切换至 "中华医学电子期刊资源库"

中华损伤与修复杂志(电子版) ›› 2024, Vol. 19 ›› Issue (06) : 531 -535. doi: 10.3877/cma.j.issn.1673-9450.2024.06.014

综述

类器官肺损伤疾病模型构建及应用的研究进展
雷子威1, 凌萍1, 沈纵1, 魏晨如1, 朱邦晖1, 伍国胜1, 孙瑜1,()   
  1. 1.200433 上海,海军军医大学第一附属医院烧伤外科
  • 收稿日期:2024-03-02 出版日期:2024-12-01
  • 通信作者: 孙瑜
  • 基金资助:
    国家自然科学基金(82272257)

Research progress on the construction and application of disease models of lung injury with organoidbased approach

Ziwei Lei1, Ping Ling1, Zong Shen1, Chenru Wei1, Banghui Zhu1, Guosheng Wu1, Yu Sun1,()   

  1. 1.Department of Burn Surgery, the First Affiliated Hospital of Naval Medical University, Shanghai 200433,China
  • Received:2024-03-02 Published:2024-12-01
  • Corresponding author: Yu Sun
引用本文:

雷子威, 凌萍, 沈纵, 魏晨如, 朱邦晖, 伍国胜, 孙瑜. 类器官肺损伤疾病模型构建及应用的研究进展[J]. 中华损伤与修复杂志(电子版), 2024, 19(06): 531-535.

Ziwei Lei, Ping Ling, Zong Shen, Chenru Wei, Banghui Zhu, Guosheng Wu, Yu Sun. Research progress on the construction and application of disease models of lung injury with organoidbased approach[J]. Chinese Journal of Injury Repair and Wound Healing(Electronic Edition), 2024, 19(06): 531-535.

肺类器官是由成体干细胞或多能干细胞在3D 培养条件下形成的具有一定空间结构的组织类似物,能够在一定程度上模拟人体组织的结构和功能。 目前,肺类器官已开始应用于肺损伤疾病模型的构建,特别是在吸入性肺损伤和由感染性疾病导致的肺损伤中成为研究热点。 本文对近年来类器官肺损伤疾病模型构建和应用的研究进展进行综述,以期为更多肺损伤模型的构建提供启发。

Lung organoids are tissue analogues with a certain spatial structure formed by adult stem cells or pluripotent stem cells under 3D culture conditions, which can simulate the structure and function of human tissues to a certain extent.At present, lung organoids have been applied in the construction of lung injury disease models, especially in inhalation lung injury and lung injury caused by infectious diseases.This paper reviews the construction and application of organoids in lung injury disease models in recent years, in order to provide inspiration for the construction of more lung injury models.

