[1] |
Fu L, Liu H, Lei W. MiR-596 inhibits osteoblastic differentiation and cell proliferation by targeting Smad3 in steroid-induced osteonecrosis of femoral head[J]. J Orthop Surg Res, 2020, 15(1): 173.
|
[2] |
Cui L, Zhuang Q, Lin J, et al. Multicentric epidemiologic study on six thousand three hundred and ninety five cases of femoral head osteonecrosis in China[J]. Int Orthop, 2016, 40(2): 267-276.
|
[3] |
Gu C, Xu Y, Zhang S, et al. miR-27a attenuates adipogenesis and promotes osteogenesis in steroid-induced rat BMSCs by targeting PPARγ and GREM1[J]. Sci Rep, 2016, 6: 38491.
|
[4] |
Chen G, Wang Q, Li Z, et al. Circular RNA CDR1as promotes adipogenic and suppresses osteogenic differentiation of BMSCs in steroid-induced osteonecrosis of the femoral head[J]. Bone, 2020, 133: 115258.
|
[5] |
Zhang Q, L V J, Jin L. Role of coagulopathy in glucocorticoid-induced osteonecrosis of the femoral head[J]. J Int Med Res, 2018, 46(6): 2141-2148.
|
[6] |
Han J, Gao F, Li Y, et al. The Use of Platelet-Rich Plasma for the Treatment of Osteonecrosis of the Femoral Head: A Systematic Review[J]. Biomed Res Int, 2020, 2020: 2642439.
|
[7] |
Vicencio JM, Yellon DM, Sivaraman V, et al. Plasma exosomes protect the myocardium from ischemia-reperfusion injury[J]. J Am Coll Cardiol, 2015, 65(15): 1525-1536.
|
[8] |
Mathew B, Ravindran S, Liu X, et al. Mesenchymal stem cell-derived extracellular vesicles and retinal ischemia-reperfusion[J]. Biomaterials, 2019, 197: 146-160.
|
[9] |
Zhang H, Wu J, Wu J, et al. Exosome-mediated targeted delivery of miR-210 for angiogenic therapy after cerebral ischemia in mice[J]. J Nanobiotechnology, 2019, 17(1): 29.
|
[10] |
Zhang C, Su Y, Ding H, et al. Mesenchymal stem cells-derived and siRNAs-encapsulated exosomes inhibit osteonecrosis of the femoral head[J]. J Cell Mol Med, 2020, 24(17): 9605-9612.
|
[11] |
Li D, Liu J, Guo B, et al. Osteoclast-derived exosomal miR-214-3p inhibits osteoblastic bone formation[J]. Nat Commun, 2016, 7: 10872.
|
[12] |
Fang Y, Zhang Y, Zhou J, et al. Adipose-derived mesenchymal stem cell exosomes: a novel pathway for tissues repair[J]. Cell Tissue Bank, 2019, 20(2): 153-161.
|
[13] |
Li L, Wang Y, Yu X, et al. Bone marrow mesenchymal stem cell-derived exosomes promote plasminogen activator inhibitor 1 expression in vascular cells in the local microenvironment during rabbit osteonecrosis of the femoral head[J]. Stem Cell Res Ther, 2020, 11(1): 480.
|
[14] |
Yang RZ, Zheng HL, Xu WN, et al. Vascular endothelial cell-secreted exosomes facilitate osteoarthritis pathogenesis by promoting chondrocyte apoptosis[J]. Aging (Albany NY), 2021, 13(3): 4647-4662.
|
[15] |
Fang S, Li Y, Chen P. Osteogenic effect of bone marrow mesenchymal stem cell-derived exosomes on steroid-induced osteonecrosis of the femoral head[J]. Drug Des Devel Ther, 2018, 13: 45-55.
|
[16] |
Mathivanan S, Ji H, Simpson RJ. Exosomes: Extracellular organelles important in intercellular communication[J]. J Proteomics, 2010, 73(10): 1907-1920.
|
[17] |
Jeppesen DK, Fenix AM, Franklin JL, et al. Reassessment of Exosome Composition[J]. Cell, 2019, 177(2): 428-445, e418.
|
[18] |
Pegtel DM, Gould SJ. Exosomes[J]. Annu Rev Biochem, 2019, 88(1): 487-514.
|
[19] |
Théry C, Zitvogel L, Amigorena S. Exosomes: composition, biogenesis and function[J]. Nat Rev Immunol, 2002, 2(8): 569-579.
|
[20] |
Van Niel G, D′angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles[J]. Nat Rev Mol Cell Biol, 2018, 19(4): 213-228.
|
[21] |
Mathieu M, Névo N, Jouve M, et al. Specificities of exosome versus small ectosome secretion revealed by live intracellular tracking of CD63 and CD9[J]. Nat Commun, 2021, 12(1): 4389.
|
[22] |
Kalluri R, Lebleu VS. The biology, function, and biomedical applications of exosomes[J]. Science, 2020, 367(6478): eaau6977.
