[1] |
程天民,邹仲敏. 放射复合伤的研究进展[J]. 中华放射医学与防护杂志,1998, 18(5): 299-304.
|
[2] |
Zou Z, Sun H, Su Y, et al. Progress in research on radiation combined injury in China[J]. Radiation Research, 2008, 169(6): 722-729.
|
[3] |
Ran XZ, Shi CM, Zheng HE, et al. Experimental research on the management of combined radiation-burn injury in China[J]. Radiation Research, 2011, 175(3): 382-389.
|
[4] |
Bene BJ, Blakely WF, Burmeister DM, et al. Celebrating 60 years of accomplishments of the Armed Forces Radiobiology Research Institute1[J]. Radiation Research, 2021, 196(2): 129-146.
|
[5] |
DiCarlo AL, Ramakrishnan N, Hatchett RJ. Radiation combined injury: overview of NIAID research[J]. Health Physics, 2010, 98(6): 863-867.
|
[6] |
DiCarlo AL, Hatchett RJ, Kaminski JM, et al. Medical countermeasures for radiation combined injury: radiation with burn, blast, trauma and/or sepsis. report of an NIAID Workshop, March 26-27, 2007[J]. Radiat Res, 2008, 169(6): 712-721.
|
[7] |
Gorbunov NV, Kiang JG. Ghrelin therapy decreases incidents of intracranial hemorrhage in mice after whole-body ionizing irradiation combined with burn trauma[J]. International Journal of Molecular Sciences, 2017, 18(8): 1693.
|
[8] |
Kiang JG, Smith JT, Anderson MN, et al. A novel therapy, using Ghrelin with pegylated G-CSF, inhibits brain hemorrhage from ionizing radiation or combined radiation injury[J]. Pharm Pharmacol Int J, 2019, 7(3): 133-145.
|
[9] |
Swift JM, Smith JT, Kiang JG. Hemorrhage trauma increases radiation-induced trabecular bone loss and marrow cell depletion in mice[J]. Radiation Research, 2015, 183(5): 578-583.
|
[10] |
Swift JM, Swift SN, Smith JT, et al. Skin wound trauma, following high-dose radiation exposure, amplifies and prolongs skeletal tissue loss[J]. Bone, 2015, 81: 487-494.
|
[11] |
程天民. 我国防原医学发展的回顾与思考[J]. 中华放射医学与防护杂志,2014, 34(4): 241-243.
|
[12] |
王延江,粟永萍,艾国平,等. 放射损伤和放烧复合伤影响小鼠脾脏T细胞IFN-γ和IL-4基因表达的实验研究[J]. 中华放射医学与防护杂志,2002, 22(3): 189-191.
|
[13] |
Ledney GD, Exum ED, Jackson WE, 3rd. Wound-induced alterations in survival of 60Co irradiated mice: importance of wound timing[J]. Experientia, 1985, 41(5): 614-616.
|
[14] |
李祥泽,卜宪敏,李冬梅,等. 创伤性脑外伤促进骨折愈合中的干细胞、细胞因子、激素、神经肽及基因[J]. 中国组织工程研究,2021, 25(19): 3057-3063.
|
[15] |
Lin Z, Xiong Y, Sun Y, et al. Circulating MiRNA-21-enriched extracellular vesicles promote bone remodeling in traumatic brain injury patients[J]. Exp Mol Med, 2023, 55(3): 587-596.
|
[16] |
Garrett J, Orschell CM, Mendonca MS, et al. Subcutaneous wounding postirradiation reduces radiation lethality in mice[J]. Radiation Research, 2014, 181(6): 578-583
|
[17] |
Dynlacht JR, Garrett J, Joel R, et al. Further characterization of the mitigation of radiation lethality by protective wounding[J]. Radiation Research, 2017, 187(6): 732-742.
|
[18] |
施炎,郭朝华,刘贤华,等. 几种抗放药物对单纯放射病和放烧复合伤防治作用的对比观察[J]. 中华放射医学与防护杂志,1999, 19(4): 280-281.
|
[19] |
Xu Y, Wang S, Shen M, et al. hGH promotes megakaryocyte differentiation and exerts a complementary effect with c-Mpl ligands on thrombopoiesis[J]. Blood, 2014, 123(14): 2250-2260.
|
[20] |
Long S, Wang G, Shen M, et al. dTMP-GH fusion protein therapy improves survival after radiation injury combined with skin-burn trauma in mice[J]. Radiation Research, 2019, 191(4): 360-368.
|
[21] |
Kiang JG, Zhai M, Liao PJ, et al. Pegylated G-CSF inhibits blood cell depletion, increases platelets, blocks splenomegaly, and improves survival after whole-body ionizing irradiation but not after irradiation combined with burn[J]. Oxidative Medicine and Cellular Longevity, 2014, 2014: 481392.