[1]
Long ME, Mallampalli RK, Horowitz JC.Pathogenesis of pneumonia and acute lung injury[J].Clin Sci (Lond), 2022,136(10):747-769.
[2]
Meyer NJ, Gattinoni L, Calfee CS.Acute respiratory distress syndrome[J].The Lancet, 2021, 398(10300):622-637.
[3]
Bellani G, Laffey JG, Pham T, et al.Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries[J].JAMA,2016, 315(8):788-800.
[4]
Zamarro García C, Bernabé Barrios MJ, Santamaría Rodríguez B, et al.Tabaquismo en la enfermedad pulmonar obstructiva crónica[J].Archivos de Bronconeumología, 2011, 47:3-9.
[5]
Lin X, Li Y, Gong L,et al.Tempo-spatial regulation of the Wnt pathway by FAM13A modulates the stemness of alveolar epithelial progenitors[J].EBioMedicine, 2021, 69:103463.
[6]
Lkhagvadorj K, Zeng Z, Song J, et al.Prenatal smoke exposure dysregulates lung epithelial cell differentiation in mouse offspring:role for AREG-induced EGFR signaling[J].Am J Physiol Lung Cell Mol Physiol, 2020, 319(4):L742-L751.
[7]
Wu X, Bos IST, Conlon TM, et al.A transcriptomics-guided drug target discovery strategy identifies receptor ligands for lung regeneration[J].Sci Adv, 2022, 8(12):eabj9949.
[8]
Irie H, Ozaki M, Chubachi S, et al.Short-term intermittent cigarette smoke exposure enhances alveolar type 2 cell stemness via fatty acid oxidation[J].Respir Res, 2022, 23(1):41.
[9]
Hou W,Hu S,Yong K,et al.Cigarette smoke-induced malignant transformation via STAT3 signalling in pulmonary epithelial cells in a lung-on-a-chip model[J].Bio-Des Manuf, 2020, 3(4):383-395.
[10]
Wu X, Ciminieri C, Bos IST, et al.Diesel exhaust particles distort lung epithelial progenitors and their fibroblast niche[J].Environmental Pollution, 2022, 305:119292.
[11]
Winkler AS, Cherubini A, Rusconi F, et al.Human airway organoids and microplastic fibers: a new exposure model for emerging contaminants[J].Environ Int, 2022, 163:107200.
[12]
Liu S, Yang R, Chen Y, et al.Development of human lung induction models for air pollutants' toxicity assessment [J].Environ Sci Technol, 2021, 55(4):2440-2451.
[13]
Kim JH, Kim J, Kim WJ, et al.Diesel particulate matter 2.5 induces epithelial-to-mesenchymal transition and upregulation of SARS-CoV-2 receptor during human pluripotent stem cellderived alveolar organoid development[J].Int J Environ Res Public Health, 2020, 17(22):8410.
[14]
Han Y, Duan X, Yang L, et al.Identification of SARS-CoV-2 inhibitors using lung and colonic organoids[J].Nature, 2021,589(7841):270-275.
[15]
Salahudeen AA, Choi SS, Rustagi A, et al.Progenitor identification and SARS-CoV-2 infection in human distal lung organoids[J].Nature, 2020, 588(7839):670-675.
[16]
Chen YW, Huang SX, de Carvalho ALRT, et al.A threedimensional model of human lung development and disease from pluripotent stem cells[J].Nat Cell Biol, 2017, 19(5):542-549.
[17]
Liu X, Wu Y, Rong L.Conditionally reprogrammed human normal airway epithelial cells at ALI: a physiological model for emerging viruses[J].Virol Sin, 2020, 35(3):280-289.
[18]
Ronaghan NJ, Soo M, Pena U, et al.M1-like, but not M0-or M2-like, macrophages, reduce RSV infection of primary bronchial epithelial cells in a media-dependent fashion[J].PLoS One, 2022, 17(10):e0276013.
[19]
Heo I, Dutta D, Schaefer DA, et al.Modelling Cryptosporidium infection in human small intestinal and lung organoids[J].Nat Microbiol, 2018, 3(7):814-823.
[20]
Zhao F, Wang J, Wang Q, et al.Organoid technology and lung injury mouse models evaluating effects of hydroxychloroquine on lung epithelial regeneration[J].Exp Anim, 2022, 71(3):316-328.
[21]
Saad MI, Jenkins BJ.An in vitro model for assessing acute lung injury during pancreatitis development using primary mouse cell co-cultures[J].Methods Mol Biol, 2023, 2691:71-80.
[22]
潘自强.切尔诺贝利和福岛核事故对人体健康影响究竟有多大? [J].中国核电, 2018, 11(1):11-14.
[23]
Christofidou-Solomidou M, Pietrofesa RA, Arguiri E, et al.Radiation mitigating properties of intranasally administered kL4 surfactant in a murine model of radiation-induced lung damage[J].Radiat Res,2017,188(5):491-504.
