切换至 "中华医学电子期刊资源库"

中华损伤与修复杂志(电子版) ›› 2022, Vol. 17 ›› Issue (04) : 322 -329. doi: 10.3877/cma.j.issn.1673-9450.2022.04.007

论著

粪菌移植对严重烧伤大鼠肠道屏障功能的作用及相关机制
陈强1, 曹胜军1, 巴特1, 赵翠娟2,()   
  1. 1. 014010 包头,内蒙古医科大学第三附属医院(内蒙古包钢医院)烧伤科
    2. 014010 包头,内蒙古医科大学第三附属医院(内蒙古包钢医院)消化内科
  • 收稿日期:2022-05-01 出版日期:2022-08-01
  • 通信作者: 赵翠娟
  • 基金资助:
    中国金属学会冶金安全与健康分会健康卫生科研项目(jkws201833); 内蒙古自治区自然科学基金项目(2020MS08024)

Effect and related mechanism of faecal microbiota transplantation on intestinal barrier function in severely burned rats

Qiang Chen1, Shengjun Cao1, Te Ba1, Cuijuan Zhao2,()   

  1. 1. Department of Burn, Third Affiliated Hospital of Inner Mongolia Medical University (Inner Mongolia Baogang Hospital), Baotou 014010, China
    2. Department of Gastrorenterology, Third Affiliated Hospital of Inner Mongolia Medical University (Inner Mongolia Baogang Hospital), Baotou 014010, China
  • Received:2022-05-01 Published:2022-08-01
  • Corresponding author: Cuijuan Zhao
引用本文:

陈强, 曹胜军, 巴特, 赵翠娟. 粪菌移植对严重烧伤大鼠肠道屏障功能的作用及相关机制[J]. 中华损伤与修复杂志(电子版), 2022, 17(04): 322-329.

Qiang Chen, Shengjun Cao, Te Ba, Cuijuan Zhao. Effect and related mechanism of faecal microbiota transplantation on intestinal barrier function in severely burned rats[J]. Chinese Journal of Injury Repair and Wound Healing(Electronic Edition), 2022, 17(04): 322-329.

目的

探讨粪菌移植(FMT)对严重烧伤大鼠肠道屏障功能的作用及相关机制。

方法

按照随机数字表法将36只6~8周龄雄性SD大鼠分为3组:正常组(n=12)、单纯烧伤组(n=12)和FMT干预组(n=12)。单纯烧伤组和FMT干预组大鼠制作30%总体表面积Ⅲ度烫伤模型;正常组大鼠不致伤。单纯烧伤组、FMT干预组大鼠伤后即刻腹腔注射平衡盐溶液40 mL/kg补液复苏。收集正常组大鼠新鲜粪便10 g,制成粪便滤液。伤后1 h,对FMT干预组大鼠进行粪便滤液灌胃(10 mL/kg),间隔12 h后再次给予相同剂量粪便滤液灌胃;正常组、单纯烧伤组大鼠在相同时相点均给予等量0.9%氯化钠溶液灌胃。分别于伤后24、72 h,取伤后各组大鼠结肠内新鲜粪便各1 mL,采用实时荧光定量-聚合酶链反应检测大鼠肠道菌群属水平,即双歧杆菌、脆弱拟杆菌、乳酸杆菌、大肠杆菌、肠球菌数量;取制备好的大鼠血浆,采用荧光素异硫氰酸酯(FITC)-葡聚糖通透性实验检测3组大鼠肠道通透性;采用酶联免疫吸附试验(ELISA)检测大鼠血清中二胺氧化酶、D-乳酸及白细胞介素(IL)-6、肿瘤坏死因子(TNF)-α、IL-10水平;分别取伤后24、72 h 3组大鼠的末端回肠组织约1 cm,苏木精-伊红染色观察大鼠肠黏膜组织形态结构。数据比较采用单因素方差分析和t检验。

