切换至 "中华医学电子期刊资源库"

中华损伤与修复杂志(电子版) ›› 2022, Vol. 17 ›› Issue (03) : 247 -252. doi: 10.3877/cma.j.issn.1673-9450.2022.03.012

综述·股骨头坏死

外泌体介导股骨头坏死机制与治疗的研究进展
徐煜琛1, 李璐2, 薛冬令2, 赵德伟2,()   
  1. 1. 116001 大连大学附属中山医院骨科;116001 大连大学中山临床学院
    2. 116001 大连大学附属中山医院骨科;116001 大连大学附属中山医院骨科植入材料开发国家地方联合工程实验室
  • 收稿日期:2022-03-17 出版日期:2022-06-01
  • 通信作者: 赵德伟
  • 基金资助:
    大连市登峰计划医学重点专科建设项目(大卫发(2021)243号)

Progress in the mechanism and treatment of exosome-mediated osteonecrosis of the femoral head

Yuchen Xu1, Lu Li2, Dongling Xue2, Dewei Zhao2,()   

  1. 1. Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China; Medical College of Dalian University, Dalian 116001, China
    2. Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China; National Local Joint Engineering Laboratory for Orthopedic Implant Material Development, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China
  • Received:2022-03-17 Published:2022-06-01
  • Corresponding author: Dewei Zhao
引用本文:

徐煜琛, 李璐, 薛冬令, 赵德伟. 外泌体介导股骨头坏死机制与治疗的研究进展[J]. 中华损伤与修复杂志(电子版), 2022, 17(03): 247-252.

Yuchen Xu, Lu Li, Dongling Xue, Dewei Zhao. Progress in the mechanism and treatment of exosome-mediated osteonecrosis of the femoral head[J]. Chinese Journal of Injury Repair and Wound Healing(Electronic Edition), 2022, 17(03): 247-252.

股骨头坏死(ONFH)是一种破坏性极强,致残率极高的骨科常见疾病,其发病机制尚未完全确定。外泌体是具有双层膜结构的囊泡样载体,包含丰富的蛋白质和核酸等内容物,是细胞通讯的关键方式之一。近年来大量实验结论证实,外泌体在ONFH患者的循环障碍、脂代谢紊乱、成骨能力改变、细胞凋亡病理生理活动,以及预防与治疗中均起到关键作用。本文全面综述外泌体与ONFH的致病机制以及在ONFH治疗上的潜在应用,提出外泌体可以作为ONFH治疗的重要手段。

Osteonecrosis of the femoral head (ONFH) is a very destructive and disabling common orthopedic disease, and its pathogenesis has not been fully determined. Exosomes are vesicle-like carriers with bilayer membrane structure, which contain contents such as abundant proteins and nucleic acids, and are one of the key modes of cell communication. In recent years, a large number of experimental conclusions have confirmed that exosomes play a key role in pathophysiological activities such as circulatory disturbance, fat metabolism disorders, altered osteogenic ability, and apoptosis in patients with ONFH, as well as prevention and treatment. This article reviews the pathogenesis of exosomes and its potential application in the treatment of ONFH, proposes that exosomes can be used as an important treatment for ONFH.

