切换至 "中华医学电子期刊资源库"

中华损伤与修复杂志(电子版) ›› 2023, Vol. 18 ›› Issue (01) : 78 -85. doi: 10.3877/cma.j.issn.1673-9450.2023.01.013

综述

成纤维细胞在增生性瘢痕形成中的作用及调控因素
王一淼1, 何培杰1,()   
  1. 1. 200031 上海,复旦大学附属眼耳鼻喉科医院耳鼻咽喉科
  • 收稿日期:2022-11-02 出版日期:2023-02-01
  • 通信作者: 何培杰

Role and regulatory factors of fibroblasts in hypertrophic scar formation

Yimiao Wang1, Peijie He1,()   

  1. 1. Department of ENT, Eye& ENT Hospital of Fudan University, Shanghai 200031, China
  • Received:2022-11-02 Published:2023-02-01
  • Corresponding author: Peijie He
引用本文:

王一淼, 何培杰. 成纤维细胞在增生性瘢痕形成中的作用及调控因素[J/OL]. 中华损伤与修复杂志(电子版), 2023, 18(01): 78-85.

Yimiao Wang, Peijie He. Role and regulatory factors of fibroblasts in hypertrophic scar formation[J/OL]. Chinese Journal of Injury Repair and Wound Healing(Electronic Edition), 2023, 18(01): 78-85.

增生性瘢痕是细胞外基质(ECM)成分过度沉积导致的结果,对患者的生活质量产生明显影响。不论是在正常的伤口愈合还是增生性瘢痕形成的过程中,成纤维细胞都发挥着不可或缺的作用。成纤维细胞在促进瘢痕形成的过程中受到多种细胞生长因子的调节,这些细胞生长因子通过不同的信号通路发挥作用。阐明这些细胞生长因子和信号通路与增生性瘢痕的关系将有助于新型药物的研发以及增生性瘢痕的治疗。本文对增生性瘢痕形成机制进行了总结,明确了成纤维细胞的功能与其分泌的生长因子在增生性瘢痕形成中的作用,同时简要总结了与瘢痕形成相关生长因子涉及到的信号通路,提供了增生性瘢痕治疗的新方向。

Hypertrophic scars are the result of excessive deposition of extracellular matrix(ECM) components, which have a significant impact on the patient′s quality of life. Fibroblasts play an integral role in both normal wound healing and hypertrophic scarring. Fibroblasts are regulated by a variety of cell growth factors in the process of promoting scarring which play their roles through different signaling pathways. Elucidating the relationship between the above factors or pathways and hypertrophic scar may contribute to the development of new drugs and the treatment of hypertrophic scar. This article summarizes the mechanism of hypertrophic scarring, clarifies the function of fibroblasts and the role of growth factors secreted by them in hypertrophic scarring, and briefly summarizes the signaling pathways involved in scarring-related growth factors, providing a new direction for the treatment of hypertrophic scars.

