切换至 "中华医学电子期刊资源库"

中华损伤与修复杂志(电子版) ›› 2024, Vol. 19 ›› Issue (06) : 531 -535. doi: 10.3877/cma.j.issn.1673-9450.2024.06.014

综述

类器官肺损伤疾病模型构建及应用的研究进展
雷子威1, 凌萍1, 沈纵1, 魏晨如1, 朱邦晖1, 伍国胜1, 孙瑜1,()   
  1. 1.200433 上海,海军军医大学第一附属医院烧伤外科
  • 收稿日期:2024-03-02 出版日期:2024-12-01
  • 通信作者: 孙瑜
  • 基金资助:
    国家自然科学基金(82272257)

Research progress on the construction and application of disease models of lung injury with organoidbased approach

Ziwei Lei1, Ping Ling1, Zong Shen1, Chenru Wei1, Banghui Zhu1, Guosheng Wu1, Yu Sun1,()   

  1. 1.Department of Burn Surgery, the First Affiliated Hospital of Naval Medical University, Shanghai 200433,China
  • Received:2024-03-02 Published:2024-12-01
  • Corresponding author: Yu Sun
引用本文:

雷子威, 凌萍, 沈纵, 魏晨如, 朱邦晖, 伍国胜, 孙瑜. 类器官肺损伤疾病模型构建及应用的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 531-535.

Ziwei Lei, Ping Ling, Zong Shen, Chenru Wei, Banghui Zhu, Guosheng Wu, Yu Sun. Research progress on the construction and application of disease models of lung injury with organoidbased approach[J/OL]. Chinese Journal of Injury Repair and Wound Healing(Electronic Edition), 2024, 19(06): 531-535.

肺类器官是由成体干细胞或多能干细胞在3D 培养条件下形成的具有一定空间结构的组织类似物,能够在一定程度上模拟人体组织的结构和功能。 目前,肺类器官已开始应用于肺损伤疾病模型的构建,特别是在吸入性肺损伤和由感染性疾病导致的肺损伤中成为研究热点。 本文对近年来类器官肺损伤疾病模型构建和应用的研究进展进行综述,以期为更多肺损伤模型的构建提供启发。

Lung organoids are tissue analogues with a certain spatial structure formed by adult stem cells or pluripotent stem cells under 3D culture conditions, which can simulate the structure and function of human tissues to a certain extent.At present, lung organoids have been applied in the construction of lung injury disease models, especially in inhalation lung injury and lung injury caused by infectious diseases.This paper reviews the construction and application of organoids in lung injury disease models in recent years, in order to provide inspiration for the construction of more lung injury models.

