切换至 "中华医学电子期刊资源库"

中华损伤与修复杂志(电子版) ›› 2025, Vol. 20 ›› Issue (04) : 358 -362. doi: 10.3877/cma.j.issn.1673-9450.2025.04.014

所属专题: 文献

综述

干细胞原位激活再生促进皮肤软组织损伤修复的研究进展
施芳婷, 佟希睿, 谢苏杰, 纪世召()   
  1. 200433 上海,海军军医大学第一附属医院烧伤外科
  • 收稿日期:2024-08-22 出版日期:2025-08-01
  • 通信作者: 纪世召
  • 基金资助:
    国家自然科学基金(82472546)

In-situ activation and regeneration of stem cells for promoting repair of skin and soft tissue injuries:a review

Fangting Shi, Xirui Tong, Sujie Xie, Shizhao Ji()   

  1. Department of Burn Surgery,the First Affiliated Hospital of Naval Medical University,Shanghai 200433,China
  • Received:2024-08-22 Published:2025-08-01
  • Corresponding author: Shizhao Ji
引用本文:

施芳婷, 佟希睿, 谢苏杰, 纪世召. 干细胞原位激活再生促进皮肤软组织损伤修复的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2025, 20(04): 358-362.

Fangting Shi, Xirui Tong, Sujie Xie, Shizhao Ji. In-situ activation and regeneration of stem cells for promoting repair of skin and soft tissue injuries:a review[J/OL]. Chinese Journal of Injury Repair and Wound Healing(Electronic Edition), 2025, 20(04): 358-362.

皮源短缺是大面积烧创伤患者面临的关键问题,现有的多种皮肤软组织损伤修复方法仍无法完全规避供体损伤的治疗困境,难以从根本上改善此类患者的预后。内源性干细胞具有自我更新、多向分化以及对损伤响应的特性,在皮肤损伤修复及无瘢痕愈合过程中发挥着重要作用。因此,如何招募、激活及促进内源性干细胞再生分化是目前原位组织工程的研究重点。部分生物材料因其自身具备的生物物理特性,可以通过招募、激活干细胞的再生促进创面修复。该文系统总结了干细胞原位激活再生促进皮肤损伤修复的研究进展,以期为临床上大面积皮肤软组织损伤修复提供新思路。

Shortage of skin is the bottleneck for treating large area wounds. Current metheds for repaining skin and soft tissue injuries still can't entirely avoid donor site damage. These methods cannot fundamentally improve the prognosis of patients with extensive soft tissue injury. Because of self-renewal ability, multi-directional differentiation, and reaction to injury, endogenous stem cells play an important role in the process of wound healing and scarless healing. How to recruit, activate, and promote the regeneration and differentiation of endogenous stem cells has been a hot spot of in-situ tissue engineering. Because of biophysical characteristics, some biomaterials can recruit stem cells, and activate stem cell regeneration to promote wound repair. Based on the role of stem cells in the repair of soft tissue injury, this review systematically summarizes the research progress of stem cells in-situ regeneration, in order to provide new ideas for the repair of extensive skin and soft tissue injury in clinical practice.

