切换至 "中华医学电子期刊资源库"

中华损伤与修复杂志(电子版) ›› 2023, Vol. 18 ›› Issue (04) : 358 -363. doi: 10.3877/cma.j.issn.1673-9450.2023.04.016

综述

肠干细胞调控与肠道放射损伤修复的研究进展
贺林凤, 曹雨, 张宁, 冉新泽, 王锋超()   
  1. 400038 重庆,陆军军医大学(第三军医大学)军事预防医学系全军复合伤研究所 创伤、烧伤与复合伤国家重点实验室;400038 重庆,陆军军医大学(第三军医大学)基础医学院
    400038 重庆,陆军军医大学(第三军医大学)军事预防医学系全军复合伤研究所 创伤、烧伤与复合伤国家重点实验室
  • 收稿日期:2023-04-27 出版日期:2023-08-01
  • 通信作者: 王锋超
  • 基金资助:
    国家自然科学基金面上项目(81872556); 重庆市院士专项(基础研究与前沿探索类)(cstc2018jcyj-yszxX0004); 陆军军医大学创新能力提升项目(2021XJS03)

Regulation of intestinal stem cells and tissue damage and repair after radiation exposure

Linfeng He, Yu Cao, Ning Zhang, Xinze Ran, Fengchao Wang()   

  1. Institute of Combined Injury of PLA, State Key Laboratory of Trauma, Burn and Combined Injury, College of Preventive Medicine; College of Basic Medical Sciences, Army Medical University (Third Military Medical University), Chongqing 400038, China
    Institute of Combined Injury of PLA, State Key Laboratory of Trauma, Burn and Combined Injury, College of Preventive Medicine
  • Received:2023-04-27 Published:2023-08-01
  • Corresponding author: Fengchao Wang
引用本文:

贺林凤, 曹雨, 张宁, 冉新泽, 王锋超. 肠干细胞调控与肠道放射损伤修复的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2023, 18(04): 358-363.

Linfeng He, Yu Cao, Ning Zhang, Xinze Ran, Fengchao Wang. Regulation of intestinal stem cells and tissue damage and repair after radiation exposure[J/OL]. Chinese Journal of Injury Repair and Wound Healing(Electronic Edition), 2023, 18(04): 358-363.

肠道是放射损伤的重要靶器官,其损伤修复程度直接影响放射复合伤及其他肠道放射损伤患者的病情转归,目前临床尚缺乏有效的防治手段。肠道干细胞调控在放射性肠损伤的发展进程中居于核心地位。对肠道干细胞鉴定、信号调控、再生修复病理过程和相关药物靶点筛选等方面的研究,可为治疗相关疾病提供参考。

Intestinal tract is an important target organ of radiation injury. The degree of tissue damage and repair directly affects the prognosis of patients with radiation combined injury and other type of intestinal radiation injuries. So far, there is still a lack of effective clinical methods to treat radiation damage. The regulation of intestinal stem cells plays a central role in the development of radiation-induced intestinal injury. Study on intestinal stem cells identity, signal regulation, pathological process and drug screening, can provide references for the treatment of related diseases.

