切换至 "中华医学电子期刊资源库"

中华损伤与修复杂志(电子版) ›› 2023, Vol. 18 ›› Issue (01) : 73 -77. doi: 10.3877/cma.j.issn.1673-9450.2023.01.012

综述

miRNA在骨骼生长发育和骨性关节炎中的作用
郝耀1,(), 陈丽2, 韩永斌1, 高宏1, 韩树峰1   
  1. 1. 030001 太原,山西医科大学第一医院骨科
    2. 030006 太原,山西白求恩医院医务处
  • 收稿日期:2022-11-03 出版日期:2023-02-01
  • 通信作者: 郝耀
  • 基金资助:
    山西省应用基础研究计划资助项目(201901D211481); 山西省留学回国人员科技活动择优资助项目(20200037); 山西省回国留学人员科研资助项目(2022-189)

Role of miRNA in skeletal development and osteoarthritis

Yao Hao1,(), Li Chen2, Yongbin Han1, Hong Gao1, Shufeng Han1   

  1. 1. Department of Orthopaedics, First Hospital of Shanxi Medical University, Taiyuan 030001, China
    2. Department of Medical Service, Shanxi Bethune Hospital, Taiyuan 030006, China
  • Received:2022-11-03 Published:2023-02-01
  • Corresponding author: Yao Hao
引用本文:

郝耀, 陈丽, 韩永斌, 高宏, 韩树峰. miRNA在骨骼生长发育和骨性关节炎中的作用[J]. 中华损伤与修复杂志(电子版), 2023, 18(01): 73-77.

Yao Hao, Li Chen, Yongbin Han, Hong Gao, Shufeng Han. Role of miRNA in skeletal development and osteoarthritis[J]. Chinese Journal of Injury Repair and Wound Healing(Electronic Edition), 2023, 18(01): 73-77.

miRNA是一类调节基因表达的非编码小RNA(大约21核苷酸大小),在软骨内成骨、维持关节软骨内稳态以及骨性关节炎的疾病进程中起着重要的调节作用。对软骨细胞特定的miRNA以及其靶基因的研究对理解软骨内成骨(如骨骼发育)以及软骨相关疾病(如骨性关节炎)的发病机制提供了新的思路。随着越来越多的miRNA在骨性关节炎进展中的作用得到验证,运用miRNA治疗骨性关节炎逐渐成为转化医学研究的热点。本文着重阐述软骨细胞特定miRNA在骨骼发育和骨性关节炎中的作用,进一步阐明运用miRNA治疗骨性关节炎的潜力。

miRNA are a small non-coding RNA (about 21 nucleotides in size) that regulate gene expression and play an important regulatory role in endochondral osteogenesis, maintenance of articular cartilage homeostasis and the disease progression of osteoarthritis. The study of chondrocyte specific miRNA and their target genes provides new insights into the pathogenesis of endochondral osteogenesis (such as skeletal development) and cartilage related diseases like osteoarthritis. As more and more miRNA′s role in the progression of osteoarthritis has been verified, the application of miRNA in the treatment of osteoarthritis has gradually become a focus of translational medicine research. This article focus on the role of chondrocytes-specific miRNA in bone development and osteoarthritis, and further elucidates the potential of miRNA for the treatment of osteoarthritis.

