[1] |
Zarzour A, Kim HW, Weintraub NL. Epigenetic Regulation of Vascular Diseases[J]. Arterioscler Thromb Vasc Biol, 2019, 39(6): 984-990.
|
[2] |
Razmara E, Bitaraf A, Yousefi H, et al. Non-Coding RNAs in Cartilage Development: An Updated Review[J]. Int J Mol Sci, 2019, 20(18): 4475.
|
[3] |
Lawrence M, Daujat S, Schneider R. Lateral Thinking: How Histone Modifications Regulate Gene Expression[J]. Trends Genet, 2016, 32(1): 42-56.
|
[4] |
Bartel DP. Metazoan MicroRNAs[J]. Cell, 2018, 173(1): 20-51.
|
[5] |
Grigelioniene G, Suzuki HI, Taylan F, et al. Gain-of-function mutation of microRNA-140 in human skeletal dysplasia[J]. Nat Med, 2019, 25(4): 583-590.
|
[6] |
Swingler TE, Niu L, Smith P, et al. The function of microRNAs in cartilage and osteoarthritis[J]. Clin Exp Rheumatol, 2019, 37 Suppl 120(5): 40-47.
|
[7] |
文星钊,张志奇. 非编码RNA在骨关节炎中的研究进展[J/CD]. 中华关节外科杂志(电子版), 2020, 14(2): 189-195.
|
[8] |
Matsuyama H, Suzuki HI. Systems and Synthetic microRNA Biology: From Biogenesis to Disease Pathogenesis[J]. Int J Mol Sci, 2019, 21(1): 132.
|
[9] |
Michlewski G, Cáceres JF. Post-transcriptional control of miRNA biogenesis[J]. RNA, 2019, 25(1): 1-16.
|
[10] |
Kobayashi T, Lu J, Cobb BS, et al. Dicer-dependent pathways regulate chondrocyte proliferation and differentiation[J]. Proc Natl Acad Sci U S A, 2008, 105(6): 1949-1954.
|
[11] |
Kobayashi T, Papaioannou G, Mirzamohammadi F, et al. Early postnatal ablation of the microRNA-processing enzyme, Drosha, causes chondrocyte death and impairs the structural integrity of the articular cartilage[J]. Osteoarthritis Cartilage, 2015, 23(7): 1214-1220.
|
[12] |
Mirzamohammadi F, Papaioannou G, Kobayashi T. MicroRNAs in cartilage development, homeostasis, and disease[J]. Curr Osteoporos Rep, 2014, 12(4): 410-419.
|
[13] |
史光华,李鹏翠,魏垒,等. miRNAs在关节软骨生长发育过程中作用的研究进展[J]. 中国矫形外科杂志,2013, 21(13): 1324-1327.
|
[14] |
Nakamichi R, Kurimoto R, Tabata Y, et al. Transcriptional, epigenetic and microRNA regulation of growth plate[J]. Bone, 2020, 137: 115434.
|
[15] |
Papaioannou G, Inloes JB, Nakamura Y, et al. let-7 and miR-140 microRNAs coordinately regulate skeletal development[J]. Proc Natl Acad Sci U S A, 2013, 110(35): E3291-3300.
|
[16] |
Wienholds E, Kloosterman WP, Miska E, et al. MicroRNA expression in zebrafish embryonic development[J]. Science, 2005, 309(5732): 310-311.
|
[17] |
Ason B, Darnell DK, Wittbrodt B, et al. Differences in vertebrate microRNA expression[J]. Proc Natl Acad Sci U S A, 2006, 103(39): 14385-14389.
|
[18] |
Miyaki S, Sato T, Inoue A, et al. MicroRNA-140 plays dual roles in both cartilage development and homeostasis[J]. Genes Dev, 2010, 24(11): 1173-1185.
|
[19] |
Nakamura Y, Inloes JB, Katagiri T, et al. Chondrocyte-specific microRNA-140 regulates endochondral bone development and targets Dnpep to modulate bone morphogenetic protein signaling[J]. Mol Cell Biol, 2011, 31(14): 3019-3028.
|
[20] |
Bluhm B, Ehlen HWA, Holzer T, et al. miR-322 stabilizes MEK1 expression to inhibit RAF/MEK/ERK pathway activation in cartilage[J]. Development, 2017, 144(19): 3562-3577.
|
[21] |
Barter MJ, Tselepi M, Gomez R, et al. Genome-Wide MicroRNA and Gene Analysis of Mesenchymal Stem Cell Chondrogenesis Identifies an Essential Role and Multiple Targets for miR-140-5p[J]. Stem Cells, 2015, 33(11): 3266-3280.