[20]
Clevers H, Nusse R. Wnt/beta-catenin signaling and disease[J]. Cell, 2012, 149(6): 1192-1205.
[21]
Lau W, Peng WC, Gros P, et al. The R-spondin/Lgr5/Rnf43 module: regulator of Wnt signal strength[J]. Genes Dev, 2014, 28(4): 305-316.
[22]
Pellegrinet L, Rodilla V, Liu Z, et al. Dll1-and dll4-mediated notch signaling are required for homeostasis of intestinal stem cells[J]. Gastroenterology, 2011, 140(4): 1230-1240.
[23]
Liang SJ, Li XG, Wang XQ. Notch signaling in mammalian intestinal stem cells: determining cell fate and maintaining homeostasis[J]. Curr Stem Cell Res Ther, 2019, 14(7): 583-590.
[24]
Abud HE, Chan WH, Jarde T. Source and impact of the EGF family of ligands on intestinal stem cells[J]. Front Cell Dev Biol, 2021, 9: 685665.
[25]
Wong VWY, Stange DE, Page ME, et al. Lrig1 controls intestinal stem-cell homeostasis by negative regulation of ErbB signalling[J]. Nature Cell Biology, 2012, 14(4): 401-408.
[26]
Qi Z, Li Y, Zhao B, et al. BMP restricts stemness of intestinal Lgr5(+) stem cells by directly suppressing their signature genes[J]. Nat Commun, 2017, 8: 13824.
[27]
Ren J, Niu Z, Li X, et al. A novel morphometry system automatically assessing the growth and regeneration of intestinal organoids[J]. Biochemical and Biophysical Research Communications, 2018, 506(4): 1052-1058.
[28]
Sato T, Van Es JH, Snippert HJ, et al. Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts[J]. Nature, 2011, 469(7330): 415-418.
[29]
Kabiri Z, Greicius G, Madan B, et al. Stroma provides an intestinal stem cell niche in the absence of epithelial Wnts[J]. Development, 2014, 141(11): 2206-2215.
[30]
Shoshkes-Carmel M, Wang YJ, Wangensteen KJ, et al. Subepithelial telocytes are an important source of Wnts that supports intestinal crypts[J]. Nature, 2018, 557(7704): 242-246.
[31]
Zhu G, Hu J, Xi R. The cellular niche for intestinal stem cells: a team effort[J]. Cell Regen, 2021, 10(1): 1.
[32]
Murata K, Jadhav U, Madha S, et al. Ascl2-dependent cell dedifferentiation drives regeneration of ablated intestinal stem cells[J]. Cell Stem Cell, 2020, 26 (3): 377-390.
[33]
Degirmenci B, Valenta T, Dimitrieva S, et al. GLI1-expressing mesenchymal cells form the essential Wnt-secreting niche for colon stem cells[J]. Nature, 2018, 558 (7710): 449-453.
[34]
Greicius G, Kabiri Z, Sigmundsson K, et al. PDGFR alpha(+) pericryptal stromal cells are the critical source of Wnts and RSPO3 for murine intestinal stem cells in vivo[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(14): e3173-e3181.
[35]
Aparicio-Domingo P, Romera-Hernandez M, Karrich JJ, et al. Type 3 innate lymphoid cells maintain intestinal epithelial stem cells after tissue damage[J]. J Exp Med, 2015, 212(11): 1783-1791.
[36]
Zhu P, Zhu X, Wu J, et al. IL-13 secreted by ILC2s promotes the self-renewal of intestinal stem cells through circular RNA circPan3[J]. Nat Immunol, 2019, 20(2): 183-194.
[37]
Biton M, Haber AL, Rogel N, et al. T helper cell cytokines modulate intestinal stem cell renewal and differentiation[J]. Cell, 2018, 175(5): 1307-1320.
[38]
Wang X, Wei L, Cramer JM, et al. Pharmacologically blocking p53-dependent apoptosis protects intestinal stem cells and mice from radiation[J]. Sci Rep, 2015, 5: 8566.
[39]