结果

(1)3组大鼠在伤后24、72 h双歧杆菌、脆弱拟杆菌、乳酸杆菌、大肠杆菌、肠球菌数量比较,差异均有统计学意义(P<0.05)。伤后24 h,单纯烧伤组大鼠肠道双歧杆菌、脆弱拟杆菌、乳酸杆菌、大肠杆菌、肠球菌数量分别为(2.76±0.15)、(3.27±0.40)、(2.33±0.33)、(7.06±0.49)、(6.42±0.50) LogN/g,FMT干预组大鼠分别为(3.18±0.16)、(4.52±0.58)、(2.92±0.28)、(6.14±0.47)、(5.28±0.43) LogN/g;伤后72 h,单纯烧伤组大鼠肠道双歧杆菌、脆弱拟杆菌、乳酸杆菌、大肠杆菌、肠球菌数量分别为(3.16±0.19)、(3.79±0.42)、(2.64±0.43)、(6.34±0.56)、(5.56±0.61) LogN/g,FMT干预组大鼠分别为(3.53±0.25)、(5.50±0.32)、(3.26±0.39)、(5.37±0.70)、(4.10±0.85) LogN/g,FMT干预组双歧杆菌、脆弱拟杆菌、乳酸杆菌数量均高于单纯烧伤组,大肠杆菌、肠球菌数量均低于单纯烧伤组,差异均有统计学意义(P<0.05)。(2)伤后24 h,正常组、单纯烧伤组和FMT干预组大鼠肠道通透性分别为0.94±0.16、2.39±0.37、1.58±0.33,伤后72 h,正常组、单纯烧伤组和FMT干预组大鼠肠道通透性分别为0.94±0.17、1.88±0.57、1.21±0.24,2个时相点3组间总体比较,差异均有统计学意义(F=34.092、7.064,P<0.05);与单纯烧伤组比较,FMT干预组伤后24、72 h大鼠肠道通透性均降低,差异均有统计学意义(t= 3.971、2.664,P<0.05)。(3)伤后24、72 h,3组大鼠血清中二胺氧化酶、D-乳酸及IL-6、TNF-α、IL-10水平比较,差异均有统计学意义(P<0.05);伤后24 h,FMT干预组大鼠血清中二胺氧化酶、D-乳酸分别为(0.93±0.13) U/mL、(3.54±0.78) μmol/L,伤后72 h分别为(0.55±1.15)U/mL、(2.58±0.51)μmol/L,均明显低于单纯烧伤组伤后24 h[(1.28±0.18)U/mL、(4.83±0.57) μmol/L]、伤后72 h[(0.86±0.21)U/mL、(4.13±0.55)μmol/L],2组比较差异均有统计学意义(P<0.05)。伤后24、72 h,与单纯烧伤组比较,FMT干预组大鼠血清中IL-6、TNF-α水平均降低,IL-10水平均升高,差异均有统计学意义(P<0.05)。(4)伤后24、72 h,正常组大鼠肠黏膜上皮均完整,无炎症细胞浸润;伤后24 h,FMT干预组大鼠肠黏膜绒毛稍变短、排列略紊乱,散在上皮细胞破坏、黏膜脱落,有炎症细胞浸润,较单纯烧伤组相比较肠黏膜损伤减轻。伤后72 h,FMT干预组大鼠肠黏膜上皮基本完整,见少量炎症细胞浸润,肠黏膜修复较单纯烧伤组相比更为明显。

结论

严重烧伤大鼠早期可出现肠道菌群紊乱、全身炎症反应加重、肠道屏障功能损害,FMT可以改善肠道菌群失调、抑制炎症反应,起到保护肠道屏障功能的作用。

Objective

To investigate the effect and related mechanism of faecal microbiota transplantation (FMT) on intestinal barrier function in severely burned rats.

Methods

Thirty-six male SD rats aged 6-8 weeks were divided into 3 groups according to the random number table method, normal group (n=12), pure burn group (n=12) and FMT intervention group (n=12). Thirty percent total body surface area full thickness burn model was made for rats in pure burn group and FMT intervation group, rats in normal group were not injured. Rats in pure burn group and FMT intervention group were resuscitated by intraperitoneal injection of balanced salt solution 40 mL/kg immediately after burn. Fresh faecal samples of the normal group rats were collected 10 g and made into faecal filtrate. At 1 h after injury, rats in the FMT intervention group was given faecal filtrate by gavage(10 mL/kg), and the same dose of faecal filtrate was given again 12 h later. Rats in normal group and pure burn group were given the same amount of 0.9% sodium chloride solution at the same time. At 24 and 72 h after injury, 1 mL fresh faecal samples from the colon of rats in each group were collected, and the level of intestinal flora was detected by real-time fluorescence quantification-polymerase chain reaction, namely, the number of Bifidobacteria, Bacteroides fragilis, Lactobacillus, Escherichia coli and Enterococcus. The prepared plasma of rats was taken, and luciferin isothiocyanate (FITC) -glucan permeability test was used to detect the intestinal permeability of rats in each group. The levels of diamine oxidase, D-lactic acid, interleukin (IL)-6, tumor necrosis factor (TNF)-α and IL-10 in serum were detected by enzyme-linked immunosorbent assay (ELISA). At 24 and 72 h after injury, about 1 cm of the terminal ileum tissue of rats in each group were taken respectively, and the morphological structure of intestinal mucosa was observed by hematoxylin-eosin staining. Data were processed by one-way ANOVA and t test.