|
[22] |
Sacitharan PK. Ageing and Osteoarthritis[J]. Subcell Biochem, 2019, 91: 123-159.
|
[23] |
卫彦强,石继祥,纪斌,等. 骨性关节炎发病机制的研究进展[J]. 医学综述,2018, 24(5): 838-842.
|
[24] |
Felson DT, Lawrence RC, Dieppe PA, et al. Osteoarthritis: new insights. Part 1: the disease and its risk factors[J]. Ann Intern Med, 2000, 133(8): 635-646.
|
[25] |
Liu W, Jiao Y, Tian C, et al. Gene Expression Profiling Studies Using Microarray in Osteoarthritis: Genes in Common and Different Conditions[J]. Arch Immunol Ther Exp (Warsz), 2000, 68(5): 28.
|
[26] |
Wang Y, Shen S, Li Z, et al. MIR-140-5p affects chondrocyte proliferation, apoptosis, and inflammation by targeting HMGB1 in osteoarthritis[J]. Inflamm Res, 2020, 69(1): 63-73.
|
[27] |
Ito Y, Matsuzaki T, Ayabe F, et al. Both microRNA-455-5p and -3p repress hypoxia-inducible factor-2alpha expression and coordinately regulate cartilage homeostasis[J]. Nat Commun, 2021, 12(1): 4148.
|
[28] |
Woods S, Barter MJ, Elliott HR, et al. miR-324-5p is up regulated in end-stage osteoarthritis and regulates Indian Hedgehog signalling by differing mechanisms in human and mouse[J]. Matrix Biol, 2019, 77: 87-100.
|
[29] |
Xue H, Yu P, Wang WZ, et al. The reduced lncRNA NKILA inhibited proliferation and promoted apoptosis of chondrocytes via miR-145/SP1/NF-kappaB signaling in human osteoarthritis[J]. Eur Rev Med Pharmacol Sci, 2020, 24(2): 535-548.
|
[30] |
Xiao Y, Yan X, Yang Y, et al. Downregulation of long noncoding RNA HOTAIRM1 variant 1 contributes to osteoarthritis via regulating miR-125b/BMPR2 axis and activating JNK/MAPK/ERK pathway[J]. Biomed Pharmacother, 2019, 109: 1569-1577.
|
[31] |
Ntoumou E, Tzetis M, Braoudaki M, et al. Serum microRNA array analysis identifies miR-140-3p, miR-33b-3p and miR-671-3p as potential osteoarthritis biomarkers involved in metabolic processes[J]. Clin Epigenetics, 2017, 9: 127.
|
[32] |
Yin CM, Suen WC, Lin S, et al. Dysregulation of both miR-140-3p and miR-140-5p in synovial fluid correlate with osteoarthritis severity[J]. Bone Joint Res, 2017, 6(11): 612-618.
|
[33] |
Tardif G, Pelletier JP, Fahmi H, et al. NFAT3 and TGF-β/SMAD3 regulate the expression of miR-140 in osteoarthritis[J]. Arthritis Res Ther, 2013, 15(6): R197.
|
[34] |
Swingler TE, Wheeler G, Carmont V, et al. The expression and function of microRNAs in chondrogenesis and osteoarthritis[J]. Arthritis Rheum, 2012, 64(6): 1909-1919.
|
[35] |
Asahara H. Current Status and Strategy of microRNA Research for Cartilage Development and Osteoarthritis Pathogenesis[J]. J Bone Metab, 2016, 23(3): 121-127.
|
[36] |
Rasheed Z, Rasheed N, Al-Shaya O. Epigallocatechin-3-O-gallate modulates global microRNA expression in interleukin-1beta-stimulated human osteoarthritis chondrocytes: potential role of EGCG on negative co-regulation of microRNA-140-3p and ADAMTS5[J]. Eur J Nutr, 2018, 57(3): 917-928.
|
[37] |
Xiao WF, Li YS, Deng A, et al. Functional role of hedgehog pathway in osteoarthritis[J]. Cell Biochem Funct, 2020, 38(2): 122-129.
|
[38] |
王春理,边森,李刚,等. Indian Hedgehog表达量在大鼠骨关节炎早期变化的研究[J]. 中国骨与关节杂志,2018, 7(8): 619-626.
|
[39] |
Skoda AM, Simovic D, Karin V, et al. The role of the Hedgehog signaling pathway in cancer: A comprehensive review[J]. Bosn J Basic Med Sci, 2018, 18(1): 8-20.
|
[40] |
Guilak F, Nims RJ, Dicks A, et al. Osteoarthritis as a disease of the cartilage pericellular matrix[J]. Matrix Biol, 2018, 71/72: 40-50.