Wang F, Cheng J, Liu D, et al. P53-participated cellular and molecular responses to irradiation are cell differentiation-determined in murine intestinal epithelium[J]. Archives of Biochemistry and Biophysics, 2014, 542: 21-27.
[40]
Zhang F, Liu T, Huang HC, et al. Activation of pyroptosis and ferroptosis is involved in radiation-induced intestinal injury in mice[J]. Biochemical and Biophysical Research Communications, 2022, 631: 102-109.
[41]
Clevers H. The intestinal crypt, a prototype stem cell compartment[J]. Cell, 2013, 154(2): 274-284.
[42]
Yan KS, Chia LA, Li X, et al. The intestinal stem cell markers Bmi1 and Lgr5 identify two functionally distinct populations[J]. Proc Natl Acad Sci U S A, 2012, 109(2): 466-471.
[43]
Takeda N, Jain R, Leboeuf MR, et al. Interconversion between intestinal stem cell populations in distinct niches[J]. Science, 2011, 334(6061): 1420-1424.
[44]
Montgomery RK, Carlone DL, Richmond CA, et al. Mouse telomerase reverse transcriptase (mTert) expression marks slowly cycling intestinal stem cells[J]. Proc Natl Acad Sci U S A, 2011, 108(1): 179-184.
[45]
Li N, Nakauka-Ddamba A, Tobias J, et al. Mouse label-retaining cells are molecularly and functionally distinct from reserve intestinal stem cells[J]. Gastroenterology, 2016, 151(2): 298-310.
[46]
Ayyaz A, Kumar S, Sangiorgi B, et al. Single-cell transcriptomes of the regenerating intestine reveal a revival stem cell[J]. Nature, 2019, 569(7754): 121-125.
[47]
Rispal J, Escaffit F, Trouche D. Chromatin dynamics in intestinal epithelial homeostasis: a paradigm of cell fate determination versus cell plasticity[J]. Stem Cell Rev Rep, 2020, 16(6): 1062-1080.
[48]
Kurokawa K, Hayakawa Y, Koike K. Plasticity of intestinal epithelium: stem cell niches and regulatory signals[J]. Int J Mol Sci, 2020, 22(1): 357.
[49]
Palikuqi B, Rispal J, Klein O. Good neighbors: the niche that fine tunes mammalian intestinal regeneration[J]. Cold Spring Harb Perspect Biol, 2022, 14(5): a040865.
[50]
Van Es JH, Sato T, Van De Wetering M, et al. Dll1(+) secretory progenitor cells revert to stem cells upon crypt damage[J]. Nature Cell Biology, 2012, 14(10): 1099-1104.
[51]
Metcalfe C, Kljavin NM, Ybarra R, et al. Lgr5+ stem cells are indispensable for radiation-induced intestinal regeneration[J]. Cell Stem Cell, 2014, 14(2): 149-159.
[1]
Beumer J, Clevers H. Cell fate specification and differentiation in the adult mammalian intestine[J]. Nat Rev Mol Cell Biol, 2021, 22(1): 39-53.
[2]
Mccarthy N, Kraiczy J, Shivdasani RA. Cellular and molecular architecture of the intestinal stem cell niche[J]. Nat Cell Biol, 2020, 22(9): 1033-1041.
[3]
Gehart H, Clevers H. Tales from the crypt: new insights into intestinal stem cells[J]. Nat Rev Gastroenterol Hepatol, 2019, 16(1): 19-34.
[4]
Singh PNP, Madha S, Leiter AB, et al. Cell and chromatin transitions in intestinal stem cell regeneration[J]. Genes Dev, 2022, 36(11-12): 684-698.
[5]
Shivdasani RA, Clevers H, De Sauvage FJ. Tissue regeneration: reserve or reverse?[J]. Science, 2021, 371(6531): 784-786.
[6]
Meyer AR, Brown ME, Mcgrath PS, et al. Injury-induced cellular plasticity drives intestinal regeneration[J]. Cell Mol Gastroenterol Hepatol, 2022, 13(3): 843-856.
[7]
Peterson LW, Artis D. Intestinal epithelial cells: regulators of barrier function and immune homeostasis[J]. Nat Rev Immunol, 2014, 14(3): 141-153.