[1]
Jiang ZChen LHuang L, et al.Bioactive materials that promote the homing of endogenous mesenchymal stem cells to improve wound healing[J]. Int J Nanomed202419: 7751-7773.
[2]
Safina IEmbree MC.Biomaterials for recruiting and activating endogenous stem cells in situ tissue regeneration[J]. Acta Biomater2022143: 26-38.
[3]
Lui MGardiner EEArthur JF, et al.Novel stenotic microchannels to study thrombus formation in shear gradients: influence of shear forces and human platelet-related factors[J]. Int J Mol Sci201920(12): 2967.
[4]
van der Vliet AJanssen-Heininger YM.Hydrogen peroxide as a damage signal in tissue injury and inflammation: murderer, mediator, or messenger?[J]. J Cell Biochem2014115(3): 427-435.
[5]
Gaharwar AKSingh IKhademhosseini A.Engineered biomaterials for in situ tissue regeneration[J]. Nat Rev Mater20205(9): 686-705.
[6]
Peña OAMartin P.Cellular and molecular mechanisms of skin wound healing[J]. Nat Rev Mol Cell Biol202425(8): 599-616.
[7]
Kolimi PNarala SNyavanandi D, et al.Innovative treatment strategies to accelerate wound healing: trajectory and recent advancements[J]. Cells202211(15): 2439.
[8]
Wang YCheng LZhao H, et al.The therapeutic role of ADSC-EVs in skin regeneration[J]. Front Med20229: 858824.
[9]
Mazini LRochette LAdmou B, et al.Hopes and limits of adipose-derived stem cells (ADSCs) and mesenchymal stem Cells (MSCs) in wound healing[J]. Int J Mol Sci202021(4): 1306.
[10]
Hassanshahi AHassanshahi MKhabbazi S, et al.Adipose-derived stem cells for wound healing[J]. J Cell Physiol2019234(6): 7903-7914.
[11]
Weiliang ZLili G.Research advances in the application of adipose-derived stem cells derived exosomes in cutaneous wound healing[J]. Ann Dermatol202133(4): 309-317.
[12]
Jo HBrito SKwak BM, et al.Applications of mesenchymal stem cells in skin regeneration and rejuvenation[J]. Int J Mol Sci202122(5): 2410.
[13]
Qiu XLiu JZheng C, et al.Exosomes released from educated mesenchymal stem cells accelerate cutaneous wound healing via promoting angiogenesis[J]. Cell Proliferation202053(8): e12830.
[14]
Tang XWang JChen J, et al.Epidermal stem cells: skin surveillance and clinical perspective[J]. J Transl Med202422(1): 779.
[15]
Villarreal-Ponce ATiruneh MWLee J, et al.Keratinocyte-macrophage crosstalk by the Nrf2/Ccl2/EGF signaling axis orchestrates tissue repair[J]. Cell Rep202033(8): 108417.
[16]
Liu YHo CWen D, et al.Targeting the stem cell niche: role of collagen XVII in skin aging and wound repair[J]. Theranostics202212(15): 6446-6454.
[17]
Rousselle PBraye FDayan G.Re-epithelialization of adult skin wounds: cellular mechanisms and therapeutic strategies[J]. Adv Drug Delivery Rev2019146: 344-365.
[18]
Roshan AMurai KFowler J, et al.Human keratinocytes have two interconvertible modes of proliferation[J]. Nat Cell Biol201618(2): 145-156.
[19]
Huang SHu ZWang P, et al.Rat epidermal stem cells promote the angiogenesis of full-thickness wounds[J]. Stem Cell Res Ther202011(1): 344.
[20]
Ito MLiu YYang Z, et al.Stem cells in the hair follicle bulge contribute to wound repair but not to homeostasis of the epidermis[J]. Nat Med200511(12): 1351-1354.
[21]
Adam RCYang HGe Y, et al.Temporal layering of signaling effectors drives chromatin remodeling during hair follicle stem cell lineage progression[J]. Cell Stem Cell201822(3): 398-413.e7.
[22]
Huang CDu YNabzdy CS, et al.Regeneration of hair and other skin appendages: a microenvironment-centric view[J]. Wound Repair Regen201624(5): 759-766.
[23]
Keshavarz ROlsen SAlmeida B.Using biomaterials to improve mesenchymal stem cell therapies for chronic, nonhealing wounds[J]. Bioeng Transl Med20239(1): e10598.
[24]
Li CZhao HCheng L, et al.Allogeneic vs. autologous mesenchymal stem/stromal cells in their medication practice[J]. Cell Biosci202111(1): 187.
[25]
Kaushik KDas A.TWIST1-reprogrammed endothelial cell transplantation potentiates neovascularization-mediated diabetic wound tissue regeneration[J]. Diabetes202069(6): 1232-1247.