|
[23] |
Harvey S, Martínez-Moreno CG, Luna M, et al. Autocrine/paracrine roles of extrapituitary growth hormone and prolactin in health and disease: An overview[J]. Gen Comp Endocrinol, 2015, 220: 103-111.
|
[24] |
Feng J, Zhang Y, Zhu Z, et al. Emerging Exosomes and Exosomal MiRNAs in Spinal Cord Injury[J]. Front Cell Dev Biol, 2021, 9: 703989.
|
[25] |
Lamb JN, Holton C, O’connor P, et al. Avascular necrosis of the hip[J]. BMJ, 2019, 365: l2178.
|
[26] |
Huang G, Zhao G, Xia J, et al. FGF2 and FAM201A affect the development of osteonecrosis of the femoral head after femoral neck fracture[J]. Gene, 2018, 652: 39-47.
|
[27] |
Wang A, Ren M, Wang J. The pathogenesis of steroid-induced osteonecrosis of the femoral head: A systematic review of the literature[J]. Gene, 2018, 671: 103-109.
|
[28] |
Li J, Ge Z, Ji W, et al. The Proosteogenic and Proangiogenic Effects of Small Extracellular Vesicles Derived from Bone Marrow Mesenchymal Stem Cells Are Attenuated in Steroid-Induced Osteonecrosis of the Femoral Head[J]. Biomed Res Int, 2020, 2020: 4176926.
|
[29] |
Gong M, Yu B, Wang J, et al. Mesenchymal stem cells release exosomes that transfer miRNAs to endothelial cells and promote angiogenesis[J]. Oncotarget, 2017, 8(28): 45200-45212.
|
[30] |
Yue JA, Yu H, Liu P, et al. Preliminary study of icariin indicating prevention of steroid-induced osteonecrosis of femoral head by regulating abnormal expression of miRNA-335 and protecting the functions of bone microvascular endothelial cells in rats[J]. Gene, 2021, 766: 145128.
|
[31] |
Yuan N, Ge Z, Ji W, et al. Exosomes Secreted from Hypoxia-Preconditioned Mesenchymal Stem Cells Prevent Steroid-Induced Osteonecrosis of the Femoral Head by Promoting Angiogenesis in Rats[J]. Biomed Res Int, 2021, 2021: 6655225.
|
[32] |
Motomura G, Yamamoto T, Miyanishi K, et al. Bone marrow fat-cell enlargement in early steroid-induced osteonecrosis—a histomorphometric study of autopsy cases[J]. Pathol Res Pract, 2005, 200(11/12): 807-811.
|
[33] |
Zhang Y, Yu M, Dai M, et al. miR-450a-5p within rat adipose tissue exosome-like vesicles promotes adipogenic differentiation by targeting WISP2[J]. J Cell Sci, 2017, 130(6): 1158-1168.
|
[34] |
Duan DY, Tang J, Tian HT, et al. Adipocyte-secreted microvesicle-derived miR-148a regulates adipogenic and osteogenic differentiation by targeting Wnt5a/Ror2 pathway[J]. Life Sci, 2021, 278: 119548.
|
[35] |
Wang SH, Gou GH, Wu CC, et al. Increased COUP-TFII Expression Mediates the Differentiation Imbalance of Bone Marrow-Derived Mesenchymal Stem Cells in Femoral Head Osteonecrosis[J]. Biomed Res Int, 2019, 2019: 9262430.
|
[36] |
Xiang S, Li Z, Weng X. Changed cellular functions and aberrantly expressed miRNAs and circRNAs in bone marrow stem cells in osteonecrosis of the femoral head[J]. Int J Mol Med, 2020, 45(3): 805-815.
|
[37] |
Zhu W, Guo M, Yang W, et al. CD41-deficient exosomes from non-traumatic femoral head necrosis tissues impair osteogenic differentiation and migration of mesenchymal stem cells[J]. Cell Death Dis, 2020, 11(4): 293.
|
[38] |
Wei Y, Ma H, Zhou H, et al. miR-424-5p shuttled by bone marrow stem cells-derived exosomes attenuates osteogenesis via regulating WIF1-mediated Wnt/β-catenin axis[J]. Aging (Albany NY), 2021, 13(13): 17190-17201.
|
[39] |
Liao W, Ning Y, Xu HJ, et al. BMSC-derived exosomes carrying microRNA-122-5p promote proliferation of osteoblasts in osteonecrosis of the femoral head[J]. Clin Sci(Lond), 2019, 133(18): 1955-1975.
|
[40] |
Huang S, Li Y, Wu P, et al. microRNA-148a-3p in extracellular vesicles derived from bone marrow mesenchymal stem cells suppresses SMURF1 to prevent osteonecrosis of femoral head[J]. J Cell Mol Med, 2020, 24(19): 11512-11523.