[8]
Untersmayr E, Brandt A, Koidl L, et al. The intestinal barrier dysfunction as driving factor of inflammaging[J]. Nutrients, 2022, 14(5): 949-970.
[9]
Barker N, Van Oudenaarden A, Clevers H. Identifying the stem cell of the intestinal crypt: strategies and pitfalls[J]. Cell Stem Cell, 2012, 11(4): 452-460.
[10]
Li L, Clevers H. Coexistence of quiescent and active adult stem cells in mammals[J]. Science, 2010, 327(5965): 542-545.
[11]
Barker N, Es JH, Kuipers J, et al. Identification of stem cells in small intestine and colon by marker gene Lgr5[J]. Nature, 2007, 449(7165): 1003-1007.
[12]
Sato T, Vries RG, Snippert HJ, et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche[J]. Nature, 2009, 459(7244): 262-265.
[13]
Snippert HJ, Van Der Flier LG, Sato T, et al. Intestinal crypt homeostasis results from neutral competition between symmetrically dividing Lgr5 stem cells[J]. Cell, 2010, 143(1): 134-144.
[14]
Wang F, Scoville D, He XC, et al. Isolation and characterization of intestinal stem cells based on surface marker combinations and colony-formation assay[J]. Gastroenterology, 2013, 145(2): 383-395.
[15]
Barriga FM, Montagni E, Mana M, et al. Mex3a marks a slowly dividing subpopulation of Lgr5+ intestinal stem cells[J]. Cell Stem Cell, 2017, 20(6): 801-816.
[16]
Grun D, Lyubimova A, Kester L, et al. Single-cell messenger RNA sequencing reveals rare intestinal cell types[J]. Nature, 2015, 525(7568): 251-255.
[17]
Azkanaz M, Corominas-Murtra B, Ellenbroek SIJ, et al. Retrograde movements determine effective stem cell numbers in the intestine[J]. Nature, 2022, 607(7919): 548-554.
[18]
Ritsma L, Ellenbroek SIJ, Zomer A, et al. Intestinal crypt homeostasis revealed at single-stem-cell level by in vivo live imaging[J]. Nature, 2014, 507(7492): 362-365.
[19]
Bottcher A, Buttner M, Tritschler S, et al. Non-canonical Wnt/PCP signalling regulates intestinal stem cell lineage priming towards enteroendocrine and Paneth cell fates[J]. Nature Cell Biology, 2021, 23(1): 23-31.
[52]
Yu S, Tong K, Zhao Y, et al. Paneth cell multipotency induced by notch activation following injury[J]. Cell Stem Cell, 2018, 23(1): 46-59.
[53]
粟永萍,程天民,刘贤华. 放射损伤及放烧复合伤对小肠上皮损害的量效研究[J]. 第三军医大学学报1994, 16(5): 313-315.
[54]
粟永萍,程天民. 小鼠放射损伤和放烧复合伤的肠上皮畸形细胞[J]. 第三军医大学学报1987, 9(4): 47-49, 105.
[55]
王锋超,王涛,艾国平,等. 不同伤情血清可有效激活IEC-6细胞PI3K/Akt通路[J]. 第三军医大学学报2006, 28(6): 518-520.
[56]
朱俊东,粟永萍,谭春华. GLP-2和EGF对放射损伤后小鼠小肠上皮消化吸收和屏障功能恢复的影响[J]. 中国药理学通报2002, 18(5): 594-595.
[57]
朱俊东,粟永萍,程天民. 胰高血糖素样肽-2对放射损伤小鼠小肠功能恢复的影响[J]. 中华放射医学与防护杂志2002, 22(1): 30-32.
[58]
Zhou WJ, Geng ZH, Spence JR, et al. Induction of intestinal stem cells by R-spondin 1 and Slit2 augments chemoradioprotection[J]. Nature, 2013, 501(7465): 107-111.
[59]
Lindemans CA, Calafiore M, Mertelsmann AM, et al. Interleukin-22 promotes intestinal-stem-cell-mediated epithelial regeneration[J]. Nature, 2015, 528 (7583): 560-564.
[60]
Zwarycz B, Gracz AD, Rivera KR, et al. IL22 inhibits epithelial stem cell expansion in an ileal organoid model[J]. Cell Mol Gastroenterol Hepatol, 2019, 7(1): 1-17.
[61]
Gregorieff A, Liu Y, Inanlou MR, et al. Yap-dependent reprogramming of Lgr5 (+) stem cells drives intestinal regeneration and cancer[J]. Nature, 2015, 526(7575): 715-718.
[62]
