: e12919.
[29]
Ravindran M, Khan MA, Palaniyar N. Neutrophil Extracellular Trap Formation: Physiology, Pathology, and Pharmacology[J]. Biomolecules, 2019, 9(8): 365.
[30]
Dovi JV, He LK, DiPietro LA. Accelerated wound closure in neutrophil-depleted mice[J]. J Leukoc Biol, 2003, 73(4):448-455.
[31]
Wong SL, Demers M, Martinod K, et al. Diabetes primes neutrophils to undergo NETosis, which impairs wound healing[J]. Nat Med, 2015, 21(7): 815-819.
[32]
Fadini GP, Menegazzo L, Rigato M, et al. NETosis Delays Diabetic Wound Healing in Mice and Humans[J]. Diabetes, 2016, 65(4): 1061-1071.
[33]
Sollberger G, Choidas A, Burn GL, et al. Gasdermin D plays a vital role in the generation of neutrophil extracellular traps[J]. Sci Immunol, 2018, 3(26): eaar668.
[34]
Lee SK, Lee SS, Song IS, et al. Paradoxical effects of elastase inhibitor guamerin on the tissue repair of two different wound models: sealed cutaneous and exposed tongue wounds[J]. Exp Mol Med, 2004, 36(3): 259-267.
[35]
Caley MP, Martins VL, O′Toole EA. Metalloproteinases and Wound Healing[J]. Adv Wound Care (New Rochelle), 2015, 4(4): 225-234.
[36]
Zhu J, Nathan C, Jin W, et al. Conversion of proepithelin to epithelins: roles of SLPI and elastase in host defense and wound repair[J]. Cell, 2002, 111(6): 867-878.
[37]
Olza J, Aguilera CM, Gil-Campos M, et al. Myeloperoxidase Is an Early Biomarker of Inflammation and Cardiovascular Risk in Prepubertal Obese Children[J]. Diabetes Care, 2012, 35(11): 2373-2376.
[38]
Klebanoff SJ. Myeloperoxidase[J]. Proc Assoc Am Physicians, 1999, 111(5): 383-389.
[39]
Trengove NJ, Langton SR, Stacey MC. Biochemical analysis of wound fluid from nonhealing and healing chronic leg ulcers[J]. Wound Repair and Regeneration, 1996, 4(2): 234-239.
[40]
Diegelmann RF, Evans MC. Wound healing: an overview of acute, fibrotic and delayed healing[J]. Front Biosci, 2004, 9: 283-289.
[41]
Jain AK, Tewari-Singh N, Inturi S, et al. Myeloperoxidase deficiency attenuates nitrogen mustard-induced skin injuries[J]. Toxicology, 2014, 320: 25-33.
[42]
Gurlek A, Celik M, Parlakpinar H, et al. The protective effect of melatonin on ischemia-reperfusion injury in the groin (inferior epigastric) flap model in rats[J]. J Pineal Res, 2006, 40(4): 312-317.
[43]
Yang J, Ji R, Cheng Y, et al. L-arginine chlorination results in the formation of a nonselective nitric-oxide synthase inhibitor[J]. J Pharmacol Exp Ther, 2006, 318(3): 1044-1049.
[44]
Pitanga TN, de Aragão França L, Rocha VC, et al. Neutrophil-derived microparticles induce myeloperoxidase-mediated damage of vascular endothelial cells[J]. BMC Cell Biol, 2014, 15: 21.
[1] 黄蓉, 梁自毓, 祁文瑾. NLRP3炎症小体在胎膜早破孕妇血清中的表达及其意义[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(05): 540-548.
[2] 王振宇, 张洪美, 荆琳, 何名江, 闫奇. 膝骨关节炎相关炎症因子与血浆代谢物间的因果关系及中介效应[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 467-473.
[3] 张洁, 罗小霞, 余鸿. 系统性免疫炎症指数对急性胰腺炎患者并发器官功能损伤的预测价值[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 68-71.
[4] 唐梅, 周丽, 牛岑月, 周小童, 王倩. ICG荧光导航的腹腔镜肝切除术临床意义[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 655-658.
[5] 付成旺, 杨大刚, 王榕, 李福堂. 营养与炎症指标在可切除胰腺癌中的研究进展[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 704-708.
[6] 高娟, 徐建庆, 闫芳, 丁盛华, 刘霞. Rutkow、TAPP、TEP 手术治疗单侧腹股沟疝患者的临床疗效及对血清炎症因子水平的影响[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(06): 675-680.
[7] 李智, 冯芸. NF-κB 与MAPK 信号通路及其潜在治疗靶点在急性呼吸窘迫综合征中的研究进展[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 840-843.
[8] 孙璐, 蒋亚玲, 陈凌君. 布托啡诺对脑缺血再灌注损伤大鼠神经炎症和JAK2/STAT3信号通路的影响[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 344-350.
[9] 何慧玲, 鲁祖斌, 冯嘉莉, 梁声强. 术前外周血NLR和PLR对结肠癌术后肝转移的影响[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(05): 682-687.
[10] 赵泽云, 李建男, 王旻. 中性粒细胞胞外诱捕网在结直肠癌中的研究进展[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(06): 524-528.
[11] 张少青, 吕玉风, 董海霞. 中性粒细胞百分比/白蛋白比值对维持性血液透析患者全因死亡的预测作用[J/OL]. 中华肾病研究电子杂志, 2024, 13(06): 321-326.
[12] 帖璇, 苏晓乐, 王利华. 抗中性粒细胞胞质抗体相关性血管炎治疗研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(06): 345-351.
[13] 王湛, 李文坤, 杨奕, 徐芳, 周敏思, 苏珈仪, 王亚丹, 吴静. 炎症指标在早发性结直肠肿瘤中的应用[J/OL]. 中华临床医师杂志(电子版), 2024, 18(09): 802-810.
[14] 欧春影, 李晓宾, 郭靖, 朱亮, 许可, 王梦, 安晓雷. 丁苯酞对血管性认知障碍大鼠炎症因子的影响及对认知障碍的改善作用[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(05): 483-487.
[15] 牟磊, 徐东成, 韩鑫, 徐长江, 韩坤锜, 薛叶潇, 牟媛, 秦文玲, 刘相静, 陈哲, 高楠. 五虫通络胶囊防治椎动脉开口支架术后再狭窄发生的效果[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(05): 467-472.
阅读次数
全文


摘要