|
[22] |
Islam A, Bolduc DL, Zhai M, et al. Captopril increases survival after whole-body ionizing irradiation but decreases survival when combined with skin-burn trauma in mice[J]. Radiation Research, 2015, 184(3): 273-279.
|
[23] |
Fukumoto R, Cary LH, Gorbunov NV, et al. Ciprofloxacin modulates cytokine/chemokine profile in serum, improves bone marrow repopulation, and limits apoptosis and autophagy in ileum after whole body ionizing irradiation combined with skin-wound trauma[J]. PloS One, 2013, 8(3): e58389.
|
[24] |
Fukumoto R, Burns TM, Kiang JG. Ciprofloxacin enhances stress erythropoiesis in spleen and increases survival after whole-body irradiation combined with skin-wound trauma[J]. PloS One, 2014, 9(2): e90448.
|
[25] |
Kiang JG, Anderson MN, Smith JT. Ghrelin therapy mitigates bone marrow injury and splenocytopenia by sustaining circulating G-CSF and KC increases after irradiation combined with wound[J]. Cell & Bioscience, 2018, 8: 27.
|
[26] |
Singh VK, Wise SY, Fatanmi OO, et al. Alpha-tocopherol succinate- and AMD3100-mobilized progenitors mitigate radiation combined injury in mice[J]. J Radiat Res, 2014, 55(1): 41-53.
|
[27] |
Satyamitra MM, Cassatt DR, Taliaferro LP. Meeting commentary: a poly-pharmacy approach to mitigate acute radiation syndrome (ARS) [J]. Radiation Research, 2021, 196(4): 423-428.
|
[28] |
Wang L, Zhai M, Lin B, et al. PEG-G-CSF and L-Citrulline combination therapy for mitigating skin wound combined radiation injury in a mouse model[J]. Radiation Research, 2021, 196(1): 113-127.
|
[29] |
Kiang JG, Zhai M, Bolduc DL, et al. Combined therapy of pegylated G-CSF and Alxn4100TPO improves survival and mitigates acute radiation syndrome after whole-body ionizing irradiation alone and followed by wound trauma[J]. Radiation Research, 2017, 188(5): 476-490.
|
[30] |
史春梦,程天民. 放射损伤对创面愈合的影响[J]. 国外医学·放射医学核医学分册,2005, 29(1): 30-32.
|
[31] |
Kiang JG, Jiao W, Cary LH, et al. Wound trauma increases radiation-induced mortality by activation of iNOS pathway and elevation of cytokine concentrations and bacterial infection[J]. Radiation Research, 2010, 173(3): 319-332.
|
[32] |
Wang L, Lin B, Zhai M, et al. Deteriorative effects of radiation injury combined with skin wounding in a mouse model[J]. Toxics, 2022, 10(12): 785.
|
[33] |
Hao L, Wang J, Zou Z, et al. Transplantation of BMSCs expressing hPDGF-A/hBD2 promotes wound healing in rats with combined radiation-wound injury[J]. Gene Ther, 2009, 16(1): 34-42.
|
[34] |
Xia Z, Zhang C, Zeng Y, et al. Transplantation of BMSCs expressing hVEGF165/hBD3 promotes wound healing in rats with combined radiation-wound injury[J]. Int Wound J, 2014, 11(3): 293-303.
|
[35] |
Wang X, Chen Z, Luo S, et al. Development of therapeutic small-molecule fluorophore for cell transplantation[J]. Advanced Functional Materials, 2016, 26(46): 8397-8407.
|
[36] |
Zhang M, Zhang C, Li Z, et al. Advances in 3D skin bioprinting for wound healing and disease modeling[J]. Regen Biomater, 2023, 10: 105.
|
[37] |
Kang MS, Jang J, Jo HJ, et al. Advances and innovations of 3D bioprinting skin[J]. Biomolecules, 2022, 13(1): 55.
|
[38] |
赵娜. 丝氨酸蛋白酶抑制因子Spink7促进炎症消退的作用与机制探索[D]. 陆军军医大学,2021
|
[39] |
El-Hamoly T, El-Denshary ES, Saad SM, et al. 3-aminobenzamide, a poly (ADP ribose) polymerase inhibitor, enhances wound healing in whole body gamma irradiated model[J]. Wound Repair and Regeneration, 2015, 23(5): 672-684.
|
[40] |
Bray ER, Oropallo AR, Grande DA, et al. Extracellular vesicles as therapeutic tools for the treatment of chronic wounds[J].Pharmaceutics, 2021, 13(10): 1543.
|