[1] |
Jeschke MG, Chinkes DL, Finnerty CC, et al. Pathophysiologic response to severe burn injury[J]. Annals of Surgery, 2008, 248(3): 387-401.
|
[2] |
李宇能,葛宇峰,高峰,等. 严重创伤患者院内急救多学科团队的建立及临床效果[J]. 骨科临床与研究杂志,2022, 7(4): 226-229, 239.
|
[3] |
Porter C, Tompkins RG, Finnerty CC, et al. The metabolic stress response to burn trauma: current understanding and therapies[J]. Lancet(London, England), 2016, 388(10052): 1417-1426.
|
[4] |
Bacakova L, Zarubova J, Travnickova M, et al. Stem cells: their source, potency and use in regenerative therapies with focus on adipose-derived stem cells- a review[J]. Biotechnology Advances, 2018, 36(4): 1111-1126.
|
[5] |
靳泽怡,丁彩琳,于睿,等. 软骨细胞与间充质干细胞诱导成软骨肥大分化的调控机制及策略[J]. 骨科临床与研究杂志,2021, 6(5): 313-317.
|
[6] |
Wu X, Li SH, Lou LM, et al. The effect of the microgravity rotating culture system on the chondrogenic differentiation of bone marrow mesenchymal stem cells[J]. Molecular Biotechnology, 2013, 54(2): 331-336.
|
[7] |
Murphy C, Withrow J, Hunter M, et al. Emerging role of extracellular vesicles in musculoskeletal diseases[J]. Molecular Aspects of Medicine, 2018, 60: 123-128.
|
[8] |
Kennedy TL, Russell AJ, Riley P. Experimental limitations of extracellular vesicle-based therapies for the treatment of myocardial infarction[J]. Trends In Cardiovascular Medicine, 2021, 31(7): 405-415.
|
[9] |
Markov O, Oshchepkova A, Mironova N. Immunotherapy based on dendritic cell-targeted/-derived extracellular vesicles-a novel strategy for enhancement of the anti-tumor immune response[J]. Frontiers In Pharmacology, 2019, 10: 1152.
|
[10] |
Doyle LM, Wang MZ. Overview of extracellular vesicles, their origin, composition, purpose, and methods for exosome isolation and analysis[J]. Cells, 2019, 8(7): 387-401.
|
[11] |
An Y, Lin S, Tan X, et al. Exosomes from adipose-derived stem cells and application to skin wound healing[J]. Cell Proliferation, 2021, 54(3): e12993.
|
[12] |
Walsh SA, Davis TA. Key early proinflammatory signaling molecules encapsulated within circulating exosomes following traumatic injury[J]. Journal of Inflammation(London, England), 2022, 19(1): 6.
|
[13] |
Netea MG, Schlitzer A, Placek K, et al. Innate and adaptive immune memory: an evolutionary continuum in the host's response to pathogens[J]. Cell Host & Microbe, 2019, 25(1): 13-26.
|
[14] |
Liew PX, Kubes P. The neutrophil's role during health and disease[J]. Physiological Reviews, 2019, 99(2): 1223-1248.
|
[15] |
Zhang B, Lai RC, Sim WK, et al. Topical application of mesenchymal stem cell exosomes alleviates the imiquimod induced psoriasis-like inflammation[J]. International Journal of Molecular Sciences, 2021, 22(2): 720.
|
[16] |
Mahmoudi M, Taghavi-Farahabadi M, Namaki S, et al. Exosomes derived from mesenchymal stem cells improved function and survival of neutrophils from severe congenital neutropenia patients in vitro[J]. Hum Immunol, 2019, 80(12): 990-998.
|
[17] |
Taghavi-Farahabadi M, Mahmoudi M, Mahdaviani SA, et al. Improving the function of neutrophils from chronic granulomatous disease patients using mesenchymal stem cells' exosomes[J]. Human Immunology, 2020, 81(10-11): 614-624.
|
[18] |
Heo JS, Choi Y, Kim HO. Adipose-derived mesenchymal stem cells promote M2 macrophage phenotype through exosomes[J]. Stem Cells Int, 2019, 2019: 7921760.
|
[19] |
Willis GR, Fernandez-Gonzalez A, Anastas J, et al. Mesenchymal stromal cell exosomes ameliorate experimental bronchopulmonary dysplasia and restore lung function through macrophage immunomodulation[J]. American Journal of Respiratory and Critical Care Medicine, 2018, 197(1): 104-116.
|
[20] |
Mansouri N, Willis GR, Fernandez-Gonzalez A, et al. Mesenchymal stromal cell exosomes prevent and revert experimental pulmonary fibrosis through modulation of monocyte phenotypes[J]. JCI Insight, 2019, 4(21): e128060.
|
[21] |
Poznanski SM, Ashkar AA. What defines NK cell functional fate: phenotype or metabolism?[J]. Frontiers In Immunology, 2019, 10: 1414.
|
[22] |
Grabowska J, Lopez-Venegas MA, Affandi AJ, et al. CD169 macrophages capture and dendritic cells instruct: the interplay of the gatekeeper and the general of the immune system[J]. Frontiers In Immunology, 2018, 9: 2472.
|
[23] |
Shahir M, Mahmoud Hashemi S, Asadirad A, et al. Effect of mesenchymal stem cell-derived exosomes on the induction of mouse tolerogenic dendritic cells[J]. Journal of Cellular Physiology, 2020, 235(10): 7043-7055.