[26]
Chen YLi YLu F, et al.Endogenous bone marrow-derived stem cell mobilization and homing for in situ tissue regeneration[J]. Stem Cells202341(6): 541-551.
[27]
Abdulghani SMitchell GR.Biomaterials for in situ tissue regeneration: a review[J]. Biomolecules20199(11): 750.
[28]
Zhang QLiu YLi J, et al.Recapitulation of growth factor-enriched microenvironment via BMP receptor activating hydrogel[J]. Bioact Mater202220: 638-650.
[29]
Luo TTan BZhu L, et al.A review on the design of hydrogels with different stiffness and their effects on tissue repair[J]. Front Bioeng Biotechnol202210: 817391.
[30]
Burdick JAAnseth KS.Photoencapsulation of osteoblasts in injectable RGD-modified PEG hydrogels for bone tissue engineering[J]. Biomaterials200223(22): 4315-4323.
[31]
Brokesh AMGaharwar AK.Inorganic biomaterials for regenerative medicine[J]. ACS Appl Mater Interfaces202012(5): 5319-5344.
[32]
Yang GChen QWen D, et al.A therapeutic microneedle patch made from hair-derived keratin for promoting hair regrowth[J]. ACS Nano201913(4): 4354-4360.
[33]
Li YFan LLiu S, et al.The promotion of bone regeneration through positive regulation of angiogenic-osteogenic coupling using microRNA-26a[J]. Biomaterials201334(21): 5048-5058.
[34]
Chung LMaestas DRHousseau F, et al.Key players in the immune response to biomaterial scaffolds for regenerative medicine[J]. Adv Drug Delivery Rev2017114: 184-192.
[35]
Gaharwar AKCross LMPeak CW, et al.2D nanoclay for biomedical applications: regenerative medicine, therapeutic delivery, and additive manufacturing[J]. Adv Mater201931(23): e1900332.
[36]
Park SHJu HJJi YB, et al.Endogenous stem cell-based in situ tissue regeneration using electrostatically interactive hydrogel with a newly discovered substance P analog and VEGF-mimicking peptide[J]. Small202117(40): e2103244.
[37]
Tong LPu XLiu Q, et al.Nanostructured 3D-printed hybrid scaffold accelerates bone regeneration by photointegrating nanohydroxyapatite[J]. Adv Sci202310(13): e2300038.
[38]
Liu JXie XWang T, et al.Promotion of wound healing using nanoporous silk fibroin sponges[J]. ACS Appl Mater Interfaces202315(10): 12696-12707.
[39]
Lee NMErisken CIskratsch T, et al.Polymer fiber-based models of connective tissue repair and healing[J]. Biomaterials2017112: 303-312.
[40]
Zhong YWei ETWu L, et al.Novel biomaterials for wound healing and tissue regeneration[J]. ACS Omega20249(30): 32268-32286.
[41]
Sung HJMeredith CJohnson C, et al.The effect of scaffold degradation rate on three-dimensional cell growth and angiogenesis[J]. Biomaterials200425(26): 5735-5742.
[42]
Chu LJiang GHu XL, et al.Osteogenesis, vascularization and osseointegration of a bioactive multiphase macroporous scaffold in the treatment of large bone defects[J]. J Mater Chem B20186(25): 4197-4204.
[43]
Mimeault MBatra SK.Recent progress on tissue-resident adult stem cell biology and their therapeutic implications[J]. Stem Cell Rev20084(1): 27-49.
[44]
Neves JZhu JSousa-Victor P, et al.Immune modulation by MANF promotes tissue repair and regenerative success in the retina[J]. Science2016353(6294): aaf3646.
[45]
Loebel CMauck RLBurdick JA.Local nascent protein deposition and remodelling guide mesenchymal stromal cell mechanosensing and fate in three-dimensional hydrogels[J]. Nat Mater201918(8): 883-891.
[46]
Zhang XZhang SWang T.How the mechanical microenvironment of stem cell growth affects their differentiation: a review[J]. Stem Cell Res Ther202213(1): 415.
[47]
Visalakshan RMMacGregor MNSasidharan S, et al.Biomaterial surface hydrophobicity-mediated serum protein adsorption and immune responses[J]. ACS Appl Mater Interfaces201911(31): 27615-27623.
[48]
Huang YWu CZhang X, et al.Regulation of immune response by bioactive ions released from silicate bioceramics for bone regeneration[J]. Acta Biomater201866: 81-92.
[49]
Liesveld JLSharma NAljitawi OS.Stem cell homing: from physiology to therapeutics[J]. Stem Cells202038(10): 1241-1253.
[50]