Results

(1)The differences in the number of Bifidobacteria, Bacteroides fragilis, Lactobacillus, Escherichia coli and Enterococcus in the three groups at 24 and 72 h after injury were statistically significant (P<0.05). At 24 h after injury, the numbers of Bifidobacteria, Bacteroides fragilis, Lactobacillus, Escherichia coli and Enterococcus in the pure group were (2.76±0.15), (3.27±0.40), (2.33±0.33), (7.06±0.49), (6.42±0.50) LogN/g, respectively, and those in the FMT intervention group were (3.18±0.16), (4.52±0.58), (2.92±0.28), (6.14±0.47), (5.28±0.43) LogN/g, respectively; at 72 h after injury, the numbers of Bifidobacteria, Bacteroides fragilis, Lactobacillus, Escherichia coli and Enterococcus in the pure burn group were (3.16±0.19), (3.79±0.42), (2.64±0.43), (6.34±0.56), (5.56±0.61) LogN/g, respectively, and those in the FMT intervention group were(3.53±0.25), (5.50±0.32), (3.26±0.39), (5.37±0.70), (4.10±0.85) LogN/g, the numbers of Bifidobacteria, Bacteroides fragilis and Lactobacillus in FMT intervention group were higher than those in pure burn group, and the numbers of Escherichia coli and Enterococcus in FMT intervention group were lower than those in pure burn group, the differences were statistically significant (P<0.05). (2) At 24 h after injury, the intestinal permeability of rats in normal group, pure burn group and FMT intervention group were 0.94±0.16, 2.39±0.37 and 1.58±0.33, respectively; at 72 h after injury, the intestinal permeability of rats in normal group, pure burn group and FMT intervention group were 0.94±0.17, 1.88±0.57 and 1.21±0.24, respectively, the differences among the three groups at the two phase points were statistically significant (F=34.092, 7.064; P<0.05). Compared with the pure burn group, the intestinal permeability in FMT intervention group was decreased at 24 and 72 h after injury, and the differences were statistically significant (t= 3.971, 2.664; P <0.05). (3) At 24 and 72 h after injury, the differences of the levels of diamine oxidase, D-lactic acid and IL-6, TNF-α and IL-10 in serum of the 3 groups were statistically significantly (P<0.05). At 24 h after injury, the levels of diamine oxidase and D-lactic acid in serum of FMT intervention group were (0.93±0.13) U/mL and (3.54±0.78) μmol/L, respectively, and at 72 h after injury were (0.55±1.15) U/mL and (2.58±0.51) μmol/L, respectively, which were lower than those in the pure burn group at 24 h after injury [(1.28±0.18) U/mL, (4.83±0.57) μmol/L] and at 72 h after injury [(0.86±0.21) U/mL, (4.13±0.55) μmol/L], the differences were statistically significant (P<0.05). At 24 and 72 h after injury, compared with the pure burn group, the levels of IL-6 and TNF-α in the serum of rats in the FMT intervention group decreased, and the levels of IL-10 increased, the differences were statistically significant (P<0.05). (4)At 24 and 72 h after injury, the intestinal mucosal epithelium of normal group rats was intact without inflammatory cell infiltration; at 24 h after injury, intestinal mucosal villi in the FMT intervention group was slightly shorter and disordered, scattered epithelial cells was destroyed and mucous membranes was shed, there was infiltration of inflammatory cells, compared with the pure burn group, intestinal mucosal damage was reduced. At 72 h after injury, the intestinal mucosa epithelium of the FMT intervention group was basically intact, with a small amount of inflammatory cells infiltration, and the intestinal mucosa repair was more obvious than that of the pure burn group.

Conclusion

The disturbance of intestinal flora, exacerbation of systemic inflammatory response and the impairment of intestinal mucosal barrier function can occur in severely burned rats at early stage, FML can improve intestinal flora disturbances, restrain inflammatory response, and protect the intestinal barrier function.

