切换至 "中华医学电子期刊资源库"

中华损伤与修复杂志(电子版) ›› 2023, Vol. 18 ›› Issue (04) : 364 -367. doi: 10.3877/cma.j.issn.1673-9450.2023.04.017

综述

干细胞源性外泌体在创伤修复中免疫作用的研究进展
高雷, 李芳, 巴雅力嘎, 李全(), 巴特   
  1. 014010 包头,内蒙古医科大学第三附属医院烧伤外科 内蒙古烧伤医学研究所
  • 收稿日期:2022-09-04 出版日期:2023-08-01
  • 通信作者: 李全
  • 基金资助:
    国家自然科学基金(82060348); 内蒙古自治区自然科学基金(2021MS08066); 重大疾病防治科技行动计划(2018-ZX-01S-001); 内蒙古医科大学联合项目资助课题(YKD2021LH055)

Progress of immune role of stem cell-derived exosomes in wound repair

Lei Gao, Fang Li, Bayaliga, Quan Li(), Te Ba   

  1. Department of Burn, the Third Affiliated Hospital of Inner Mongolia Medical University, Burn Medical Institute of Inner Mongolia, Baotou 014010, China
  • Received:2022-09-04 Published:2023-08-01
  • Corresponding author: Quan Li
引用本文:

高雷, 李芳, 巴雅力嘎, 李全, 巴特. 干细胞源性外泌体在创伤修复中免疫作用的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2023, 18(04): 364-367.

Lei Gao, Fang Li, Bayaliga, Quan Li, Te Ba. Progress of immune role of stem cell-derived exosomes in wound repair[J/OL]. Chinese Journal of Injury Repair and Wound Healing(Electronic Edition), 2023, 18(04): 364-367.

机体受到严重创伤后,免疫系统常表现为功能障碍,且创伤越重表现越明显,影响机体修复。干细胞源性外泌体是干细胞产生的一种细胞间的非脂溶性载体,其可通过抑制过度炎性反应和减少免疫细胞凋亡等功能来调节机体免疫异常。本文对干细胞源性外泌体在创伤修复中的免疫调节作用进行综述,旨在总结外泌体在免疫调节中的作用机制。

The immune system is often characterized by dysfunction after the body suffered from severe trauma, the body's repair was affected obviously from the heavy trauma performance. Stem cell-derived exosomes are non-fat-soluble intercellular vector produced by stem cells, which can regulate immune abnormalities by inhibiting excessive inflammatory response and reducing immune cell apoptosis. The immunomodulatory role of stem cell-derived exosomes in wound repair are systematically reviewed, and to summarize the mechanism of exosomes in immune regulation.