[24]
Wang P, Yan Z, Zhou PK, et al.The promising therapeutic approaches for radiation-induced pulmonary fibrosis: targeting radiation-induced mesenchymal transition of alveolar type II epithelial cells[J].Int J Mol Sci,2022,23(23):15014.
[25]
韩蕊, 张雯, 王润, 等.电离辐射对不同发育阶段肺泡类器官的损伤及机制[J].安徽大学学报(自然科学版), 2024,48(1):97-108.
[26]
Chen L, Yu T, Zhai Y, et al.Luteolin enhances transepithelial sodium transport in the lung alveolar model: integrating network pharmacology and mechanism study[J].Int J Mol Sci,2023,24(12):10122.
[27]
Chen X, Zhang C, Wei T, et al.α7nAChR activation in AT2 cells promotes alveolar regeneration through WNT7B signaling in acute lung injury[J].JCI Insight, 2023, 8(15):e162547.
[28]
Yu T, Cui Y, Xin S, et al.Mesenchymal stem cell conditioned medium alleviates acute lung injury through KGF-mediated regulation of epithelial sodium channels[J].Biomedicine &Pharmacotherapy, 2023, 169:115896.
[29]
Seo HR, Han HJ, Lee Y, et al.Human pluripotent stem cellderived alveolar organoid with macrophages[J].Int J Mol Sci,2022, 23(16):9211.
[30]
Dasgupta Q, Jiang A, Wen AM, et al.A human lung alveoluson-a-chip model of acute radiation-induced lung injury[J].Nat Commun, 2023, 14(1):6506.
[31]
Kim HJ,Park S,Jeong S, et al.Lung organoid on a chip: a new ensemble model for preclinical studies[J].Int J Stem Cells,2024 ,17(1):30-37.
[32]
Qiu YB, Wan BB, Liu G, et al.Nrf2 protects against seawater drowning-induced acute lung injury via inhibiting ferroptosis[J].Respir Res, 2020, 21(1):232.
[33]
Hulse EJ, Clutton RE, Drummond G, et al.Lung injury caused by aspiration of organophosphorus insecticide and gastric contents in pigs[J].Clin Toxicol (Phila), 2022, 60(6):725-736.
[34]
Weidenfeld S, Chupin C, Langner DI, et al.Sodium-coupled neutral amino acid transporter SNAT2 counteracts cardiogenic pulmonary edema by driving alveolar fluid clearance[J].Am J Physiol Lung Cell Mol Physiol, 2021, 320(4):L486-L497.
[35]
Wang G, Hou G, Tian Q, et al.Inhibition of S100A9 alleviates neurogenic pulmonary edema after subarachnoid hemorrhage[J].Biochem Pharmacol, 2023, 218:115905.
[36]
Xie Z, Zhou H, Obana M, et al.Myeloid-derived suppressor cells exacerbate poly(I:C)-induced lung inflammation in mice with renal injury and older mice[J].Front Immunol, 2023, 14:1243851.
[1] 何甘霖, 陈香侬, 李萍, 甄佳怡, 李京霞, 邹外一, 许多荣. 白血病异基因造血干细胞移植术后股骨坏死的影响因素[J]. 中华关节外科杂志(电子版), 2024, 18(04): 450-456.
[2] 刘昌玲, 张金丽, 张志, 李孝建, 汤文彬, 胡逸萍, 陈宾, 谢晓娜. 负载人脂肪干细胞外泌体的甲基丙烯酰化明胶水凝胶对人皮肤成纤维细胞增殖和迁移的影响[J]. 中华损伤与修复杂志(电子版), 2024, 19(06): 517-525.
[3] 关丁丁, 李伟, 孔维诗, 包郁露, 孙瑜. 负载干细胞的光交联蛋白基水凝胶在组织工程中应用的研究进展[J]. 中华损伤与修复杂志(电子版), 2024, 19(05): 447-452.
[4] 曹胜军, 李全, 符雪, 邵天喜, 周延华. 人脂肪间充质干细胞多层膜片对促进裸鼠皮肤缺损愈合的效果观察[J]. 中华损伤与修复杂志(电子版), 2024, 19(04): 341-347.
[5] 杨城, 李祖儿, 刘青, 赵渊, 徐崇燕, 苏军, 张文云. 新型三维复合骨修复支架的制备工艺及其生物学性能[J]. 中华口腔医学研究杂志(电子版), 2024, 18(04): 219-229.
[6] 刘云, 时月, 郭冬梅, 邱志远, 王丽娟, 冉学红, 李乾鹏. 造血干细胞移植治疗伴有胚系突变的髓系肿瘤患者三例并文献复习[J]. 中华移植杂志(电子版), 2024, 18(04): 230-234.
[7] 张桂萍, 丘勇林, 湛绮婷, 孙乐栋. 晚期非小细胞肺癌血清Ape1/Ref-1对放射性肺损伤发生的预测意义[J]. 中华肺部疾病杂志(电子版), 2024, 17(04): 519-523.
[8] 张磊升. 围产期干细胞临床研究进展[J]. 中华细胞与干细胞杂志(电子版), 2024, 14(05): 320-320.
[9] 杜鑫, 刘霞霞, 张恬波, 张夏林, 杨林花, 张睿娟. AHNAK基因高表达与老年急性髓系白血病患者预后不良相关[J]. 中华细胞与干细胞杂志(电子版), 2024, 14(04): 204-211.
[10] 李彦浇, 梁雷, 金钫, 王智伟. 银杏内酯B通过调控miR-24-3p对人牙周膜干细胞增殖、成骨分化的影响[J]. 中华细胞与干细胞杂志(电子版), 2024, 14(04): 229-235.
[11] 王向丽, 吴涛, 毛东锋, 刘恒, 刘文慧, 周芮, 田红娟. 异基因造血干细胞移植治疗ANKRD26相关性血小板减少症1例并文献复习[J]. 中华细胞与干细胞杂志(电子版), 2024, 14(04): 236-238.
[12] 陈丽璇, 窦培宁, 肖扬. 干细胞治疗早发性卵巢功能不全的现状及未来展望[J]. 中华细胞与干细胞杂志(电子版), 2024, 14(04): 239-248.
[13] 王向前, 李清峰, 陈磊, 丘文丹, 姚志成, 李熠, 吴荣焕. 姜黄素抑制肝细胞癌索拉非尼耐药作用及其调控机制[J]. 中华肝脏外科手术学电子杂志, 2024, 13(05): 729-735.
[14] 林玲, 李京儒, 沈瑞华, 林惠, 乔晞. 基于生物信息学分析小鼠急性肾损伤和急性肺损伤的枢纽基因[J]. 中华肾病研究电子杂志, 2024, 13(03): 134-144.
[15] 汪鹏飞, 程莹莹, 赵海康. 骨髓间充质干细胞改善神经病理性疼痛的机制探讨[J]. 中华脑科疾病与康复杂志(电子版), 2024, 14(04): 230-234.
阅读次数
全文


摘要