[1]
Zarzour A, Kim HW, Weintraub NL. Epigenetic Regulation of Vascular Diseases[J]. Arterioscler Thromb Vasc Biol, 2019, 39(6): 984-990.
[2]
Razmara E, Bitaraf A, Yousefi H, et al. Non-Coding RNAs in Cartilage Development: An Updated Review[J]. Int J Mol Sci, 2019, 20(18): 4475.
[3]
Lawrence M, Daujat S, Schneider R. Lateral Thinking: How Histone Modifications Regulate Gene Expression[J]. Trends Genet, 2016, 32(1): 42-56.
[4]
Bartel DP. Metazoan MicroRNAs[J]. Cell, 2018, 173(1): 20-51.
[5]
Grigelioniene G, Suzuki HI, Taylan F, et al. Gain-of-function mutation of microRNA-140 in human skeletal dysplasia[J]. Nat Med, 2019, 25(4): 583-590.
[6]
Swingler TE, Niu L, Smith P, et al. The function of microRNAs in cartilage and osteoarthritis[J]. Clin Exp Rheumatol, 2019, 37 Suppl 120(5): 40-47.
[7]
文星钊,张志奇. 非编码RNA在骨关节炎中的研究进展[J/CD]. 中华关节外科杂志(电子版), 2020, 14(2): 189-195.
[8]
Matsuyama H, Suzuki HI. Systems and Synthetic microRNA Biology: From Biogenesis to Disease Pathogenesis[J]. Int J Mol Sci, 2019, 21(1): 132.
[9]
Michlewski G, Cáceres JF. Post-transcriptional control of miRNA biogenesis[J]. RNA, 2019, 25(1): 1-16.
[10]
Kobayashi T, Lu J, Cobb BS, et al. Dicer-dependent pathways regulate chondrocyte proliferation and differentiation[J]. Proc Natl Acad Sci U S A, 2008, 105(6): 1949-1954.
[11]
Kobayashi T, Papaioannou G, Mirzamohammadi F, et al. Early postnatal ablation of the microRNA-processing enzyme, Drosha, causes chondrocyte death and impairs the structural integrity of the articular cartilage[J]. Osteoarthritis Cartilage, 2015, 23(7): 1214-1220.
[12]
Mirzamohammadi F, Papaioannou G, Kobayashi T. MicroRNAs in cartilage development, homeostasis, and disease[J]. Curr Osteoporos Rep, 2014, 12(4): 410-419.
[13]
史光华,李鹏翠,魏垒,等. miRNAs在关节软骨生长发育过程中作用的研究进展[J]. 中国矫形外科杂志2013, 21(13): 1324-1327.
[14]
Nakamichi R, Kurimoto R, Tabata Y, et al. Transcriptional, epigenetic and microRNA regulation of growth plate[J]. Bone, 2020, 137: 115434.
[15]
Papaioannou G, Inloes JB, Nakamura Y, et al. let-7 and miR-140 microRNAs coordinately regulate skeletal development[J]. Proc Natl Acad Sci U S A, 2013, 110(35): E3291-3300.
[16]
Wienholds E, Kloosterman WP, Miska E, et al. MicroRNA expression in zebrafish embryonic development[J]. Science, 2005, 309(5732): 310-311.
[17]
Ason B, Darnell DK, Wittbrodt B, et al. Differences in vertebrate microRNA expression[J]. Proc Natl Acad Sci U S A, 2006, 103(39): 14385-14389.
[18]
Miyaki S, Sato T, Inoue A, et al. MicroRNA-140 plays dual roles in both cartilage development and homeostasis[J]. Genes Dev, 2010, 24(11): 1173-1185.
[19]
Nakamura Y, Inloes JB, Katagiri T, et al. Chondrocyte-specific microRNA-140 regulates endochondral bone development and targets Dnpep to modulate bone morphogenetic protein signaling[J]. Mol Cell Biol, 2011, 31(14): 3019-3028.
[20]