图1 外泌体结构示意图[22]
图2 外泌体体内循环(内吞、质膜融合和配体-受体相互作用)模式图
图3 外泌体介导的ONFH致病机制示意图。Ⅰ示循环障碍;Ⅱ示脂代谢紊乱;Ⅲ示成骨能力;Ⅳ示炎症与凋亡;ONFH为股骨头坏死
表1 不同外泌体参与ONFH的作用机制
[1]
Fu L, Liu H, Lei W. MiR-596 inhibits osteoblastic differentiation and cell proliferation by targeting Smad3 in steroid-induced osteonecrosis of femoral head[J]. J Orthop Surg Res, 2020, 15(1): 173.
[2]
Cui L, Zhuang Q, Lin J, et al. Multicentric epidemiologic study on six thousand three hundred and ninety five cases of femoral head osteonecrosis in China[J]. Int Orthop, 2016, 40(2): 267-276.
[3]
Gu C, Xu Y, Zhang S, et al. miR-27a attenuates adipogenesis and promotes osteogenesis in steroid-induced rat BMSCs by targeting PPARγ and GREM1[J]. Sci Rep, 2016, 6: 38491.
[4]
Chen G, Wang Q, Li Z, et al. Circular RNA CDR1as promotes adipogenic and suppresses osteogenic differentiation of BMSCs in steroid-induced osteonecrosis of the femoral head[J]. Bone, 2020, 133: 115258.
[5]
Zhang Q, L V J, Jin L. Role of coagulopathy in glucocorticoid-induced osteonecrosis of the femoral head[J]. J Int Med Res, 2018, 46(6): 2141-2148.
[6]
Han J, Gao F, Li Y, et al. The Use of Platelet-Rich Plasma for the Treatment of Osteonecrosis of the Femoral Head: A Systematic Review[J]. Biomed Res Int, 2020, 2020: 2642439.
[7]
Vicencio JM, Yellon DM, Sivaraman V, et al. Plasma exosomes protect the myocardium from ischemia-reperfusion injury[J]. J Am Coll Cardiol, 2015, 65(15): 1525-1536.
[8]
Mathew B, Ravindran S, Liu X, et al. Mesenchymal stem cell-derived extracellular vesicles and retinal ischemia-reperfusion[J]. Biomaterials, 2019, 197: 146-160.
[9]
Zhang H, Wu J, Wu J, et al. Exosome-mediated targeted delivery of miR-210 for angiogenic therapy after cerebral ischemia in mice[J]. J Nanobiotechnology, 2019, 17(1): 29.
[10]
Zhang C, Su Y, Ding H, et al. Mesenchymal stem cells-derived and siRNAs-encapsulated exosomes inhibit osteonecrosis of the femoral head[J]. J Cell Mol Med, 2020, 24(17): 9605-9612.
[11]
Li D, Liu J, Guo B, et al. Osteoclast-derived exosomal miR-214-3p inhibits osteoblastic bone formation[J]. Nat Commun, 2016, 7: 10872.
[12]
Fang Y, Zhang Y, Zhou J, et al. Adipose-derived mesenchymal stem cell exosomes: a novel pathway for tissues repair[J]. Cell Tissue Bank, 2019, 20(2): 153-161.
[13]
Li L, Wang Y, Yu X, et al. Bone marrow mesenchymal stem cell-derived exosomes promote plasminogen activator inhibitor 1 expression in vascular cells in the local microenvironment during rabbit osteonecrosis of the femoral head[J]. Stem Cell Res Ther, 2020, 11(1): 480.
[14]
Yang RZ, Zheng HL, Xu WN, et al. Vascular endothelial cell-secreted exosomes facilitate osteoarthritis pathogenesis by promoting chondrocyte apoptosis[J]. Aging (Albany NY), 2021, 13(3): 4647-4662.
[15]
Fang S, Li Y, Chen P. Osteogenic effect of bone marrow mesenchymal stem cell-derived exosomes on steroid-induced osteonecrosis of the femoral head[J]. Drug Des Devel Ther, 2018, 13: 45-55.
[16]
Mathivanan S, Ji H, Simpson RJ. Exosomes: Extracellular organelles important in intercellular communication[J]. J Proteomics, 2010, 73(10): 1907-1920.
[17]
Jeppesen DK, Fenix AM, Franklin JL, et al. Reassessment of Exosome Composition[J]. Cell, 2019, 177(2): 428-445, e418.
[18]