[1]
Reinke JM, Sorg H. Wound repair and regeneration[J]. Eur Surg Res, 2012, 49(1): 35-43.
[2]
Scharf GM, Kilian K, Cordero J, et al. Inactivation of Sox9 in fibroblasts reduces cardiac fibrosis and inflammation[J]. JCI Insight, 2019, 5(15): e126721.
[3]
Coentro JQ, Pugliese E, Hanley G, et al. Current and upcoming therapies to modulate skin scarring and fibrosis[J]. Adv Drug Deliv Rev, 2019, 146: 37-59.
[4]
Xie J, Yao B, Han Y, et al. Skin appendage-derived stem cells: cell biology and potential for wound repair[J]. Burns Trauma, 2016, 4: 38.
[5]
Berman B, Maderal A, Raphael B. Keloids and Hypertrophic Scars: Pathophysiology, Classification, and Treatment[J]. Dermatol Surg, 2017, 43 Suppl 1: S3-S18.
[6]
Andrews JP, Marttala J, Macarak E, et al. Keloids: The paradigm of skin fibrosis - Pathomechanisms and treatment[J]. Matrix Biol, 2016, 51: 37-46.
[7]
Sorrell JM, Caplan AI. Fibroblasts-a diverse population at the center of it all[J]. Int Rev Cell Mol Biol, 2009, 276: 161-214.
[8]
Lian N, Li T. Growth factor pathways in hypertrophic scars: Molecular pathogenesis and therapeutic implications[J]. Biomed Pharmacother, 2016, 84: 42-50.
[9]
Schulz JN, Plomann M, Sengle G, et al. New developments on skin fibrosis - Essential signals emanating from the extracellular matrix for the control of myofibroblasts[J]. Matrix Biol, 2018, 68-69: 522-532.
[10]
Mora-Navarro C, Badileanu A, Gracioso AM, et al. Porcine Vocal Fold Lamina Propria-Derived Biomaterials Modulate TGF-beta1-Mediated Fibroblast Activation in Vitro[J]. ACS Biomater Sci Eng, 2020, 6(3): 1690-1703.
[11]
Janson DG, Saintigny G, van Adrichem A, et al. Different gene expression patterns in human papillary and reticular fibroblasts[J]. J Invest Dermatol, 2012, 132(11): 2565-2572.
[12]
Hinz B, Gabbiani G. Fibrosis: recent advances in myofibroblast biology and new therapeutic perspectives[J]. F1000 Biol Rep, 2010, 2: 78.
[13]
Tan J, Wu J. Current progress in understanding the molecular pathogenesis of burn scar contracture[J]. Burns Trauma, 2017, 5: 14.
[14]
Rodrigues M, Kosaric N, Bonham CA, et al. Wound Healing: A Cellular Perspective[J]. Physiol Rev, 2019, 99(1): 665-706.
[15]
Desmoulière A, Redard M, Darby I, et al. Apoptosis mediates the decrease in cellularity during the transition between granulation tissue and scar[J]. Am J Pathol, 1995, 146(1): 56-66.
[16]
Khansa I, Harrison B, Janis JE. Evidence-Based Scar Management: How to Improve Results with Technique and Technology[J]. Plast Reconstr Surg, 2016, 138(3 Suppl): 165S-178S.
[17]
Zhu Z, Ding J, Tredget EE. The molecular basis of hypertrophic scars[J]. Burns Trauma, 2016, 4: 2.
[18]
Le M, Naridze R, Morrison J, et al. Transforming growth factor Beta 3 is required for excisional wound repair in vivo[J]. PLoS One, 2012, 7(10): e48040.
[19]
Buscemi L, Ramonet D, Klingberg F, et al. The single-molecule mechanics of the latent TGF-beta1 complex[J]. Curr Biol, 2011, 21(24): 2046-2054.
[20]
Hinz B. The role of myofibroblasts in wound healing[J]. Curr Res Transl Med, 2016, 64(4): 171-177.
[21]
Chang Z, Kishimoto Y, Hasan A, et al. TGF-beta3 modulates the inflammatory environment and reduces scar formation following vocal fold mucosal injury in rats[J]. Dis Model Mech, 2014, 7(1): 83-91.