|
[41] |
Fang S, He T, Jiang J, et al. Osteogenic Effect of tsRNA-10277-Loaded Exosome Derived from Bone Mesenchymal Stem Cells on Steroid-Induced Osteonecrosis of the Femoral Head[J]. Drug Des Devel Ther, 2020, 14: 4579-4591.
|
[42] |
Chen XJ, Yang F, Chen ZQ, et al. Association of reduced sclerostin expression with collapse process in patients with osteonecrosis of the femoral head[J]. Int Orthop, 2018, 42(7): 1675-1682.
|
[43] |
Youm YS, Lee SY, Lee SH. Apoptosis in the osteonecrosis of the femoral head[J]. Clin Orthop Surg, 2010, 2(4): 250-255.
|
[44] |
Mutijima E, De Maertelaer V, Deprez M, et al. The apoptosis of osteoblasts and osteocytes in femoral head osteonecrosis: its specificity and its distribution[J]. Clin Rheumatol, 2014, 33(12): 1791-1795.
|
[45] |
Yu H, Liu P, Zuo W, et al. Decreased angiogenic and increased apoptotic activities of bone microvascular endothelial cells in patients with glucocorticoid-induced osteonecrosis of the femoral head[J]. BMC Musculoskelet Disord, 2020, 21(1): 277.
|
[46] |
Chen CY, Du W, Rao SS, et al. Extracellular vesicles from human urine-derived stem cells inhibit glucocorticoid-induced osteonecrosis of the femoral head by transporting and releasing pro-angiogenic DMBT1 and anti-apoptotic TIMP1[J]. Acta Biomater, 2020, 111: 208-220.
|
[47] |
Kuang MJ, Huang Y, Zhao XG, et al. Exosomes derived from Wharton′s jelly of human umbilical cord mesenchymal stem cells reduce osteocyte apoptosis in glucocorticoid-induced osteonecrosis of the femoral head in rats via the miR-21-PTEN-AKT signalling pathway[J]. Int J Biol Sci, 2019, 15(9): 1861-1871.
|
[48] |
Guo SC, Tao SC, Yin WJ, et al. Exosomes from Human Synovial-Derived Mesenchymal Stem Cells Prevent Glucocorticoid-Induced Osteonecrosis of the Femoral Head in the Rat[J]. Int J Biol Sci, 2016, 12(10): 1262-1272.
|
[49] |
Zhang X, You JM, Dong XJ, et al. Administration of mircoRNA-135b-reinforced exosomes derived from MSCs ameliorates glucocorticoid-induced osteonecrosis of femoral head (ONFH) in rats[J]. J Cell Mol Med, 2020, 24(23): 13973-13983.
|
[50] |
中国医师协会骨科医师分会骨循环与骨坏死专业委员会,中华医学会骨科分会骨显微修复学组,国际骨循环学会中国区. 中国成人股骨头坏死临床诊疗指南(2020)[J]. 中华骨科杂志, 2020, 40(20): 1365-1376.
|
[51] |
Yuan HF, Zhang J, Guo CA, et al. Clinical outcomes of osteonecrosis of the femoral head after autologous bone marrow stem cell implantation: a meta-analysis of seven case-control studies[J]. Clinics(Sao Paulo), 2016, 71(2): 110-113.
|
[52] |
Li Z, Yang B, Weng X, et al. Emerging roles of MicroRNAs in osteonecrosis of the femoral head[J]. Cell Prolif, 2018, 51(1): e12405.
|
[53] |
Liu X, Li Q, Niu X, et al. Exosomes Secreted from Human-Induced Pluripotent Stem Cell-Derived Mesenchymal Stem Cells Prevent Osteonecrosis of the Femoral Head by Promoting Angiogenesis[J]. Int J Biol Sci, 2017, 13(2): 232-244.
|
[54] |
Nan K, Zhang Y, Zhang X, et al. Exosomes from miRNA-378-modified adipose-derived stem cells prevent glucocorticoid-induced osteonecrosis of the femoral head by enhancing angiogenesis and osteogenesis via targeting miR-378 negatively regulated suppressor of fused (Sufu)[J]. Stem Cell Res Ther, 2021, 12(1): 331.
|
[55] |
Chen S, Tang Y, Liu Y, et al. Exosomes derived from miR-375-overexpressing human adipose mesenchymal stem cells promote bone regeneration[J]. Cell Prolif, 2019, 52(5): e12669.
|
[56] |
Kuang MJ, Zhang KH, Qiu J, et al. Exosomal miR-365a-5p derived from HUC-MSCs regulates osteogenesis in GIONFH through the Hippo signaling pathway[J]. Mol Ther Nucleic Acids, 2021, 23: 565-576.
|
[57] |
Tao S C, Yuan T, Rui BY, et al. Exosomes derived from human platelet-rich plasma prevent apoptosis induced by glucocorticoid-associated endoplasmic reticulum stress in rat osteonecrosis of the femoral head via the Akt/Bad/Bcl-2 signal pathway[J]. Theranostics, 2017, 7(3): 733-750.
|