[1]
Long ME, Mallampalli RK, Horowitz JC.Pathogenesis of pneumonia and acute lung injury[J].Clin Sci (Lond), 2022,136(10):747-769.
[2]
Meyer NJ, Gattinoni L, Calfee CS.Acute respiratory distress syndrome[J].The Lancet, 2021, 398(10300):622-637.
[3]
Bellani G, Laffey JG, Pham T, et al.Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries[J].JAMA,2016, 315(8):788-800.
[4]
Zamarro García C, Bernabé Barrios MJ, Santamaría Rodríguez B, et al.Tabaquismo en la enfermedad pulmonar obstructiva crónica[J].Archivos de Bronconeumología, 2011, 47:3-9.
[5]
Lin X, Li Y, Gong L,et al.Tempo-spatial regulation of the Wnt pathway by FAM13A modulates the stemness of alveolar epithelial progenitors[J].EBioMedicine, 2021, 69:103463.
[6]
Lkhagvadorj K, Zeng Z, Song J, et al.Prenatal smoke exposure dysregulates lung epithelial cell differentiation in mouse offspring:role for AREG-induced EGFR signaling[J].Am J Physiol Lung Cell Mol Physiol, 2020, 319(4):L742-L751.
[7]
Wu X, Bos IST, Conlon TM, et al.A transcriptomics-guided drug target discovery strategy identifies receptor ligands for lung regeneration[J].Sci Adv, 2022, 8(12):eabj9949.
[8]
Irie H, Ozaki M, Chubachi S, et al.Short-term intermittent cigarette smoke exposure enhances alveolar type 2 cell stemness via fatty acid oxidation[J].Respir Res, 2022, 23(1):41.
[9]
Hou W,Hu S,Yong K,et al.Cigarette smoke-induced malignant transformation via STAT3 signalling in pulmonary epithelial cells in a lung-on-a-chip model[J].Bio-Des Manuf, 2020, 3(4):383-395.
[10]
Wu X, Ciminieri C, Bos IST, et al.Diesel exhaust particles distort lung epithelial progenitors and their fibroblast niche[J].Environmental Pollution, 2022, 305:119292.
[11]
Winkler AS, Cherubini A, Rusconi F, et al.Human airway organoids and microplastic fibers: a new exposure model for emerging contaminants[J].Environ Int, 2022, 163:107200.
[12]
Liu S, Yang R, Chen Y, et al.Development of human lung induction models for air pollutants' toxicity assessment [J].Environ Sci Technol, 2021, 55(4):2440-2451.
[13]
Kim JH, Kim J, Kim WJ, et al.Diesel particulate matter 2.5 induces epithelial-to-mesenchymal transition and upregulation of SARS-CoV-2 receptor during human pluripotent stem cellderived alveolar organoid development[J].Int J Environ Res Public Health, 2020, 17(22):8410.
[14]
Han Y, Duan X, Yang L, et al.Identification of SARS-CoV-2 inhibitors using lung and colonic organoids[J].Nature, 2021,589(7841):270-275.
[15]
Salahudeen AA, Choi SS, Rustagi A, et al.Progenitor identification and SARS-CoV-2 infection in human distal lung organoids[J].Nature, 2020, 588(7839):670-675.
[16]
Chen YW, Huang SX, de Carvalho ALRT, et al.A threedimensional model of human lung development and disease from pluripotent stem cells[J].Nat Cell Biol, 2017, 19(5):542-549.
[17]
Liu X, Wu Y, Rong L.Conditionally reprogrammed human normal airway epithelial cells at ALI: a physiological model for emerging viruses[J].Virol Sin, 2020, 35(3):280-289.
[18]
Ronaghan NJ, Soo M, Pena U, et al.M1-like, but not M0-or M2-like, macrophages, reduce RSV infection of primary bronchial epithelial cells in a media-dependent fashion[J].PLoS One, 2022, 17(10):e0276013.
[19]
Heo I, Dutta D, Schaefer DA, et al.Modelling Cryptosporidium infection in human small intestinal and lung organoids[J].Nat Microbiol, 2018, 3(7):814-823.
[20]
Zhao F, Wang J, Wang Q, et al.Organoid technology and lung injury mouse models evaluating effects of hydroxychloroquine on lung epithelial regeneration[J].Exp Anim, 2022, 71(3):316-328.
[21]
Saad MI, Jenkins BJ.An in vitro model for assessing acute lung injury during pancreatitis development using primary mouse cell co-cultures[J].Methods Mol Biol, 2023, 2691:71-80.
[22]
潘自强.切尔诺贝利和福岛核事故对人体健康影响究竟有多大? [J].中国核电, 2018, 11(1):11-14.
[23]
Christofidou-Solomidou M, Pietrofesa RA, Arguiri E, et al.Radiation mitigating properties of intranasally administered kL4 surfactant in a murine model of radiation-induced lung damage[J].Radiat Res,2017,188(5):491-504.
[24]