[22]
Nagase H, Visse R, Murphy G. Structure and function of matrix metalloproteinases and TIMPs[J]. Cardiovasc Res, 2006, 69(3): 562-573.
[23]
Arpino V, Brock M, Gill SE. The role of TIMPs in regulation of extracellular matrix proteolysis[J]. Matrix Biol, 2015, 44-46: 247-254.
[24]
Rousseau B, Ge PJ, Ohno T, et al. Extracellular matrix gene expression after vocal fold injury in a rabbit model[J]. Ann Otol Rhinol Laryngol, 2008, 117(8): 598-603.
[25]
Meng X, Zhang K, Kong J, et al. Deletion of resistin-like molecule-beta attenuates angiotensin II-induced abdominal aortic aneurysm[J]. Oncotarget, 2017, 8(61): 104171-104181.
[26]
Kopcewicz MM, Kur-Piotrowska A, Bukowska J, et al. Foxn1 and Mmp-9 expression in intact skin and during excisional wound repair in young, adult, and old C57Bl/6 mice[J]. Wound Repair Regen, 2017, 25(2): 248-259.
[27]
Guimaraes-Stabili MR, de Medeiros MC, Rossi D, et al. Silencing matrix metalloproteinase-13 (Mmp-13) reduces inflammatory bone resorption associated with LPS-induced periodontal disease in vivo[J]. Clin Oral Investig, 2021, 25(5): 3161-3172.
[28]
Wang J, Zhang N, Peng M, et al. p85alpha Inactivates MMP-2 and Suppresses Bladder Cancer Invasion by Inhibiting MMP-14 Transcription and TIMP-2 Degradation[J]. Neoplasia, 2019, 21(9): 908-920.
[29]
Wang XQ, Song F, Liu YK. Hypertrophic scar regression is linked to the occurrence of endothelial dysfunction[J]. PLoS One, 2017, 12(5): e176681.
[30]
Karsdal MA, Nielsen SH, Leeming DJ, et al. The good and the bad collagens of fibrosis - Their role in signaling and organ function[J]. Adv Drug Deliv Rev, 2017, 121: 43-56.
[31]
Demaria M, Ohtani N, Youssef SA, et al. An essential role for senescent cells in optimal wound healing through secretion of PDGF-AA[J]. Dev Cell, 2014, 31(6): 722-733.
[32]
De Donatis A, Comito G, Buricchi F, et al. Proliferation versus migration in platelet-derived growth factor signaling: the key role of endocytosis[J]. J Biol Chem, 2008, 283(29): 19948-19956.
[33]
Wågsäter D, Zhu C, Björck HM, et al. Effects of PDGF-C and PDGF-D on monocyte migration and MMP-2 and MMP-9 expression[J]. Atherosclerosis, 2009, 202(2): 415-423.
[34]
Klinkhammer BM, Floege J, Boor P. PDGF in organ fibrosis[J]. Mol Aspects Med, 2018, 62: 44-62.
[35]
Ikawa T, Ichimura Y, Miyagawa T, et al. The Contribution of LIGHT to the Development of Systemic Sclerosis by Modulating IL-6 and T Helper Type 1 Chemokine Expression in Dermal Fibroblasts[J]. J Invest Dermatol, 2022, 142(6): 1541-1551.e3.
[36]
Bosurgi L, Cao YG, Cabeza-Cabrerizo M, et al. Macrophage function in tissue repair and remodeling requires IL-4 or IL-13 with apoptotic cells[J]. Science, 2017, 356(6342): 1072-1076.
[37]
Braune J, Weyer U, Hobusch C, et al. IL-6 Regulates M2 Polarization and Local Proliferation of Adipose Tissue Macrophages in Obesity[J]. J Immunol, 2017, 198(7): 2927-2934.
[38]
Dufour AM, Alvarez M, Russo B, et al. Interleukin-6 and Type-I Collagen Production by Systemic Sclerosis Fibroblasts Are Differentially Regulated by Interleukin-17A in the Presence of Transforming Growth Factor-Beta 1[J]. Front Immunol, 2018, 9: 1865.
[39]
Nicoletti G, Saler M, Villani L, et al. Platelet Rich Plasma Enhancement of Skin Regeneration in an ex-vivo Human Experimental Model[J]. Front Bioeng Biotechnol, 2019, 7: 2.