表1 待测肠道细菌引物序列
表2 3组大鼠不同时相点肠道菌群数量比较(LogN/g, ±s)
表3 3组大鼠不同时相点血清中二胺氧化酶、D-乳酸水平变化(±s)
表4 3组大鼠不同时相点血清IL-6、TNF-α、IL-10水平变化(pg/mL, ±s)
图1 光学显微镜下观察3组大鼠不同时相点肠组织病理学形态(苏木精-伊红染色 ×200)。伤后24、72 h正常组大鼠肠黏膜上皮均完整;伤后24 h,与单纯烧伤组相比较,FMT干预组大鼠肠黏膜损伤减轻;伤后72 h,与单纯烧伤组相比较,FMT干预组大鼠肠黏膜修复更为明显;FMT为粪菌移植
[1]
He W, Wang Y, Wang P, et al. Intestinal barrier dysfunction in severe burn injury[J]. Burns Trauma, 2019, 7: 24.
[2]
Huang Y, Feng Y, Wang Y, et al. Severe Burn-Induced Intestinal Epithelial Barrier Dysfunction Is Associated With Endoplasmic Reticulum Stress and Autophagy in Mice[J]. Front Physiol, 2018, 9: 441.
[3]
Ianiro G, Rossi E, Thomas AM, et al. Faecal microbiota transplantation for the treatment of diarrhoea induced by tyrosine-kinase inhibitors in patients with metastatic renal cell carcinoma[J]. Nat Commun, 2020, 11(1): 4333.
[4]
Leonardi I, Paramsothy S, Doron I, et al. Fungal Trans-kingdom Dynamics Linked to Responsiveness to Fecal Microbiota Transplantation (FMT) Therapy in Ulcerative Colitis[J]. Cell Host Microbe, 2020, 27(5): 823-829. e3.
[5]
Ooijevaar RE, Terveer EM, Verspaget HW, et al. Clinical Application and Potential of Fecal Microbiota Transplantation[J]. Annu Rev Med, 2019, 70: 335-351.
[6]
Beckmann N, Pugh AM, Caldwell CC. Burn injury alters the intestinal microbiome′s taxonomic composition and functional gene expression[J]. PLoS One, 2018, 13(10): e0205307.
[7]
郭光华. 危重烧伤患者的肠道复苏[J/CD]. 中华损伤与修复杂志(电子版), 2014, 10(1): 5-8.
[8]
Zhang D, Zhu C, Fang Z, et al. Remodeling gut microbiota by Clostridium butyricum (C.butyricum) attenuates intestinal injury in burned mice[J]. Burns, 2020, 46(6): 1373-1380.
[9]
Wang X, Yang J, Tian F, et al. Gut microbiota trajectory in patients with severe burn: a time series study[J]. J Crit Care, 2017, 42: 310-316.
[10]
Kuethe JW, Armocida SM, Midura EF, et al. Fecal Microbiota Transplant Restores Mucosal Integrity in a Murine Model of Burn Injury[J]. Shock, 2016, 45(6): 647-652.
[11]
潘艳艳,范友芬,李吉良,等. 基于16S核糖体RNA高通量测序的特重度烧伤患者肠道菌群动态变化分析[J]. 中华烧伤杂志2020, 36(12): 1159-1166.
[12]
Shifflett DE, Clayburgh DR, Koutsouris A, et al. Enteropathogenic E. coli disrupts tight junction barrier function and structure in vivo[J]. Lab Invest, 2005, 85(10): 1308-1324.
[13]
Garrett WS, Gallini CA, Yatsunenko T, et al. Enterobacteriaceae act in concert with the gut microbiota to induce spontaneous and maternally transmitted colitis[J]. Cell Host Microbe, 2010, 8(3): 292-300.
[14]
Feng Y, Huang Y, Wang Y, et al. Severe burn injury alters intestinal microbiota composition and impairs intestinal barrier in mice[J]. Burns Trauma, 2019, 7: 20.
[15]
Li J, Zhu L, Xu M, et al. Selective decontamination of the digestive tract ameliorates severe burn-induced insulin resistance in rats[J]. Burns, 2015, 41(5): 1076-1085.
[16]
Bajaj JS, Kakiyama G, Savidge T, et al. Antibiotic-Associated Disruption of Microbiota Composition and Function in Cirrhosis Is Restored by Fecal Transplant[J]. Hepatology, 2018, 68(4): 1549-1558.
[17]