Wang P, Yan Z, Zhou PK, et al.The promising therapeutic approaches for radiation-induced pulmonary fibrosis: targeting radiation-induced mesenchymal transition of alveolar type II epithelial cells[J].Int J Mol Sci,2022,23(23):15014.
[25]
韩蕊, 张雯, 王润, 等.电离辐射对不同发育阶段肺泡类器官的损伤及机制[J].安徽大学学报(自然科学版), 2024,48(1):97-108.
[26]
Chen L, Yu T, Zhai Y, et al.Luteolin enhances transepithelial sodium transport in the lung alveolar model: integrating network pharmacology and mechanism study[J].Int J Mol Sci,2023,24(12):10122.
[27]
Chen X, Zhang C, Wei T, et al.α7nAChR activation in AT2 cells promotes alveolar regeneration through WNT7B signaling in acute lung injury[J].JCI Insight, 2023, 8(15):e162547.
[28]
Yu T, Cui Y, Xin S, et al.Mesenchymal stem cell conditioned medium alleviates acute lung injury through KGF-mediated regulation of epithelial sodium channels[J].Biomedicine &Pharmacotherapy, 2023, 169:115896.
[29]
Seo HR, Han HJ, Lee Y, et al.Human pluripotent stem cellderived alveolar organoid with macrophages[J].Int J Mol Sci,2022, 23(16):9211.
[30]
Dasgupta Q, Jiang A, Wen AM, et al.A human lung alveoluson-a-chip model of acute radiation-induced lung injury[J].Nat Commun, 2023, 14(1):6506.
[31]
Kim HJ,Park S,Jeong S, et al.Lung organoid on a chip: a new ensemble model for preclinical studies[J].Int J Stem Cells,2024 ,17(1):30-37.
[32]
Qiu YB, Wan BB, Liu G, et al.Nrf2 protects against seawater drowning-induced acute lung injury via inhibiting ferroptosis[J].Respir Res, 2020, 21(1):232.
[33]
Hulse EJ, Clutton RE, Drummond G, et al.Lung injury caused by aspiration of organophosphorus insecticide and gastric contents in pigs[J].Clin Toxicol (Phila), 2022, 60(6):725-736.
[34]
Weidenfeld S, Chupin C, Langner DI, et al.Sodium-coupled neutral amino acid transporter SNAT2 counteracts cardiogenic pulmonary edema by driving alveolar fluid clearance[J].Am J Physiol Lung Cell Mol Physiol, 2021, 320(4):L486-L497.
[35]
Wang G, Hou G, Tian Q, et al.Inhibition of S100A9 alleviates neurogenic pulmonary edema after subarachnoid hemorrhage[J].Biochem Pharmacol, 2023, 218:115905.
[36]
Xie Z, Zhou H, Obana M, et al.Myeloid-derived suppressor cells exacerbate poly(I:C)-induced lung inflammation in mice with renal injury and older mice[J].Front Immunol, 2023, 14:1243851.
[1] 刘昌玲, 张金丽, 张志, 李孝建, 汤文彬, 胡逸萍, 陈宾, 谢晓娜. 负载人脂肪干细胞外泌体的甲基丙烯酰化明胶水凝胶对人皮肤成纤维细胞增殖和迁移的影响[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 517-525.
[2] 宋勤琴, 李双汝, 李林, 杜鹃, 刘继松. 间充质干细胞源性外泌体在改善病理性瘢痕中作用的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 550-553.
[3] 关丁丁, 李伟, 孔维诗, 包郁露, 孙瑜. 负载干细胞的光交联蛋白基水凝胶在组织工程中应用的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(05): 447-452.
[4] 刘云, 时月, 郭冬梅, 邱志远, 王丽娟, 冉学红, 李乾鹏. 造血干细胞移植治疗伴有胚系突变的髓系肿瘤患者三例并文献复习[J/OL]. 中华移植杂志(电子版), 2024, 18(04): 230-234.
[5] 张敏龙, 杨翠平, 王博, 崔云杰, 金发光. MiR-200b-3p 通过抑制HIF-1α 表达减轻海水吸入诱导的肺水肿作用及机制[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 696-700.
[6] 井发红, 李丽娜, 高婷, 高艳梅, 杨楠, 李卓, 慕玉东. 肺癌立体定向放疗血清SAP 和MMPs 表达及临床意义[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 707-713.
[7] 傅红兴, 王植楷, 谢贵林, 蔡娟娟, 杨威, 严盛. 间充质干细胞促进胰岛移植效果的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 351-360.
[8] 王大伟, 陆雅斐, 皇甫少华, 陈玉婷, 陈澳, 江滨. 间充质干细胞通过调控免疫机制促进创面愈合的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 361-366.
[9] 刘文竹, 唐窈, 刘付臣. 诱导多潜能干细胞在神经肌肉疾病研究中的应用进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 367-373.
[10] 袁园园, 岳乐淇, 张华兴, 武艳, 李全海. 间充质干细胞在呼吸系统疾病模型中肺组织分布及治疗机制的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 374-381.
[11] 蔡艺丹, 方坚, 张志强, 陈莉, 张世安, 夏磊, 阮梅, 李东良. 经颈静脉肝内门体分流术对肝硬化门脉高压患者肠道菌群及肝功能的影响[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(05): 285-293.
[12] 王俊楠, 刘晔, 李若涵, 叶青松. 间充质干细胞调控肠脑轴治疗神经系统疾病的潜力[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(05): 313-319.
[13] 王向前, 李清峰, 陈磊, 丘文丹, 姚志成, 李熠, 吴荣焕. 姜黄素抑制肝细胞癌索拉非尼耐药作用及其调控机制[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(05): 729-735.
[14] 张津, 李欣达, 徐如祥. 神经类器官在大脑常见疾病治疗中的应用及在脊髓损伤修复中的应用前景[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(05): 257-263.
[15] 刘建, 王文珠, 王倩. 老年髋部骨折术后肺损伤现状调查分析及影响因素研究[J/OL]. 中华诊断学电子杂志, 2024, 12(04): 260-264.
阅读次数
全文


摘要