[40]
Goodarzi P, Falahzadeh K, Nematizadeh M, et al. Tissue Engineered Skin Substitutes[J]. Adv Exp Med Biol, 2018, 1107: 143-188.
[41]
Chun Q, ZhiYong W, Fei S, et al. Dynamic biological changes in fibroblasts during hypertrophic scar formation and regression[J]. Int Wound J, 2016, 13(2): 257-262.
[42]
Wilgus TA, Ferreira AM, Oberyszyn TM, et al. Regulation of scar formation by vascular endothelial growth factor[J]. Lab Invest, 2008, 88(6): 579-590.
[43]
Hirabayashi M, Asano Y, Yamashita T, et al. Possible pro-inflammatory role of heparin-binding epidermal growth factor-like growth factor in the active phase of systemic sclerosis[J]. J Dermatol, 2018, 45(2): 182-188.
[44]
Park CH, Chung JH. Epidermal growth factor-induced matrix metalloproteinase-1 expression is negatively regulated by p38 MAPK in human skin fibroblasts[J]. J Dermatol Sci, 2011, 64(2): 134-141.
[45]
Hong JP, Park SW. The combined effect of recombinant human epidermal growth factor and erythropoietin on full-thickness wound healing in diabetic rat model[J]. Int Wound J, 2014, 11(4): 373-378.
[46]
Richard JL, Parer-Richard C, Daures JP, et al. Effect of topical basic fibroblast growth factor on the healing of chronic diabetic neuropathic ulcer of the foot. A pilot, randomized, double-blind, placebo-controlled study[J]. Diabetes Care, 1995, 18(1): 64-69.
[47]
Thew J, Burrage P, Medlicott N, et al. Modelling optimal delivery of bFGF to chronic wounds using ODEs[J]. J Theor Biol, 2019, 465: 109-116.
[48]
Abdelhakim M, Lin X, Ogawa R. The Japanese Experience with Basic Fibroblast Growth Factor in Cutaneous Wound Management and Scar Prevention: A Systematic Review of Clinical and Biological Aspects[J]. Dermatol Ther (Heidelb), 2020, 10(4): 569-587.
[49]
Kawai Y, Kishimoto Y, Sogami T, et al. Characterization of aged rat vocal fold fibroblasts[J]. Laryngoscope, 2019, 129(3): E94-E101.
[50]
Akasaka Y, Ono I, Kamiya T, et al. The mechanisms underlying fibroblast apoptosis regulated by growth factors during wound healing[J]. J Pathol, 2010, 221(3): 285-299.
[51]
Hirano S, Sugiyama Y, Kaneko M, et al. Intracordal Injection of Basic Fibroblast Growth Factor in 100 Cases of Vocal Fold Atrophy and Scar[J]. Laryngoscope, 2021, 131(9): 2059-2064.
[52]
Mori T, Yoshida M, Hazekawa M, et al. Antimicrobial Activities of LL-37 Fragment Mutant-Poly (Lactic-Co-Glycolic) Acid Conjugate against Staphylococcus aureus, Escherichia coli, and Candida albicans[J]. Int J Mol Sci, 2021, 22(10): 5097.
[53]
Zhao W, Han Q, Lin H, et al. Improved neovascularization and wound repair by targeting human basic fibroblast growth factor (bFGF) to fibrin[J]. J Mol Med (Berl), 2008, 86(10): 1127-1138.
[54]
Xu F, Liu C, Zhou D, et al. TGF-beta/SMAD Pathway and Its Regulation in Hepatic Fibrosis[J]. J Histochem Cytochem, 2016, 64(3): 157-167.
[55]
Xu J, Shao T, Song M, et al. MIR22HG acts as a tumor suppressor via TGFbeta/SMAD signaling and facilitates immunotherapy in colorectal cancer[J]. Mol Cancer, 2020, 19(1): 51.
[56]
Yu DK, Zhang CX, Zhao SS, et al. The anti-fibrotic effects of epigallocatechin-3-gallate in bile duct-ligated cholestatic rats and human hepatic stellate LX-2 cells are mediated by the PI3K/Akt/Smad pathway[J]. Acta Pharmacol Sin, 2015, 36(4): 473-482.