Bluhm B, Ehlen HWA, Holzer T, et al. miR-322 stabilizes MEK1 expression to inhibit RAF/MEK/ERK pathway activation in cartilage[J]. Development, 2017, 144(19): 3562-3577.
[21]
Barter MJ, Tselepi M, Gomez R, et al. Genome-Wide MicroRNA and Gene Analysis of Mesenchymal Stem Cell Chondrogenesis Identifies an Essential Role and Multiple Targets for miR-140-5p[J]. Stem Cells, 2015, 33(11): 3266-3280.
[22]
Sacitharan PK. Ageing and Osteoarthritis[J]. Subcell Biochem, 2019, 91: 123-159.
[23]
卫彦强,石继祥,纪斌,等. 骨性关节炎发病机制的研究进展[J]. 医学综述2018, 24(5): 838-842.
[24]
Felson DT, Lawrence RC, Dieppe PA, et al. Osteoarthritis: new insights. Part 1: the disease and its risk factors[J]. Ann Intern Med, 2000, 133(8): 635-646.
[25]
Liu W, Jiao Y, Tian C, et al. Gene Expression Profiling Studies Using Microarray in Osteoarthritis: Genes in Common and Different Conditions[J]. Arch Immunol Ther Exp (Warsz), 2000, 68(5): 28.
[26]
Wang Y, Shen S, Li Z, et al. MIR-140-5p affects chondrocyte proliferation, apoptosis, and inflammation by targeting HMGB1 in osteoarthritis[J]. Inflamm Res, 2020, 69(1): 63-73.
[27]
Ito Y, Matsuzaki T, Ayabe F, et al. Both microRNA-455-5p and -3p repress hypoxia-inducible factor-2alpha expression and coordinately regulate cartilage homeostasis[J]. Nat Commun, 2021, 12(1): 4148.
[28]
Woods S, Barter MJ, Elliott HR, et al. miR-324-5p is up regulated in end-stage osteoarthritis and regulates Indian Hedgehog signalling by differing mechanisms in human and mouse[J]. Matrix Biol, 2019, 77: 87-100.
[29]
Xue H, Yu P, Wang WZ, et al. The reduced lncRNA NKILA inhibited proliferation and promoted apoptosis of chondrocytes via miR-145/SP1/NF-kappaB signaling in human osteoarthritis[J]. Eur Rev Med Pharmacol Sci, 2020, 24(2): 535-548.
[30]
Xiao Y, Yan X, Yang Y, et al. Downregulation of long noncoding RNA HOTAIRM1 variant 1 contributes to osteoarthritis via regulating miR-125b/BMPR2 axis and activating JNK/MAPK/ERK pathway[J]. Biomed Pharmacother, 2019, 109: 1569-1577.
[31]
Ntoumou E, Tzetis M, Braoudaki M, et al. Serum microRNA array analysis identifies miR-140-3p, miR-33b-3p and miR-671-3p as potential osteoarthritis biomarkers involved in metabolic processes[J]. Clin Epigenetics, 2017, 9: 127.
[32]
Yin CM, Suen WC, Lin S, et al. Dysregulation of both miR-140-3p and miR-140-5p in synovial fluid correlate with osteoarthritis severity[J]. Bone Joint Res, 2017, 6(11): 612-618.
[33]
Tardif G, Pelletier JP, Fahmi H, et al. NFAT3 and TGF-β/SMAD3 regulate the expression of miR-140 in osteoarthritis[J]. Arthritis Res Ther, 2013, 15(6): R197.
[34]
Swingler TE, Wheeler G, Carmont V, et al. The expression and function of microRNAs in chondrogenesis and osteoarthritis[J]. Arthritis Rheum, 2012, 64(6): 1909-1919.
[35]
Asahara H. Current Status and Strategy of microRNA Research for Cartilage Development and Osteoarthritis Pathogenesis[J]. J Bone Metab, 2016, 23(3): 121-127.
[36]