[1]
Jeschke MG, Chinkes DL, Finnerty CC, et al. Pathophysiologic response to severe burn injury[J]. Annals of Surgery, 2008, 248(3): 387-401.
[2]
李宇能,葛宇峰,高峰,等. 严重创伤患者院内急救多学科团队的建立及临床效果[J]. 骨科临床与研究杂志2022, 7(4): 226-229, 239.
[3]
Porter C, Tompkins RG, Finnerty CC, et al. The metabolic stress response to burn trauma: current understanding and therapies[J]. Lancet(London, England), 2016, 388(10052): 1417-1426.
[4]
Bacakova L, Zarubova J, Travnickova M, et al. Stem cells: their source, potency and use in regenerative therapies with focus on adipose-derived stem cells- a review[J]. Biotechnology Advances, 2018, 36(4): 1111-1126.
[5]
靳泽怡,丁彩琳,于睿,等. 软骨细胞与间充质干细胞诱导成软骨肥大分化的调控机制及策略[J]. 骨科临床与研究杂志2021, 6(5): 313-317.
[6]
Wu X, Li SH, Lou LM, et al. The effect of the microgravity rotating culture system on the chondrogenic differentiation of bone marrow mesenchymal stem cells[J]. Molecular Biotechnology, 2013, 54(2): 331-336.
[7]
Murphy C, Withrow J, Hunter M, et al. Emerging role of extracellular vesicles in musculoskeletal diseases[J]. Molecular Aspects of Medicine, 2018, 60: 123-128.
[8]
Kennedy TL, Russell AJ, Riley P. Experimental limitations of extracellular vesicle-based therapies for the treatment of myocardial infarction[J]. Trends In Cardiovascular Medicine, 2021, 31(7): 405-415.
[9]
Markov O, Oshchepkova A, Mironova N. Immunotherapy based on dendritic cell-targeted/-derived extracellular vesicles-a novel strategy for enhancement of the anti-tumor immune response[J]. Frontiers In Pharmacology, 2019, 10: 1152.
[10]
Doyle LM, Wang MZ. Overview of extracellular vesicles, their origin, composition, purpose, and methods for exosome isolation and analysis[J]. Cells, 2019, 8(7): 387-401.
[11]
An Y, Lin S, Tan X, et al. Exosomes from adipose-derived stem cells and application to skin wound healing[J]. Cell Proliferation, 2021, 54(3): e12993.
[12]
Walsh SA, Davis TA. Key early proinflammatory signaling molecules encapsulated within circulating exosomes following traumatic injury[J]. Journal of Inflammation(London, England), 2022, 19(1): 6.
[13]
Netea MG, Schlitzer A, Placek K, et al. Innate and adaptive immune memory: an evolutionary continuum in the host's response to pathogens[J]. Cell Host & Microbe, 2019, 25(1): 13-26.
[14]
Liew PX, Kubes P. The neutrophil's role during health and disease[J]. Physiological Reviews, 2019, 99(2): 1223-1248.
[15]
Zhang B, Lai RC, Sim WK, et al. Topical application of mesenchymal stem cell exosomes alleviates the imiquimod induced psoriasis-like inflammation[J]. International Journal of Molecular Sciences, 2021, 22(2): 720.
[16]
Mahmoudi M, Taghavi-Farahabadi M, Namaki S, et al. Exosomes derived from mesenchymal stem cells improved function and survival of neutrophils from severe congenital neutropenia patients in vitro[J]. Hum Immunol, 2019, 80(12): 990-998.
[17]
Taghavi-Farahabadi M, Mahmoudi M, Mahdaviani SA, et al. Improving the function of neutrophils from chronic granulomatous disease patients using mesenchymal stem cells' exosomes[J]. Human Immunology, 2020, 81(10-11): 614-624.
[18]
Heo JS, Choi Y, Kim HO. Adipose-derived mesenchymal stem cells promote M2 macrophage phenotype through exosomes[J]. Stem Cells Int, 2019, 2019: 7921760.
[19]