[57]
Ackers I, Malgor R. Interrelationship of canonical and non-canonical Wnt signalling pathways in chronic metabolic diseases[J]. Diab Vasc Dis Res, 2018, 15(1): 3-13.
[58]
Gajos-Michniewicz A, Czyz M. WNT Signaling in Melanoma[J]. Int J Mol Sci, 2020, 21(14): 4852.
[59]
Xiao L, Zhou D, Tan RJ, et al. Sustained Activation of Wnt/beta-Catenin Signaling Drives AKI to CKD Progression[J]. J Am Soc Nephrol, 2016, 27(6): 1727-1740.
[60]
Chen H, Yang T, Wang MC, et al. Novel RAS inhibitor 25-O-methylalisol F attenuates epithelial-to-mesenchymal transition and tubulo-interstitial fibrosis by selectively inhibiting TGF-beta-mediated Smad3 phosphorylation[J]. Phytomedicine, 2018, 42: 207-218.
[61]
Edeling M, Ragi G, Huang S, et al. Developmental signalling pathways in renal fibrosis: the roles of Notch, Wnt and Hedgehog[J]. Nat Rev Nephrol, 2016, 12(7): 426-439.
[62]
Meng XM, Nikolic-Paterson DJ, Lan HY. TGF-beta: the master regulator of fibrosis[J]. Nat Rev Nephrol, 2016, 12(6): 325-338.
[63]
Vallée A, Guillevin R, Vallée JN. Vasculogenesis and angiogenesis initiation under normoxic conditions through Wnt/beta-catenin pathway in gliomas[J]. Rev Neurosci, 2018, 29(1): 71-91.
[1] 刘晨鹭, 刘洁, 张帆, 严彩英, 陈倩, 陈双庆. 增强MRI 影像组学特征生境分析在预测乳腺癌HER-2 表达状态中的应用[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 339-345.
[2] 宋勤琴, 李双汝, 李林, 杜鹃, 刘继松. 间充质干细胞源性外泌体在改善病理性瘢痕中作用的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 550-553.
[3] 刘昌玲, 张金丽, 张志, 李孝建, 汤文彬, 胡逸萍, 陈宾, 谢晓娜. 负载人脂肪干细胞外泌体的甲基丙烯酰化明胶水凝胶对人皮肤成纤维细胞增殖和迁移的影响[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 517-525.
[4] 聂生军, 王钰, 王毅, 鲜小庆, 马生成. 复方倍他米松局部注射联合光动力疗法治疗小型瘢痕疙瘩的临床疗效观察[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(05): 404-410.
[5] 孙俊锋, 涂家金, 付丹, 蒋满香, 刘金晶, 崔乃硕. 手部烧伤瘢痕挛缩畸形整形术后综合康复联合点阵二氧化碳激光治疗的临床效果[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(05): 411-415.
[6] 蒋敏, 刘馨竹, 李大伟, 冯柏塨, 申传安. 点阵CO2激光联合其他非手术方式治疗痤疮瘢痕有效性的网状荟萃分析[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(05): 429-439.
[7] 黄福, 王黔, 金相任, 唐云川. VEGFR2、miR-27a-5p在胃癌组织中的表达与临床病理参数及预后的关系研究[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(05): 558-561.
[8] 郑俊, 吴杰英, 谭海波, 郑安全, 李腾成. EGFR-MEK-TZ三联合分子的构建及其对去势抵抗性前列腺癌细胞增殖与凋亡的影响[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(05): 503-508.
[9] 朱佳琳, 方向, 贵诗雨, 黄丹, 周小雨, 郭文恺. 大鼠切口疝腹膜前间隙补片修补术后血清中VEGF 和Ang-1 的表达情况[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(06): 703-707.
[10] 张敏龙, 杨翠平, 王博, 崔云杰, 金发光. MiR-200b-3p 通过抑制HIF-1α 表达减轻海水吸入诱导的肺水肿作用及机制[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 696-700.
[11] 赖淼, 景鑫, 李桂珍, 李怡. 非小细胞肺癌EGFR 突变亚型的临床病理和预后意义[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 731-737.
[12] 刘先勇, 秦东梅, 张若梅, 李俊娇, 孟春芹, 邬明歆, 王玉红, 赵新鲜, 徐瑞联, 洪文文, 马玲, 仇玮, 周宇. Her2/Hes1在肠型胃癌Correa级联反应3个病理阶段中的表达及意义[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 321-327.
[13] 张敏, 朱建华, 缪雅芳, 郭锦荣. 菝葜皂苷元对肝癌HepG2细胞抑制作用的机制研究[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 328-335.
[14] 傅红兴, 王植楷, 谢贵林, 蔡娟娟, 杨威, 严盛. 间充质干细胞促进胰岛移植效果的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 351-360.
[15] 靳英, 付小霞, 陈美茹, 袁璐, 郝力瑶. CD147调控MAPK信号通路对结肠癌细胞增殖和凋亡的影响及机制研究[J/OL]. 中华临床医师杂志(电子版), 2024, 18(05): 474-480.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?