切换至 "中华医学电子期刊资源库"

中华损伤与修复杂志(电子版) ›› 2024, Vol. 19 ›› Issue (05) : 447 -452. doi: 10.3877/cma.j.issn.1673-9450.2024.05.013

综述

负载干细胞的光交联蛋白基水凝胶在组织工程中应用的研究进展
关丁丁1, 李伟1, 孔维诗1, 包郁露1, 孙瑜1,()   
  1. 1. 200433 上海,海军军医大学第一附属医院烧伤外科 全军烧伤研究所
  • 收稿日期:2024-02-29 出版日期:2024-10-01
  • 通信作者: 孙瑜
  • 基金资助:
    上海市卫生健康委员会科研项目(20244Z0009)

Research progress of photocrosslinked protein-based hydrogels loaded with stem cells in tissue engineering

Dingding Guan1, Wei Li1, Weishi Kong1, Yulu Bao1, Yu Sun1,()   

  1. 1. Department of Burn Surgery, the First Affiliated Hospital of Naval Medical University, Burn Institute of PLA, Shanghai 200433, China
  • Received:2024-02-29 Published:2024-10-01
  • Corresponding author: Yu Sun
引用本文:

关丁丁, 李伟, 孔维诗, 包郁露, 孙瑜. 负载干细胞的光交联蛋白基水凝胶在组织工程中应用的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(05): 447-452.

Dingding Guan, Wei Li, Weishi Kong, Yulu Bao, Yu Sun. Research progress of photocrosslinked protein-based hydrogels loaded with stem cells in tissue engineering[J/OL]. Chinese Journal of Injury Repair and Wound Healing(Electronic Edition), 2024, 19(05): 447-452.

组织工程是一个多学科交叉领域,旨在除传统的创后或术后组织再生手段(自体移植、异体移植)外,利用现代技术设计和开发特定的生物材料,为组织损伤修复提供新的治疗思路。在众多组织工程相关生物材料中,水凝胶由于其独特的生物相容性、力学可调性、可降解性及高度亲水性等性质,被广泛应用于生物医学工程领域。除生物材料外,细胞也是组织工程的重要元素之一。干细胞具有多向分化潜能和低免疫原性,在组织工程中被广泛研究和应用。以明胶、胶原蛋白等材料制备的光交联蛋白基水凝胶具有良好的生物相容性和力学性能,可为干细胞提供类似细胞外基质的微环境,有利于促进其粘附、增殖及分化。负载干细胞的光交联蛋白基水凝胶充分发挥两者优势,协同促进组织损伤修复与再生。本文对光交联蛋白基水凝胶的制备及其负载干细胞在组织工程中的研究进行阐述与总结。

Tissue engineering is a multidisciplinary field, aiming at the design and development of specific biomaterials using modern technology to provide new therapeutic ideas for tissue damage repair, in addition to traditional post-traumatic or postoperative tissue regeneration methods (autologous transplantation, allotransplantation). Among all kinds of biomaterials used in tissue engineering, hydrogels are widely used in biomedical engineering because of unique properties such as biocompatibility, mechanical adjustability, degradability and high hydrophilicity. In addition to biological materials, cells are also one of the important elements of tissue engineering. Stem cells have multi-differentiation potential and low immunogenicity, and have been widely studied and applied in tissue engineering. Photocrosslinked protein-based hydrogels prepared with gelatin, collagen and other materials have good biocompatibility and mechanical properties, and can provide a microenvironment similar to extracellular matrix for stem cells, which is conducive to promoting the adhesion, proliferation and differentiation of stem cells. The photocrosslinked protein-based hydrogels loaded with stem cells give full play to the advantages of both, and synergistically promote tissue damage repair and regeneration. In this paper, the preparation of photocrosslinked protein-based hydrogels and the research of loaded stem cells in tissue engineering are discussed and summarized.