|
[24] |
Fan Y, Herr F, Vernochet A, et al. Human fetal liver mesenchymal stem cell-derived exosomes impair natural killer cell function[J]. Stem Cells Dev, 2019, 28(1): 44-55.
|
[25] |
Harrell CR, Miloradovic D, Sadikot R, et al. Molecular and cellular mechanisms responsible for beneficial effects of mesenchymal stem cell-derived product " Exo-d-MAPPS" in attenuation of chronic airway inflammation[J]. Anal Cell Pathol(Amst), 2020, 2020: 3153891.
|
[26] |
Rojas M, Restrepo-Jiménez P, Monsalve DM, et al. Molecular mimicry and autoimmunity[J]. Journal of Autoimmunity, 2018, 95: 100-123.
|
[27] |
Mokarizadeh A, Delirezh N, Morshedi A, et al. Microvesicles derived from mesenchymal stem cells: potent organelles for induction of tolerogenic signaling[J]. Immunology Letters, 2012, 147(1-2): 47-54.
|
[28] |
Carreras-Planella L, Monguió-Tortajada M, Borràs FE, et al. Immunomodulatory effect of MSC on B cells is independent of secreted extracellular vesicles[J]. Frontiers In Immunology, 2019, 10: 1288.
|
[29] |
Khare D, Or R, Resnick I, et al. Mesenchymal stromal cell-derived exosomes affect mRNA expression and function of B-lymphocytes[J]. Front Immunol, 2018, 9: 3053.
|
[30] |
Lee JY, Chung J, Byun Y, et al. Mesenchymal stem cell-derived small extracellular vesicles protect cardiomyocytes from doxorubicin-induced cardiomyopathy by upregulating survivin expression via the miR-199a-3p-Akt-Sp1/p53 signaling pathway[J]. International Journal of Molecular Sciences, 2021, 22(13): 7102.
|
[31] |
Riazifar M, Mohammadi MR, Pone EJ, et al. Stem cell-derived exosomes as nanotherapeutics for autoimmune and neurodegenerative disorders[J]. ACS Nano, 2019, 13(6): 6670-6688.
|
[32] |
周春根,江滨,张睿,等. 间充质干细胞来源外泌体对T细胞的免疫调控作用[J]. 中国免疫学杂志,2021, 37(21): 2602-2607.
|
[33] |
Roth S, Cao J, Singh V, et al. Post-injury immunosuppression and secondary infections are caused by an AIM2 inflammasome-driven signaling cascade[J]. Immunity, 2021, 54(4): 648-659.
|
[34] |
Waterman RS, Tomchuck SL, Henkle SL, et al. A new mesenchymal stem cell (MSC) paradigm: polarization into a pro-inflammatory MSC1 or an Immunosuppressive MSC2 phenotype[J]. PloS One, 2010, 5(4): e10088.
|
[35] |
Stevens EJ, Bates KA, King KC. Host microbiota can facilitate pathogen infection[J]. PLoS Pathogens, 2021, 17(5): e1009514.
|
[36] |
Horibe S, Tanahashi T, Kawauchi S, et al. Mechanism of recipient cell-dependent differences in exosome uptake[J]. BMC Cancer, 2018, 18(1): 47.
|
[37] |
Thomou T, Mori MA, Dreyfuss JM, et al. Adipose-derived circulating miRNAs regulate gene expression in other tissues[J]. Nature, 2017, 542(7642): 450-455.
|
[38] |
Merrick D, Seale P. Skinny fat cells stimulate wound healing[J]. Cell Stem Cell, 2020, 26(6): 801-803.
|
[39] |
Brückner K. Renal function: guardian of immune homeostasis[J]. Immunity, 2019, 51(4): 596-598.
|
[40] |
Cao JY, Wang B, Tang TT, et al. Exosomal miR-125b-5p deriving from mesenchymal stem cells promotes tubular repair by suppression of p53 in ischemic acute kidney injury[J]. Theranostics, 2021, 11(11): 5248-5266.
|
[41] |
Galluzzi L, Vitale I, Warren S, et al. Consensus guidelines for the definition, detection and interpretation of immunogenic cell death[J]. Journal For Immunotherapy of Cancer, 2020, 8(1): e000337.
|
[42] |
Song Y, Wang B, Zhu X, et al. Human umbilical cord blood-derived MSCs exosome attenuate myocardial injury by inhibiting ferroptosis in acute myocardial infarction mice[J]. Cell Biol Toxicol, 2021, 37(1): 51-64.
|
[43] |
Camilleri M, Madsen K, Spiller R, et al. Intestinal barrier function in health and gastrointestinal disease[J]. Neurogastroenterology and Motility, 2012, 24(6): 503-512.
|
[44] |
陈荣剑,王占科,张晓云,等. 胰岛素和丙酮酸乙酯联合治疗拮抗严重烫伤后MODS大鼠炎症反应和氧化应激的实验研究[J]. 解放军医药杂志,2015, 27(8): 45-50.
|
[45] |
Beckmann N, Pugh AM, Caldwell CC. Burn injury alters the intestinal microbiome′s taxonomic composition and functional gene expression[J]. PLoS One, 2018, 13(10): e0205307.
|
[46] |
符雪,李俊亮,徐洋,等. 干细胞来源外泌体在烧伤创面修复中的研究进展[J]. 中华损伤与修复杂志(电子版), 2020, 15(6): 502-505.
|