Rasheed Z, Rasheed N, Al-Shaya O. Epigallocatechin-3-O-gallate modulates global microRNA expression in interleukin-1beta-stimulated human osteoarthritis chondrocytes: potential role of EGCG on negative co-regulation of microRNA-140-3p and ADAMTS5[J]. Eur J Nutr, 2018, 57(3): 917-928.
[37]
Xiao WF, Li YS, Deng A, et al. Functional role of hedgehog pathway in osteoarthritis[J]. Cell Biochem Funct, 2020, 38(2): 122-129.
[38]
王春理,边森,李刚,等. Indian Hedgehog表达量在大鼠骨关节炎早期变化的研究[J]. 中国骨与关节杂志2018, 7(8): 619-626.
[39]
Skoda AM, Simovic D, Karin V, et al. The role of the Hedgehog signaling pathway in cancer: A comprehensive review[J]. Bosn J Basic Med Sci, 2018, 18(1): 8-20.
[40]
Guilak F, Nims RJ, Dicks A, et al. Osteoarthritis as a disease of the cartilage pericellular matrix[J]. Matrix Biol, 2018, 71/72: 40-50.
[41]
Mao G, Kang Y, Lin R, et al. Long Non-coding RNA HOTTIP Promotes CCL3 Expression and Induces Cartilage Degradation by Sponging miR-455-3p[J]. Front Cell Dev Biol, 2019, 7: 161.
[42]
Hu S, Zhao X, Mao G, et al. MicroRNA-455-3p promotes TGF-beta signaling and inhibits osteoarthritis development by directly targeting PAK2[J]. Exp Mol Med, 2019, 51(10): 1-13.
[43]
Wang X, Tang K, Wang Y, et al. Elevated microRNA1455p increases matrix metalloproteinase9 by activating the nuclear factorkappaB pathway in rheumatoid arthritis[J]. Mol Med Rep, 2019, 20(3): 2703-2711.
[44]
Li M, Du M, Wang Y, et al. CircRNA Lrp6 promotes cementoblast differentiation via miR-145a-5p/Zeb2 axis[J]. J Periodontal Res, 2021, 56(6): 1200-1212.
[45]
Matsukawa T, Sakai T, Yonezawa T, et al. MicroRNA-125b regulates the expression of aggrecanase-1 (ADAMTS-4) in human osteoarthritic chondrocytes[J]. Arthritis Res Ther, 2013, 15(1): R28.
[46]
Iliopoulos D, Malizos KN, Oikonomou P, et al. Integrative microRNA and proteomic approaches identify novel osteoarthritis genes and their collaborative metabolic and inflammatory networks[J]. PLoS One, 2008, 3(11): e3740.
[47]
Jones SW, Watkins G, Good NLe, et al. The identification of differentially expressed microRNA in osteoarthritic tissue that modulate the production of TNF-alpha and MMP13[J]. Osteoarthritis Cartilage, 2009, 17(4): 464-472.
[48]
Díaz-Prado S, Cicione C, Muiños-López E, et al. Characterization of microRNA expression profiles in normal and osteoarthritic human chondrocytes[J]. BMC Musculoskelet Disord, 2012, 13: 144.
[49]
Endisha H, Rockel J, Jurisica I, et al. The complex landscape of microRNAs in articular cartilage: biology, pathology, and therapeutic targets[J]. JCI Insight, 2018, 3(17): e121630.
[50]
Zhang FQ, Wang Z, Zhang H, et al. MiR-27a alleviates osteoarthritis in rabbits via inhibiting inflammation[J]. Eur Rev Med Pharmacol Sci, 2019, 23(3 Suppl): 89-95.
[51]
Zhang G, Zhou Y, Su M, et al. Inhibition of microRNA-27b-3p relieves osteoarthritis pain via regulation of KDM4B-dependent DLX5[J]. Biofactors, 2020, 46(5): 788-802.
[52]