[1]
Serafim ATucureanu CPetre DG,et al. One-pot synthesis of superabsorbent hybrid hydrogels based on methacrylamide gelatin and polyacrylamide. Effortless control of hydrogel properties through composition design[J]. New J Chem201438(7): 3112- 3126.
[2]
侯萍,李铭,马军,等.天然高分子材料水凝胶的制备及其应用进展[J].高分子通报2022(8):29-36.
[3]
Nascimento LGLCasanova FSilva NFN,et al. Casein-based hydrogels: a mini-review[J]. Food Chem2020314:126063.
[4]
Luo JYang JZheng X,et al. A highly stretchable,real-time self-healable hydrogel adhesive matrix for tissue patches and flexible electronics[J]. Adv Healthc Mater20209(4):e1901423.
[5]
Kamińska IOrtyl JPopielarz R. Mechanism of interaction of coumarin-based fluorescent molecular probes with polymerizing medium during free radical polymerization of a monomer[J]. Polymer Testing201655: 310-317.
[6]
Nicol E.Photopolymerized Porous Hydrogels[J]. Biomacromo-lecules202122(4):1325-1345.
[7]
Lei LBai YQin X,et al. Current understanding of hydrogel for drug release and tissue engineering[J]. Gels20228(5):301.
[8]
Tian ZYu TLiu J,et al. Introduction to stem cells[J]. Prog Mol Biol Transl Sci2023199:3-32.
[9]
West JL. Protein-patterned hydrogels: customized cell microe-nvironments[J]. Nat Mater201110(10):727-729.
[10]
Zhang YCao YZhao H,et al. An injectable BMSC-laden enzyme-catalyzed crosslinking collagen-hyaluronic acid hydrogel for cartilage repair and regeneration[J]. J Mater Chem B20208(19):4237-4244.
[11]
Pan MNguyen KCTYang W,et al. Soft armour-like layer-protected hydrogels for wet tissue adhesion and biological imaging[J]. Chemical Engineering Journal2022434: 134418.
[12]
Yue KTrujillo-de Santiago GAlvarez MM,et al. Synthesis,properties,and biomedical applications of gelatin methacryloyl (GelMA) hydrogels[J]. Biomaterials201573:254-271.
[13]
Li T, Sun MWu S. State-of-the-art review of electrospun gelatinbased nanofiber dressings for wound healing applications[J]. Nanomaterials (Basel)202212(5):784.
[14]
Chen YZhai MJMehwish N,et al. Comparison of globular albumin methacryloyl and random-coil gelatin methacryloyl: preparation,hydrogel properties,cell behaviors,and mineralization[J]. Int J Biol Macromol2022204:692-708.
[15]
Zhang H, Liu YChen C,et al. Responsive drug-delivery microcarriers based on the silk fibroin inverse opal scaffolds for controllable drug release[J]. Applied Materials Today202019:100540.
[16]
Bandyopadhyay A, Mandal BBBhardwaj N. 3D bioprinting of photo-crosslinkable silk methacrylate (SilMA)-polyethylene glycol diacrylate (PEGDA) bioink for cartilage tissue engineering[J]. J Biomed Mater Res A2022110(4):884-898.
[17]
Hong H, Seo YBKim DY,et al. Digital light processing 3D printed silk fibroin hydrogel for cartilage tissue engineering[J]. Biomaterials2020232:119679.
[18]
Dickerson MB, Sierra AABedford NM,et al. Keratin-based antimicrobial textiles,films,and nanofibers[J]. J Mater Chem B20131(40):5505-5514.
[19]
Rouse JGVan Dyke ME. A review of keratin-based biomaterials for biomedical applications[J]. Materials20103(2):999-1014.
[20]
Yeo GCWeiss AS. Soluble matrix protein is a potent modulator of mesenchymal stem cell performance[J]. Proc Natl Acad Sci U S A2019116(6):2042-2051.
[21]
Meng W, Gao LVenkatesan JK,et al. Translational applications of photopolymerizable hydrogels for cartilage repair[J]. J Exp Orthop20196(1):47.
[22]
Shih H, Lin CC. Visible-light-mediated thiol-ene hydrogelation using eosin-Y as the only photoinitiator[J]. Macromol Rapid Commun201334(3):269-273.
[23]
Rouillard AD, Berglund CMLee JY,et al. Methods for photocrosslinking alginate hydrogel scaffolds with high cell viability[J]. Tissue Eng Part C Methods201117(2):173-179.
[24]
Fairbanks BDSchwartz MPHalevi AE,et al. A versatile synthetic extracellular matrix mimic via thiol-norbornene photopolymerization[J]. Adv Mater200921(48):5005-5010.
[25]
Crosby COHillsley AKumar S,et al. Phototunable interpene-trating polymer network hydrogels to stimulate the vasculogenesis of stem cell-derived endothelial progenitors[J]. Acta Biomater2021122:133-144.
[26]