Pegtel DM, Gould SJ. Exosomes[J]. Annu Rev Biochem, 2019, 88(1): 487-514.
[19]
Théry C, Zitvogel L, Amigorena S. Exosomes: composition, biogenesis and function[J]. Nat Rev Immunol, 2002, 2(8): 569-579.
[20]
Van Niel G, D′angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles[J]. Nat Rev Mol Cell Biol, 2018, 19(4): 213-228.
[21]
Mathieu M, Névo N, Jouve M, et al. Specificities of exosome versus small ectosome secretion revealed by live intracellular tracking of CD63 and CD9[J]. Nat Commun, 2021, 12(1): 4389.
[22]
Kalluri R, Lebleu VS. The biology, function, and biomedical applications of exosomes[J]. Science, 2020, 367(6478): eaau6977.
[23]
Harvey S, Martínez-Moreno CG, Luna M, et al. Autocrine/paracrine roles of extrapituitary growth hormone and prolactin in health and disease: An overview[J]. Gen Comp Endocrinol, 2015, 220: 103-111.
[24]
Feng J, Zhang Y, Zhu Z, et al. Emerging Exosomes and Exosomal MiRNAs in Spinal Cord Injury[J]. Front Cell Dev Biol, 2021, 9: 703989.
[25]
Lamb JN, Holton C, O’connor P, et al. Avascular necrosis of the hip[J]. BMJ, 2019, 365: l2178.
[26]
Huang G, Zhao G, Xia J, et al. FGF2 and FAM201A affect the development of osteonecrosis of the femoral head after femoral neck fracture[J]. Gene, 2018, 652: 39-47.
[27]
Wang A, Ren M, Wang J. The pathogenesis of steroid-induced osteonecrosis of the femoral head: A systematic review of the literature[J]. Gene, 2018, 671: 103-109.
[28]
Li J, Ge Z, Ji W, et al. The Proosteogenic and Proangiogenic Effects of Small Extracellular Vesicles Derived from Bone Marrow Mesenchymal Stem Cells Are Attenuated in Steroid-Induced Osteonecrosis of the Femoral Head[J]. Biomed Res Int, 2020, 2020: 4176926.
[29]
Gong M, Yu B, Wang J, et al. Mesenchymal stem cells release exosomes that transfer miRNAs to endothelial cells and promote angiogenesis[J]. Oncotarget, 2017, 8(28): 45200-45212.
[30]
Yue JA, Yu H, Liu P, et al. Preliminary study of icariin indicating prevention of steroid-induced osteonecrosis of femoral head by regulating abnormal expression of miRNA-335 and protecting the functions of bone microvascular endothelial cells in rats[J]. Gene, 2021, 766: 145128.
[31]
Yuan N, Ge Z, Ji W, et al. Exosomes Secreted from Hypoxia-Preconditioned Mesenchymal Stem Cells Prevent Steroid-Induced Osteonecrosis of the Femoral Head by Promoting Angiogenesis in Rats[J]. Biomed Res Int, 2021, 2021: 6655225.
[32]
Motomura G, Yamamoto T, Miyanishi K, et al. Bone marrow fat-cell enlargement in early steroid-induced osteonecrosis—a histomorphometric study of autopsy cases[J]. Pathol Res Pract, 2005, 200(11/12): 807-811.
[33]
Zhang Y, Yu M, Dai M, et al. miR-450a-5p within rat adipose tissue exosome-like vesicles promotes adipogenic differentiation by targeting WISP2[J]. J Cell Sci, 2017, 130(6): 1158-1168.
[34]
Duan DY, Tang J, Tian HT, et al. Adipocyte-secreted microvesicle-derived miR-148a regulates adipogenic and osteogenic differentiation by targeting Wnt5a/Ror2 pathway[J]. Life Sci, 2021, 278: 119548.
[35]
Wang SH, Gou GH, Wu CC, et al. Increased COUP-TFII Expression Mediates the Differentiation Imbalance of Bone Marrow-Derived Mesenchymal Stem Cells in Femoral Head Osteonecrosis[J]. Biomed Res Int, 2019, 2019: 9262430.