Heimesaat MM, Mrazek K, Bereswill S. Murine Fecal Microbiota Transplantation Alleviates Intestinal and Systemic Immune Responses in Campylobacter jejuni Infected Mice Harboring a Human Gut Microbiota[J]. Front Immunol, 2019, 10: 2272.
[18]
Israelyan N, Del Colle A, Li Z, et al. Effects of Serotonin and Slow-Release 5-Hydroxytryptophan on Gastrointestinal Motility in a Mouse Model of Depression[J]. Gastroenterology, 2019, 157(2): 507-521. e4.
[19]
Hvas CL, Dahl Jørgensen SM, Jørgensen SP, et al. Fecal Microbiota Transplantation Is Superior to Fidaxomicin for Treatment of Recurrent Clostridium difficile Infection[J]. Gastroenterology, 2019, 156(5): 1324-1332. e3.
[20]
Ihekweazu FD, Fofanova TY, Queliza K, et al. Bacteroides ovatus ATCC 8483 monotherapy is superior to traditional fecal transplant and multi-strain bacteriotherapy in a murine colitis model[J]. Gut Microbes, 2019, 10(4): 504-520.
[21]
El-Salhy M, Hatlebakk JG, Gilja OH, et al. Efficacy of faecal microbiota transplantation for patients with irritable bowel syndrome in a randomised, double-blind,placebo-controlled study[J]. Gut, 2020, 69(5): 859-867.
[22]
Bajaj JS, Salzman NH, Acharya C, et al. Fecal Microbial Transplant Capsules Are Safe in Hepatic Encephalopathy: A Phase 1, Randomized, Placebo-Controlled Trial[J]. Hepatology, 2019, 70(5): 1690-1703.
[23]
谈路轩,李超,张振玉. 欧洲《粪菌移植临床应用和操作共识报告》介绍[J]. 胃肠病学2017, 22(10): 634-637.
[1] 张晓燕, 肖东琼, 高沪, 陈琳, 唐发娟, 李熙鸿. 转录因子12过表达对脓毒症相关性脑病大鼠大脑皮质的保护作用及其机制[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 540-549.
[2] 姚咏明. 如何精准评估烧伤脓毒症患者免疫状态[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 552-552.
[3] 涂家金, 廖武强, 刘金晶, 涂志鹏, 毛远桂. 严重烧伤患者鲍曼不动杆菌血流感染的危险因素及预后分析[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 491-497.
[4] 王成, 张慧君, 覃凤均, 陈辉. 网状植皮与ReCell表皮细胞种植在深Ⅱ度烧伤治疗中的疗效对比[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 498-502.
[5] 中华医学会烧伤外科学分会小儿烧伤学组. 儿童烧伤早期休克液体复苏专家共识(2023版)[J]. 中华损伤与修复杂志(电子版), 2023, 18(05): 371-376.
[6] 蔡柔妹, 曾洁梅, 黄伟丽, 谢文敏, 刘燕丹, 吴漫君, 蔡楚燕. 利用QC小组干预降低经烧伤创面股静脉置管导管相关性感染发生率的临床观察[J]. 中华损伤与修复杂志(电子版), 2023, 18(05): 399-404.
[7] 何吉鑫, 杨燕妮, 王继伟, 李建国, 谢铭. 肠道菌群及肠道代谢产物参与慢性便秘发生机制的研究进展[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 495-499.
[8] 乔小梅, 孔凯丽, 方敬爱, 张晓东. "肠-皮肤轴"与尿毒症皮肤病变的关系研究进展[J]. 中华肾病研究电子杂志, 2023, 12(05): 291-294.
[9] 王宁, 刘彦哲, 吴紫莺, 曾超, 雷光华, 沙婷婷, 王伊伦. 基于孟德尔随机化研究探讨肠道菌群与肌少症表型的因果关联[J]. 中华老年骨科与康复电子杂志, 2023, 09(06): 333-342.
[10] 萨仁高娃, 张英霞, 邓伟, 闫诺, 樊宁. 超声引导下鼠肝消融术后组织病理特征的变化规律及影响[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 394-398.
[11] 王小红, 钱晶, 翁文俊, 周国雄, 朱顺星, 祁小鸣, 刘春, 王萍, 沈伟, 程睿智, 秦璟灏. 巯基丙酮酸硫基转移酶调控核因子κB信号介导自噬对重症急性胰腺炎大鼠的影响及机制[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 422-426.
[12] 孙晗, 武侠. 成人肠易激综合征患者肠道菌群特征与不同分型患者生活质量和精神症状的相关性[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 461-465.
[13] 屈霄, 王靓, 陆萍, 何斌, 孙敏. 外周血炎症因子及肠道菌群特征与活动性溃疡性结肠炎患者病情的相关性分析[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 466-470.
[14] 张大涯, 陈世锔, 陈润祥, 张晓冬, 李达, 白飞虎. 肠道微生物群对代谢相关脂肪性肝病发展的影响[J]. 中华临床医师杂志(电子版), 2023, 17(07): 828-833.
[15] 金泽平, 董晶, 柳云鹏, 汪阳. 菌群-肠道-脑轴与缺血性卒中危险因素关系的研究进展[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 510-517.
阅读次数
全文


摘要