Chen Z, Lv ZZhuang Y,et al. Mechanical signal-tailored hydrogel microspheres recruit and train stem cells for precise differentiation[J]. Adv Mater202335(40):e2300180.
[27]
Lin Z, Shen DZhou W,et al. Regulation of extracellular bioactive cations in bone tissue microenvironment induces favorable osteoimmune conditions to accelerate in situ bone regeneration[J]. Bioact Mater20216(8):2315-2330.
[28]
Yang C, Ma HWang Z,et al. 3D printed wesselsite nanosheets functionalized scaffold facilitates NIR-II photothermal therapy and vascularized bone regeneration[J]. Adv Sci (Weinh)20218(20):e2100894.
[29]
Yang L, Wang XYu Y,et al. Bio-inspired dual-adhesive particles from microfluidic electrospray for bone regeneration[J]. Nano Res202316(4):5292-5299.
[30]
Tang G, Zhu LWang W,et al. Alendronate-functionalized double network hydrogel scaffolds for effective osteogenesis[J]. Front Chem202210:977419.
[31]
Zhang Y, Chen MTian J,et al. In situ bone regeneration enabled by a biodegradable hybrid double-network hydrogel[J]. Biomater Sci20197(8):3266-3276.
[32]
Kurian AG, Mandakhbayar NSingh RK,et al. Multifunctional dendrimer@nanoceria engineered GelMA hydrogel accelerates bone regeneration through orchestrated cellular responses[J]. Mater Today Bio202320:100664.
[33]
Krishnan YGrodzinsky AJ. Cartilage diseases[J]. Matrix Biol201817:51-69.
[34]
Ding SLLiu XZhao XY,et al. Microcarriers in application for cartilage tissue engineering: recent progress and challenges[J]. Bioact Mater202217:81-108.
[35]
Patel JM, Saleh KSBurdick JA,et al. Bioactive factors for cartilage repair and regeneration: improving delivery,retention,and activity[J]. Acta Biomater201993:222-238.
[36]
Yang KSun JGuo Z,et al. Methacrylamide-modified collagen hydrogel with improved anti-actin-mediated matrix contraction behavior[J]. J Mater Chem B20186(45):7543-7555.
[37]
Guan PJi YKang X,et al. Biodegradable dual-cross-linked hydrogels with stem cell differentiation regulatory properties promote growth plate injury repair via controllable three-dimensional mechanics and a cartilage-like extracellular matrix[J]. ACS Appl Mater Interfaces2023.
[38]
Rui KTang XShen Z,et al. Exosome inspired photo-triggered gelation hydrogel composite on modulating immune pathogenesis for treating rheumatoid arthritis[J]. J Nanobiotechnology202321(1):111.
[39]
Lei LWang XZhu Y,et al. Antimicrobial hydrogel microspheres for protein capture and wound healing[J]. Materials & Design2022215: 110478.
[40]
Yang XZhang CDeng D,et al. Multiple stimuli-responsive mxene-based hydrogel as intelligent drug delivery carriers for deep chronic wound healing[J]. Small202218(5):e2104368.
[41]
Ju YHu YYang P,et al. Extracellular vesicle-loaded hydrogels for tissue repair and regeneration[J]. Mater Today Bio202218:100522.
[42]
Martinez Villegas KRasouli RTabrizian M. Enhancing metabolic activity and differentiation potential in adipose mesenchymal stem cells via high-resolution surface-acoustic-wave contactless patterning[J]. Microsyst Nanoeng20228:79.
[43]
Matheus HR, Hadad HMonteiro JLGC,et al. Photo-crosslinked GelMA loaded with dental pulp stem cells and VEGF to repair critical-sized soft tissue defects in rats[J]. J Stomatol Oral Maxillofac Surg2023124(1S):101373.
[44]
Li Y, Zhang JWang C,et al. Porous composite hydrogels with improved MSC survival for robust epithelial sealing around implants and M2 macrophage polarization[J]. Acta Biomater2023157:108-123.
[45]
Edwards SD, Hou SBrown JM,et al. Fast-curing injectable microporous hydrogel for in situ cell encapsulation[J]. ACS Appl Bio Mater20225(6):2786-2794.
[46]
Eke GMangir NHasirci N,et al. Development of a UV crosslinked biodegradable hydrogel containing adipose derived stem cells to promote vascularization for skin wounds and tissue engineering[J]. Biomaterials2017129:188-198.
[47]
Chen YYe MWang X,et al. Functionalized gelatin/strontium hydrogel bearing endothelial progenitor cells for accelerating angiogenesis in wound tissue regeneration[J]. Biomater Adv2022136:212803.
[48]