Willis GR, Fernandez-Gonzalez A, Anastas J, et al. Mesenchymal stromal cell exosomes ameliorate experimental bronchopulmonary dysplasia and restore lung function through macrophage immunomodulation[J]. American Journal of Respiratory and Critical Care Medicine, 2018, 197(1): 104-116.
[20]
Mansouri N, Willis GR, Fernandez-Gonzalez A, et al. Mesenchymal stromal cell exosomes prevent and revert experimental pulmonary fibrosis through modulation of monocyte phenotypes[J]. JCI Insight, 2019, 4(21): e128060.
[21]
Poznanski SM, Ashkar AA. What defines NK cell functional fate: phenotype or metabolism?[J]. Frontiers In Immunology, 2019, 10: 1414.
[22]
Grabowska J, Lopez-Venegas MA, Affandi AJ, et al. CD169 macrophages capture and dendritic cells instruct: the interplay of the gatekeeper and the general of the immune system[J]. Frontiers In Immunology, 2018, 9: 2472.
[23]
Shahir M, Mahmoud Hashemi S, Asadirad A, et al. Effect of mesenchymal stem cell-derived exosomes on the induction of mouse tolerogenic dendritic cells[J]. Journal of Cellular Physiology, 2020, 235(10): 7043-7055.
[24]
Fan Y, Herr F, Vernochet A, et al. Human fetal liver mesenchymal stem cell-derived exosomes impair natural killer cell function[J]. Stem Cells Dev, 2019, 28(1): 44-55.
[25]
Harrell CR, Miloradovic D, Sadikot R, et al. Molecular and cellular mechanisms responsible for beneficial effects of mesenchymal stem cell-derived product " Exo-d-MAPPS" in attenuation of chronic airway inflammation[J]. Anal Cell Pathol(Amst), 2020, 2020: 3153891.
[26]
Rojas M, Restrepo-Jiménez P, Monsalve DM, et al. Molecular mimicry and autoimmunity[J]. Journal of Autoimmunity, 2018, 95: 100-123.
[27]
Mokarizadeh A, Delirezh N, Morshedi A, et al. Microvesicles derived from mesenchymal stem cells: potent organelles for induction of tolerogenic signaling[J]. Immunology Letters, 2012, 147(1-2): 47-54.
[28]
Carreras-Planella L, Monguió-Tortajada M, Borràs FE, et al. Immunomodulatory effect of MSC on B cells is independent of secreted extracellular vesicles[J]. Frontiers In Immunology, 2019, 10: 1288.
[29]
Khare D, Or R, Resnick I, et al. Mesenchymal stromal cell-derived exosomes affect mRNA expression and function of B-lymphocytes[J]. Front Immunol, 2018, 9: 3053.
[30]
Lee JY, Chung J, Byun Y, et al. Mesenchymal stem cell-derived small extracellular vesicles protect cardiomyocytes from doxorubicin-induced cardiomyopathy by upregulating survivin expression via the miR-199a-3p-Akt-Sp1/p53 signaling pathway[J]. International Journal of Molecular Sciences, 2021, 22(13): 7102.
[31]
Riazifar M, Mohammadi MR, Pone EJ, et al. Stem cell-derived exosomes as nanotherapeutics for autoimmune and neurodegenerative disorders[J]. ACS Nano, 2019, 13(6): 6670-6688.
[32]
周春根,江滨,张睿,等. 间充质干细胞来源外泌体对T细胞的免疫调控作用[J]. 中国免疫学杂志2021, 37(21): 2602-2607.
[33]
Roth S, Cao J, Singh V, et al. Post-injury immunosuppression and secondary infections are caused by an AIM2 inflammasome-driven signaling cascade[J]. Immunity, 2021, 54(4): 648-659.
[34]
Waterman RS, Tomchuck SL, Henkle SL, et al. A new mesenchymal stem cell (MSC) paradigm: polarization into a pro-inflammatory MSC1 or an Immunosuppressive MSC2 phenotype[J]. PloS One, 2010, 5(4): e10088.
[35]
Stevens EJ, Bates KA, King KC. Host microbiota can facilitate pathogen infection[J]. PLoS Pathogens, 2021, 17(5): e1009514.
[36]
Horibe S, Tanahashi T, Kawauchi S, et al. Mechanism of recipient cell-dependent differences in exosome uptake[J]. BMC Cancer, 2018, 18(1): 47.