[36]
Xiang S, Li Z, Weng X. Changed cellular functions and aberrantly expressed miRNAs and circRNAs in bone marrow stem cells in osteonecrosis of the femoral head[J]. Int J Mol Med, 2020, 45(3): 805-815.
[37]
Zhu W, Guo M, Yang W, et al. CD41-deficient exosomes from non-traumatic femoral head necrosis tissues impair osteogenic differentiation and migration of mesenchymal stem cells[J]. Cell Death Dis, 2020, 11(4): 293.
[38]
Wei Y, Ma H, Zhou H, et al. miR-424-5p shuttled by bone marrow stem cells-derived exosomes attenuates osteogenesis via regulating WIF1-mediated Wnt/β-catenin axis[J]. Aging (Albany NY), 2021, 13(13): 17190-17201.
[39]
Liao W, Ning Y, Xu HJ, et al. BMSC-derived exosomes carrying microRNA-122-5p promote proliferation of osteoblasts in osteonecrosis of the femoral head[J]. Clin Sci(Lond), 2019, 133(18): 1955-1975.
[40]
Huang S, Li Y, Wu P, et al. microRNA-148a-3p in extracellular vesicles derived from bone marrow mesenchymal stem cells suppresses SMURF1 to prevent osteonecrosis of femoral head[J]. J Cell Mol Med, 2020, 24(19): 11512-11523.
[41]
Fang S, He T, Jiang J, et al. Osteogenic Effect of tsRNA-10277-Loaded Exosome Derived from Bone Mesenchymal Stem Cells on Steroid-Induced Osteonecrosis of the Femoral Head[J]. Drug Des Devel Ther, 2020, 14: 4579-4591.
[42]
Chen XJ, Yang F, Chen ZQ, et al. Association of reduced sclerostin expression with collapse process in patients with osteonecrosis of the femoral head[J]. Int Orthop, 2018, 42(7): 1675-1682.
[43]
Youm YS, Lee SY, Lee SH. Apoptosis in the osteonecrosis of the femoral head[J]. Clin Orthop Surg, 2010, 2(4): 250-255.
[44]
Mutijima E, De Maertelaer V, Deprez M, et al. The apoptosis of osteoblasts and osteocytes in femoral head osteonecrosis: its specificity and its distribution[J]. Clin Rheumatol, 2014, 33(12): 1791-1795.
[45]
Yu H, Liu P, Zuo W, et al. Decreased angiogenic and increased apoptotic activities of bone microvascular endothelial cells in patients with glucocorticoid-induced osteonecrosis of the femoral head[J]. BMC Musculoskelet Disord, 2020, 21(1): 277.
[46]
Chen CY, Du W, Rao SS, et al. Extracellular vesicles from human urine-derived stem cells inhibit glucocorticoid-induced osteonecrosis of the femoral head by transporting and releasing pro-angiogenic DMBT1 and anti-apoptotic TIMP1[J]. Acta Biomater, 2020, 111: 208-220.
[47]
Kuang MJ, Huang Y, Zhao XG, et al. Exosomes derived from Wharton′s jelly of human umbilical cord mesenchymal stem cells reduce osteocyte apoptosis in glucocorticoid-induced osteonecrosis of the femoral head in rats via the miR-21-PTEN-AKT signalling pathway[J]. Int J Biol Sci, 2019, 15(9): 1861-1871.
[48]
Guo SC, Tao SC, Yin WJ, et al. Exosomes from Human Synovial-Derived Mesenchymal Stem Cells Prevent Glucocorticoid-Induced Osteonecrosis of the Femoral Head in the Rat[J]. Int J Biol Sci, 2016, 12(10): 1262-1272.
[49]
Zhang X, You JM, Dong XJ, et al. Administration of mircoRNA-135b-reinforced exosomes derived from MSCs ameliorates glucocorticoid-induced osteonecrosis of femoral head (ONFH) in rats[J]. J Cell Mol Med, 2020, 24(23): 13973-13983.
[50]
中国医师协会骨科医师分会骨循环与骨坏死专业委员会,中华医学会骨科分会骨显微修复学组,国际骨循环学会中国区. 中国成人股骨头坏死临床诊疗指南(2020)[J]. 中华骨科杂志 2020, 40(20): 1365-1376.