Lee YLee JMBae PK,et al. Photo-crosslinkable hydrogel-based 3D microfluidic culture device[J]. Electrophoresis201536(7-8):994-1001.
[49]
Zhou P, Xu PGuan J,et al. Promoting 3D neuronal differentiation in hydrogel for spinal cord regeneration[J]. Colloids Surf B Biointerfaces2020194:111214.
[50]
Ma D, Zhao YHuang L,et al. A novel hydrogel-based treatment for complete transection spinal cord injury repair is driven by microglia/macrophages repopulation[J]. Biomaterials2020237:119830.
[51]
Bui TQBinh NTPham TL,et al. The efficacy of transplanting human umbilical cord mesenchymal stem cell sheets in the treatment of myocardial infarction in mice[J]. Biomedicines202311(8):2187.
[52]
Wang SGao DChen Y. The potential of organoids in urological cancer research[J]. Nat Rev Urol201714(7):401-414.
[53]
Polykandriotis EArkudas AHorch RE,et al. To matrigel or not to matrigel[J]. Am J Pathol2008172(5):1441-1442.
[54]
Li YEJodat YASamanipour R,et al. Toward a neurospheroid niche model: optimizing embedded 3D bioprinting for fabrication of neurospheroid brain-like co-culture constructs[J]. Biofabrication, 202013(1):10.1088/1758-5090/abc1be.
[55]
Li RAKeung WCashman TJ,et al. Bioengineering an electro-mechanically functional miniature ventricular heart chamber from human pluripotent stem cells[J]. Biomaterials2018163:116-127.
[56]
Smith EEZhang WSchiele NR,et al. Developing a biomimetic tooth bud model[J]. J Tissue Eng Regen Med201711(12):3326-3336.
[57]
Gholobova DGerard MTerrie L,et al. Coculture method to obtain endothelial networks within human tissue-engineered skeletal muscle[J]. Methods Mol Biol20191889:169-183.
[58]
Xing DLiu WLi JJ,et al. Engineering 3D functional tissue constructs using self-assembling cell-laden microniches[J]. Acta Biomater2020114:170-182.
[59]
He BWang JXie M,et al. 3D printed biomimetic epithelium/stroma bilayer hydrogel implant for corneal regeneration[J]. Bioact Mater202217:234-247.
[60]
Chen PNing LQiu P,et al. Photo-crosslinked gelatin-hyaluronic acid methacrylate hydrogel-committed nucleus pulposus-like differentiation of adipose stromal cells for intervertebral disc repair[J]. J Tissue Eng Regen Med201913(4):682-693.
[1] 宋勤琴, 李双汝, 李林, 杜鹃, 刘继松. 间充质干细胞源性外泌体在改善病理性瘢痕中作用的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 550-553.
[2] 刘昌玲, 张金丽, 张志, 李孝建, 汤文彬, 胡逸萍, 陈宾, 谢晓娜. 负载人脂肪干细胞外泌体的甲基丙烯酰化明胶水凝胶对人皮肤成纤维细胞增殖和迁移的影响[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 517-525.
[3] 雷子威, 凌萍, 沈纵, 魏晨如, 朱邦晖, 伍国胜, 孙瑜. 类器官肺损伤疾病模型构建及应用的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 531-535.
[4] 曹胜军, 李全, 符雪, 邵天喜, 周延华. 人脂肪间充质干细胞多层膜片对促进裸鼠皮肤缺损愈合的效果观察[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(04): 341-347.
[5] 刘云, 时月, 郭冬梅, 邱志远, 王丽娟, 冉学红, 李乾鹏. 造血干细胞移植治疗伴有胚系突变的髓系肿瘤患者三例并文献复习[J/OL]. 中华移植杂志(电子版), 2024, 18(04): 230-234.
[6] 傅红兴, 王植楷, 谢贵林, 蔡娟娟, 杨威, 严盛. 间充质干细胞促进胰岛移植效果的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 351-360.
[7] 王大伟, 陆雅斐, 皇甫少华, 陈玉婷, 陈澳, 江滨. 间充质干细胞通过调控免疫机制促进创面愈合的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 361-366.
[8] 刘文竹, 唐窈, 刘付臣. 诱导多潜能干细胞在神经肌肉疾病研究中的应用进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 367-373.
[9] 袁园园, 岳乐淇, 张华兴, 武艳, 李全海. 间充质干细胞在呼吸系统疾病模型中肺组织分布及治疗机制的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 374-381.
[10] 蔡艺丹, 方坚, 张志强, 陈莉, 张世安, 夏磊, 阮梅, 李东良. 经颈静脉肝内门体分流术对肝硬化门脉高压患者肠道菌群及肝功能的影响[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(05): 285-293.
[11] 王俊楠, 刘晔, 李若涵, 叶青松. 间充质干细胞调控肠脑轴治疗神经系统疾病的潜力[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(05): 313-319.
[12] 陈丽璇, 窦培宁, 肖扬. 干细胞治疗早发性卵巢功能不全的现状及未来展望[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(04): 239-248.
[13] 王向前, 李清峰, 陈磊, 丘文丹, 姚志成, 李熠, 吴荣焕. 姜黄素抑制肝细胞癌索拉非尼耐药作用及其调控机制[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(05): 729-735.
[14] 薛文, 刘卓, 贾卫华, 张小义, 刘进, 王爱国, 冯志刚, 杨鑫, 田祺, 段虎斌. 大鼠脊髓损伤后降钙素基因相关肽及神经元钙超载的变化及相关性分析[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(04): 198-205.
[15] 汪鹏飞, 程莹莹, 赵海康. 骨髓间充质干细胞改善神经病理性疼痛的机制探讨[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(04): 230-234.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?