|
[41] |
Mao G, Kang Y, Lin R, et al. Long Non-coding RNA HOTTIP Promotes CCL3 Expression and Induces Cartilage Degradation by Sponging miR-455-3p[J]. Front Cell Dev Biol, 2019, 7: 161.
|
[42] |
Hu S, Zhao X, Mao G, et al. MicroRNA-455-3p promotes TGF-beta signaling and inhibits osteoarthritis development by directly targeting PAK2[J]. Exp Mol Med, 2019, 51(10): 1-13.
|
[43] |
Wang X, Tang K, Wang Y, et al. Elevated microRNA1455p increases matrix metalloproteinase9 by activating the nuclear factorkappaB pathway in rheumatoid arthritis[J]. Mol Med Rep, 2019, 20(3): 2703-2711.
|
[44] |
Li M, Du M, Wang Y, et al. CircRNA Lrp6 promotes cementoblast differentiation via miR-145a-5p/Zeb2 axis[J]. J Periodontal Res, 2021, 56(6): 1200-1212.
|
[45] |
Matsukawa T, Sakai T, Yonezawa T, et al. MicroRNA-125b regulates the expression of aggrecanase-1 (ADAMTS-4) in human osteoarthritic chondrocytes[J]. Arthritis Res Ther, 2013, 15(1): R28.
|
[46] |
Iliopoulos D, Malizos KN, Oikonomou P, et al. Integrative microRNA and proteomic approaches identify novel osteoarthritis genes and their collaborative metabolic and inflammatory networks[J]. PLoS One, 2008, 3(11): e3740.
|
[47] |
Jones SW, Watkins G, Good NLe, et al. The identification of differentially expressed microRNA in osteoarthritic tissue that modulate the production of TNF-alpha and MMP13[J]. Osteoarthritis Cartilage, 2009, 17(4): 464-472.
|
[48] |
Díaz-Prado S, Cicione C, Muiños-López E, et al. Characterization of microRNA expression profiles in normal and osteoarthritic human chondrocytes[J]. BMC Musculoskelet Disord, 2012, 13: 144.
|
[49] |
Endisha H, Rockel J, Jurisica I, et al. The complex landscape of microRNAs in articular cartilage: biology, pathology, and therapeutic targets[J]. JCI Insight, 2018, 3(17): e121630.
|
[50] |
Zhang FQ, Wang Z, Zhang H, et al. MiR-27a alleviates osteoarthritis in rabbits via inhibiting inflammation[J]. Eur Rev Med Pharmacol Sci, 2019, 23(3 Suppl): 89-95.
|
[51] |
Zhang G, Zhou Y, Su M, et al. Inhibition of microRNA-27b-3p relieves osteoarthritis pain via regulation of KDM4B-dependent DLX5[J]. Biofactors, 2020, 46(5): 788-802.
|
[52] |
Swingler TE, Niu L, Smith P, et al. The function of microRNAs in cartilage and osteoarthritis[J]. Clin Exp Rheumatol, 2019, 37 Suppl 120(5): 40-47.
|
[53] |
Gu J, Rao W, Huo S, et al. MicroRNAs and long non-coding RNAs in cartilage homeostasis and osteoarthritis[J]. Front Cell Dev Biol, 2022, 10: 1092776.
|
[54] |
Shadid M, Badawi M, Abulrob A. Antisense oligonucleotides: absorption, distribution, metabolism, and excretion[J]. Expert Opin Drug Metab Toxicol, 2021, 17(11): 1281-1292.
|
[55] |
Si HB, Zeng Y, Liu SY, et al. Intra-articular injection of microRNA-140 (miRNA-140) alleviates osteoarthritis (OA) progression by modulating extracellular matrix (ECM) homeostasis in rats[J]. Osteoarthritis Cartilage, 2017, 25(10): 1698-1707.
|
[56] |
Alcaraz MJ, Megías J, García-Arnandis I, et al. New molecular targets for the treatment of osteoarthritis[J]. Biochem Pharmacol, 2010, 80(1): 13-21.
|
[57] |
Saito T, Fukai A, Mabuchi A, et al. Transcriptional regulation of endochondral ossification by HIF-2alpha during skeletal growth and osteoarthritis development[J]. Nat Med, 2010, 16(6): 678-686.
|
[58] |
O′Connor S, Murphy EA, Szwed SK, et al. AGO HITS-CLIP reveals distinct miRNA regulation of white and brown adipose tissue identity[J]. Genes Dev, 2021, 35(9/10): 771-781.
|