[51]
Yuan HF, Zhang J, Guo CA, et al. Clinical outcomes of osteonecrosis of the femoral head after autologous bone marrow stem cell implantation: a meta-analysis of seven case-control studies[J]. Clinics(Sao Paulo), 2016, 71(2): 110-113.
[52]
Li Z, Yang B, Weng X, et al. Emerging roles of MicroRNAs in osteonecrosis of the femoral head[J]. Cell Prolif, 2018, 51(1): e12405.
[53]
Liu X, Li Q, Niu X, et al. Exosomes Secreted from Human-Induced Pluripotent Stem Cell-Derived Mesenchymal Stem Cells Prevent Osteonecrosis of the Femoral Head by Promoting Angiogenesis[J]. Int J Biol Sci, 2017, 13(2): 232-244.
[54]
Nan K, Zhang Y, Zhang X, et al. Exosomes from miRNA-378-modified adipose-derived stem cells prevent glucocorticoid-induced osteonecrosis of the femoral head by enhancing angiogenesis and osteogenesis via targeting miR-378 negatively regulated suppressor of fused (Sufu)[J]. Stem Cell Res Ther, 2021, 12(1): 331.
[55]
Chen S, Tang Y, Liu Y, et al. Exosomes derived from miR-375-overexpressing human adipose mesenchymal stem cells promote bone regeneration[J]. Cell Prolif, 2019, 52(5): e12669.
[56]
Kuang MJ, Zhang KH, Qiu J, et al. Exosomal miR-365a-5p derived from HUC-MSCs regulates osteogenesis in GIONFH through the Hippo signaling pathway[J]. Mol Ther Nucleic Acids, 2021, 23: 565-576.
[57]
Tao S C, Yuan T, Rui BY, et al. Exosomes derived from human platelet-rich plasma prevent apoptosis induced by glucocorticoid-associated endoplasmic reticulum stress in rat osteonecrosis of the femoral head via the Akt/Bad/Bcl-2 signal pathway[J]. Theranostics, 2017, 7(3): 733-750.
[1] 许正文, 李振, 侯振扬, 苏长征, 朱彪. 富血小板血浆联合植骨治疗早期非创伤性股骨头坏死[J]. 中华关节外科杂志(电子版), 2023, 17(06): 773-779.
[2] 肖志满, 龚煜, 谢景凌, 刘斌伟. 上下肢关节镜手术后患者下肢深静脉血栓发生的对比研究[J]. 中华关节外科杂志(电子版), 2023, 17(05): 601-606.
[3] 王岩, 马剑雄, 郎爽, 董本超, 田爱现, 李岩, 孙磊, 靳洪震, 卢斌, 王颖, 柏豪豪, 马信龙. 外泌体在骨质疏松症诊疗中应用的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(05): 673-678.
[4] 卫杨文祥, 黄浩然, 刘予豪, 陈镇秋, 王海彬, 周驰. 股骨头坏死细胞治疗的前景和挑战[J]. 中华关节外科杂志(电子版), 2023, 17(05): 694-700.
[5] 孔莹莹, 谢璐涛, 卢晓驰, 徐杰丰, 周光居, 张茂. 丁酸钠对猪心脏骤停复苏后心脑损伤的保护作用及机制研究[J]. 中华危重症医学杂志(电子版), 2023, 16(05): 355-362.
[6] 张晓燕, 肖东琼, 高沪, 陈琳, 唐发娟, 李熙鸿. 转录因子12过表达对脓毒症相关性脑病大鼠大脑皮质的保护作用及其机制[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 540-549.
[7] 代雯荣, 赵丽娟, 李智慧. 细胞外囊泡对胚胎着床影响的研究进展[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 616-620.
[8] 高雷, 李芳, 巴雅力嘎, 李全, 巴特. 干细胞源性外泌体在创伤修复中免疫作用的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(04): 364-367.
[9] 宫镇江, 王守一, 姚超, 庞永志, 崔婧. sticky bone混合浓缩生长因子应用于水平骨增量患者的临床效果研究[J]. 中华口腔医学研究杂志(电子版), 2023, 17(06): 430-435.
[10] 黄应雄, 叶子, 蒋鹏, 詹红, 姚陈, 崔冀. 急性肠系膜静脉血栓形成致透壁性肠坏死的临床危险因素分析[J]. 中华普通外科学文献(电子版), 2023, 17(06): 413-421.
[11] 王楚风, 蒋安. 原发性肝癌的分子诊断[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 499-503.
[12] 郭晓磊, 李晓云, 孙嘉怿, 金乐, 郭亚娟, 史新立. 含生长因子骨移植材料的研究进展和监管现状[J]. 中华老年骨科与康复电子杂志, 2023, 09(06): 373-378.
[13] 于迪, 于海波, 吴焕成, 李玉明, 苏彬, 陈馨. 发状分裂相关增强子1差异表达对胆固醇刺激下血管内皮细胞的影响[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 264-270.
[14] 邱甜, 杨苗娟, 胡波, 郭毅, 何奕涛. 亚低温治疗脑梗死机制的研究进展[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 518-521.
[15] 尹琛俊, 张喆, 李晓明. 卵圆孔未闭相关血栓形成机制的研究进展[J]. 中华脑血管病杂志(电子版), 2023, 17(04): 307-311.
阅读次数
全文


摘要