[37]
Thomou T, Mori MA, Dreyfuss JM, et al. Adipose-derived circulating miRNAs regulate gene expression in other tissues[J]. Nature, 2017, 542(7642): 450-455.
[38]
Merrick D, Seale P. Skinny fat cells stimulate wound healing[J]. Cell Stem Cell, 2020, 26(6): 801-803.
[39]
Brückner K. Renal function: guardian of immune homeostasis[J]. Immunity, 2019, 51(4): 596-598.
[40]
Cao JY, Wang B, Tang TT, et al. Exosomal miR-125b-5p deriving from mesenchymal stem cells promotes tubular repair by suppression of p53 in ischemic acute kidney injury[J]. Theranostics, 2021, 11(11): 5248-5266.
[41]
Galluzzi L, Vitale I, Warren S, et al. Consensus guidelines for the definition, detection and interpretation of immunogenic cell death[J]. Journal For Immunotherapy of Cancer, 2020, 8(1): e000337.
[42]
Song Y, Wang B, Zhu X, et al. Human umbilical cord blood-derived MSCs exosome attenuate myocardial injury by inhibiting ferroptosis in acute myocardial infarction mice[J]. Cell Biol Toxicol, 2021, 37(1): 51-64.
[43]
Camilleri M, Madsen K, Spiller R, et al. Intestinal barrier function in health and gastrointestinal disease[J]. Neurogastroenterology and Motility, 2012, 24(6): 503-512.
[44]
陈荣剑,王占科,张晓云,等. 胰岛素和丙酮酸乙酯联合治疗拮抗严重烫伤后MODS大鼠炎症反应和氧化应激的实验研究[J]. 解放军医药杂志2015, 27(8): 45-50.
[45]
Beckmann N, Pugh AM, Caldwell CC. Burn injury alters the intestinal microbiome′s taxonomic composition and functional gene expression[J]. PLoS One, 2018, 13(10): e0205307.
[46]
符雪,李俊亮,徐洋,等. 干细胞来源外泌体在烧伤创面修复中的研究进展[J]. 中华损伤与修复杂志(电子版), 2020, 15(6): 502-505.
[1] 戴睿, 张亮, 陈浏阳, 张永博, 吴丕根, 孙华, 杨盛, 孟博. 肠道菌群与椎间盘退行性变相关性的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 546-549.
[2] 宋勤琴, 李双汝, 李林, 杜鹃, 刘继松. 间充质干细胞源性外泌体在改善病理性瘢痕中作用的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 550-553.
[3] 刘昌玲, 张金丽, 张志, 李孝建, 汤文彬, 胡逸萍, 陈宾, 谢晓娜. 负载人脂肪干细胞外泌体的甲基丙烯酰化明胶水凝胶对人皮肤成纤维细胞增殖和迁移的影响[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 517-525.
[4] 雷子威, 凌萍, 沈纵, 魏晨如, 朱邦晖, 伍国胜, 孙瑜. 类器官肺损伤疾病模型构建及应用的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 531-535.
[5] 张洁, 罗小霞, 余鸿. 系统性免疫炎症指数对急性胰腺炎患者并发器官功能损伤的预测价值[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 68-71.
[6] 赖全友, 高远, 汪建林, 屈士斌, 魏丹, 彭伟. 三维重建技术结合腹腔镜精准肝切除术对肝癌患者术后CD4+、CD8+及免疫球蛋白水平的影响[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 651-654.
[7] 傅红兴, 王植楷, 谢贵林, 蔡娟娟, 杨威, 严盛. 间充质干细胞促进胰岛移植效果的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 351-360.
[8] 魏志鸿, 刘建勇, 吴小雅, 杨芳, 吕立志, 江艺, 蔡秋程. 肝移植术后急性移植物抗宿主病的诊治(附四例报告)[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 846-851.
[9] 张龙, 孙善柯, 徐伟, 李文柱, 李俊达, 池涌泉, 何广胜, 成峰, 王学浩, 饶建华. 腹腔镜脾切除治疗血液系统疾病的临床疗效分析[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 870-875.
[10] 袁雨涵, 杨盛力. 体液和组织蛋白质组学分析在肝癌早期分子诊断中的研究进展[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 883-888.
[11] 中华医学会器官移植学分会. 肝移植术后缺血性胆道病变诊断与治疗中国实践指南[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 739-748.
[12] 陈伟杰, 何小东. 胆囊癌免疫靶向治疗进展[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 763-768.
[13] 董佳, 王坤, 张莉. 预后营养指数结合免疫球蛋白、血糖及甲胎蛋白对HBV 相关慢加急性肝衰竭患者治疗后预后不良的预测价值[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 555-559.
[14] 谭瑞义. 小细胞骨肉瘤诊断及治疗研究现状与进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 781-784.
[15] 王昌前, 林婷婷, 宁雨露, 王颖杰, 谭文勇. 光免疫治疗在肿瘤领域的临床应用新进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(06): 575-583.
阅读次数
全文


摘要