Swingler TE, Niu L, Smith P, et al. The function of microRNAs in cartilage and osteoarthritis[J]. Clin Exp Rheumatol, 2019, 37 Suppl 120(5): 40-47.
[53]
Gu J, Rao W, Huo S, et al. MicroRNAs and long non-coding RNAs in cartilage homeostasis and osteoarthritis[J]. Front Cell Dev Biol, 2022, 10: 1092776.
[54]
Shadid M, Badawi M, Abulrob A. Antisense oligonucleotides: absorption, distribution, metabolism, and excretion[J]. Expert Opin Drug Metab Toxicol, 2021, 17(11): 1281-1292.
[55]
Si HB, Zeng Y, Liu SY, et al. Intra-articular injection of microRNA-140 (miRNA-140) alleviates osteoarthritis (OA) progression by modulating extracellular matrix (ECM) homeostasis in rats[J]. Osteoarthritis Cartilage, 2017, 25(10): 1698-1707.
[56]
Alcaraz MJ, Megías J, García-Arnandis I, et al. New molecular targets for the treatment of osteoarthritis[J]. Biochem Pharmacol, 2010, 80(1): 13-21.
[57]
Saito T, Fukai A, Mabuchi A, et al. Transcriptional regulation of endochondral ossification by HIF-2alpha during skeletal growth and osteoarthritis development[J]. Nat Med, 2010, 16(6): 678-686.
[58]
O′Connor S, Murphy EA, Szwed SK, et al. AGO HITS-CLIP reveals distinct miRNA regulation of white and brown adipose tissue identity[J]. Genes Dev, 2021, 35(9/10): 771-781.
[1] 闫文, 谢兴文, 顾玉彪, 雷宁波, 马成, 于文霞, 高亚雄, 张磊. 微小RNA与全膝关节置换术后深静脉血栓的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(06): 842-846.
[2] 樊绪国, 赵永刚, 杨砚伟. 腓骨在膝骨关节炎作用的研究观点[J]. 中华关节外科杂志(电子版), 2023, 17(06): 855-859.
[3] 李善武, 叶永杰, 王兵, 王子呓, 银毅, 孙官军, 张大刚. 胫骨高位截骨与单髁置换的早期疗效比较[J]. 中华关节外科杂志(电子版), 2023, 17(06): 882-888.
[4] 张中斌, 付琨朋, 朱凯, 张玉, 李华. 胫骨高位截骨术与富血小板血浆治疗膝骨关节炎的疗效[J]. 中华关节外科杂志(电子版), 2023, 17(05): 633-641.
[5] 陈宏兴, 张立军, 张勇, 李虎, 周驰, 凡一诺. 膝骨关节炎关节镜清理术后中药外用疗效的Meta分析[J]. 中华关节外科杂志(电子版), 2023, 17(05): 663-672.
[6] 王得晨, 杨康, 杨自杰, 归明彬, 屈莲平, 张小凤, 高峰. 结直肠癌微卫星稳定状态和程序性死亡、吲哚胺2,3-双加氧酶关系的研究进展[J]. 中华普通外科学文献(电子版), 2023, 17(06): 462-465.
[7] 黄威, 刘启, 陈流华, 滕茶香, 区喆建, 刘韩笑, 陈健聪, 张昆松. 新定义的可预测肝癌预后的焦亡相关lncRNA模型[J]. 中华普通外科学文献(电子版), 2023, 17(05): 357-365.
[8] 樊丽超, 郭瑾瑛, 陈鑫. 野生型RET与RET/PTC融合基因检测对甲状腺乳头状癌中央区淋巴结清扫的指导意义[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 631-635.
[9] 袁育韬, 邢金琳, 谢克飞, 殷凯. CT征象及BRAFV600E基因突变与甲状腺乳头状癌中央区淋巴结转移的相关性[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 611-614.
[10] 许丁伟, 马江云, 李新成, 黄洁. Alagille综合征疑诊为先天性胆道闭锁一例并文献复习[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 681-687.
[11] 陈安, 冯娟, 杨振宇, 杜锡林, 柏强善, 阴继凯, 臧莉, 鲁建国. 基于生物信息学分析CCN4在肝细胞癌中表达及其临床意义[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 702-707.
[12] 王楚风, 蒋安. 原发性肝癌的分子诊断[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 499-503.
[13] 王旭, 师绍敏, 毛燕, 季上, 刘亚玲. 肝酶代谢与骨关节炎相关性的研究进展[J]. 中华老年骨科与康复电子杂志, 2023, 09(06): 379-384.
[14] 王飞飞, 王光林, 孟泽松, 李保坤, 曹龙飞, 张娟, 周超熙, 丁源一, 王贵英. 敲低IMPDH1对结肠癌SW480、HT29细胞生物功能的影响[J]. 中华临床医师杂志(电子版), 2023, 17(08): 884-890.
[15] 高红琴, 陈晨, 陆瑞科, 王小雨, 张敏, 李少华, 郝梨岚, 黄新程, 关凌耀, 张韵红. 外阴阴道假丝酵母菌病对女性阴道-宫颈菌群的影响研究[J]. 中华临床医师杂志(电子版), 2023, 17(06): 720-725.
阅读次数
全文


摘要