Leibowitz BJ, Zhao G, Wei L, et al. Interferon b drives intestinal regeneration after radiation[J]. Sci Adv, 2021, 7(41): 5253.
[63]
Zhang C, Zhou Y, Zheng J, et al. Inhibition of GABAA receptors in intestinal stem cells prevents chemoradiotherapy-induced intestinal toxicity[J]. J Exp Med, 2022, 219(12): e20220541.
[64]
Chen F, Zhang Y, Hu S, et al. TIGAR/AP-1 axis accelerates the division of Lgr5 (-) reserve intestinal stem cells to reestablish intestinal architecture after lethal radiation[J]. Cell Death Dis, 2020, 11(7): 501.
[65]
Vandereyken K, Sifrim A, Thienpont B, et al. Methods and applications for single-cell and spatial multi-omics[J]. Nat Rev Genet, 2023: 1-22.
[66]
Jiang Z, Li Z, Wang F, et al. The protective effects of sour orange (Citrus aurantium L.) polymethoxyflavones on mice irradiation-induced intestinal injury[J]. Molecules, 2022, 27(6): 1934.
[67]
Moussa L, Usunier B, Demarquay C, et al. Bowel radiation injury: complexity of the pathophysiology and promises of cell and tissue engineering[J]. Cell Transplant, 2016, 25(10): 1723-1746.
[68]
Riehl TE, Alvarado D, Ee X, et al. Lactobacillus rhamnosus GG protects the intestinal epithelium from radiation injury through release of lipoteichoic acid, macrophage activation and the migration of mesenchymal stem cells[J]. Gut, 2019, 68(6): 1003-1013.
[69]
Wang C, Xie J, Dong X, et al. Clinically approved carbon nanoparticles with oral administration for intestinal radioprotection via protecting the small intestinal crypt stem cells and maintaining the balance of intestinal flora[J]. Small, 2020, 16(16): e1906915.
[1] 史学兵, 谢迎东, 谢霓, 徐超丽, 杨斌, 孙帼. 声辐射力弹性成像对不可切除肝细胞癌门静脉癌栓患者放射治疗效果的评价[J/OL]. 中华医学超声杂志(电子版), 2024, 21(08): 778-784.
[2] 胡文钰, 徐东东, 李南林. 早期乳腺癌全身辅助治疗的研究现状[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(05): 297-303.
[3] 潘荔生, 刘忠强, 周莹莹, 陈勃, 李晏宁, 徐金锋, 蔡隆梅, 王宏梅. 乳腺癌内乳淋巴结的诊断和治疗[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(05): 308-314.
[4] 张静, 刘畅, 华成舸. 妊娠期患者口腔诊疗进展[J/OL]. 中华口腔医学研究杂志(电子版), 2024, 18(05): 340-344.
[5] 谢汶歆, 马乐, 刘晔, 曹晓明, 张万春. 前列腺特异性膜抗原PET/CT在肾癌诊疗中的应用价值[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(05): 514-519.
[6] 井发红, 李丽娜, 高婷, 高艳梅, 杨楠, 李卓, 慕玉东. 肺癌立体定向放疗血清SAP 和MMPs 表达及临床意义[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 707-713.
[7] 张桂萍, 丘勇林, 湛绮婷, 孙乐栋. 晚期非小细胞肺癌血清Ape1/Ref-1对放射性肺损伤发生的预测意义[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(04): 519-523.
[8] 蔡定钦, 孙建国, 陈旭. 外泌体非编码RNAs与肺癌放射治疗的研究进展[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(04): 655-658.
[9] 张瑜, 姜梦妮. 基于DWI信号值构建局部进展期胰腺癌放化疗生存获益预测模型[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(05): 657-664.
[10] 李永政, 孟煜凡, 樊知遥, 展翰翔. 胰腺神经内分泌肿瘤新辅助治疗研究进展[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(04): 481-486.
[11] 李元新, 徐田磊, 刘伯涛. 第四代达芬奇机器人辅助慢性放射性肠炎确定性手术一例(附视频)[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(05): 435-440.
[12] 段伟, 刘飞, 许光源, 程宇豪, 陈星. 食管癌调强放疗计划剂量学参数差异对放射性肺炎发生及严重程度的影响[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(04): 320-324.
[13] 孙铭远, 褚恒, 徐海滨, 张哲. 人工智能应用于多发性肺结节诊断的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 785-790.
[14] 楚海强, 杨远游, 任刚. 胰腺癌放射治疗联合其他治疗方法的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(04): 392-396.
[15] 崔伟, 叶苏意, 邓屹, 陈晓明, 张靖, 李静, 许荣德. 载药微球支气管动脉化疗栓塞术治疗难治性非小细胞肺癌的临床疗效及安全性[J/OL]. 中华介入放射学电子杂志, 2024, 12(04): 311-316.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?