Yin YLi XHe XT, et al.Leveraging stem cell homing for therapeutic regeneration[J]. J Dent Res201796(6): 601-609.
[51]
Suila HHirvonen TKotovuori A, et al.Human umbilical cord blood-derived mesenchymal stromal cells display a novel interaction between P-selectin and galectin-1[J]. Scand J Immunol201480(1): 12-21.
[52]
Sedlář ATrávníčková MBojarová P, et al.Interaction between galectin-3 and integrins mediates cell-matrix adhesion in endothelial cells and mesenchymal stem cells[J]. Int J Mol Sci202122(10): 5144.
[53]
Cui LLNitzsche FPryazhnikov E, et al.Integrin α4 overexpression on rat mesenchymal stem cells enhances transmigration and reduces cerebral embolism after intracarotid injection[J]. Stroke201748(10): 2895-2900.
[54]
Meng ZFeng GHu X, et al.SDF Factor-1α promotes the migration, proliferation, and osteogenic differentiation of mouse bone marrow mesenchymal stem cells through the Wnt/β-catenin pathway[J]. Stem Cells Dev202130(2): 106-117.
[55]
Deng QJXu XFRen J.Effects of SDF-1/CXCR4 on the repair of traumatic brain injury in rats by mediating bone marrow derived mesenchymal stem cells[J]. Cell Mol Neurobiol201838(2): 467-477.
[56]
Zhang CYuan TJTan MH, et al.Smart graphene-based hydrogel promotes recruitment and neural-like differentiation of bone marrow derived mesenchymal stem cells in rat skin[J]. Biomater Sci20219(6): 2146-2161.
[57]
Kim YHKim SJu HJ, et al.In-situ wound healing by SDF-1-mimic peptide-loaded click crosslinked hyaluronic acid scaffold[J]. J Controlled Release2023364: 420-434.
[58]
Haque NFareez IMFong LF, et al.Role of the CXCR4-SDF1-HMGB1 pathway in the directional migration of cells and regeneration of affected organs[J]. World J Stem Cells202012(9): 938-951.
[59]
Steingen CBrenig FBaumgartner L, et al.Characterization of key mechanisms in transmigration and invasion of mesenchymal stem cells[J]. J Mol Cell Cardiol200844(6): 1072-1084.
[60]
Szydlak R.Biological, chemical and mechanical factors regulating migration and homing of mesenchymal stem cells[J]. World J Stem Cells202113(6): 619-631.
[61]
Hao DMa BHe C, et al.Surface modification of polymeric electrospun scaffolds via a potent and high-affinity integrin α4β1 ligand improved the adhesion, spreading and survival of human chorionic villus-derived mesenchymal stem cells: a new insight for fetal tissue engineering[J]. J Mater Chem B20208(8): 1649-1659.
[62]
Burk JSassmann AKasper C, et al.Extracellular matrix synthesis and remodeling by mesenchymal stromal cells is context-sensitive[J]. Int J Mol Sci202223(3): 1758.
[63]
Yen JHChio WTChuang CJ, et al.Improved wound healing by naringin associated with MMP and the VEGF pathway[J]. Molecules202227(5): 1695.
[64]
Almalki SGAgrawal DK.Effects of matrix metalloproteinases on the fate of mesenchymal stem cells[J]. Stem Cell Res Ther20167(1): 129.
[65]
Szydlak R.Mesenchymal stem cells' homing and cardiac tissue repair[J]. Acta Biochim Pol201966(4): 483-489.
[66]
Shafiq MJung YKim SH.Covalent immobilization of stem cell inducing/recruiting factor and heparin on cell-free small-diameter vascular graft for accelerated in situ tissue regeneration[J]. J Biomed Mater Res A2016104(6): 1352-1371.
[67]
Sussman EMHalpin MCMuster J, et al.Porous implants modulate healing and induce shifts in local macrophage polarization in the foreign body reaction[J]. Ann Biomed Eng201442(7): 1508-1516.
[68]
Galili UGoldufsky JWSchaer GL.α-Gal nanoparticles mediated homing of endogenous stem cells for repair and regeneration of external and internal injuries by localized complement activation and macrophage recruitment[J]. Int J Mol Sci202223(19): 11490.
[1] 房昊宇, 王筱, 张安伟, 尚丹丹, 俞炯, 曹红翠. 基于粪便代谢组学分析间充质干细胞治疗克罗恩病小鼠的有效性生物标志物[J/OL]. 中华危重症医学杂志(电子版), 2025, 18(02): 98-104.
[2] 张晓波, 巴特, 黄瑞娟, 王宏宇. 间充质干细胞外泌体改善急性肺损伤机制的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2025, 20(01): 81-85.
[3] 曾繁润, 林永勇, 王君. 间充质干细胞外泌体促进创面血管新生机制的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2025, 20(01): 86-89.
[4] 钟瀚翔, 郭闻渊, 殷浩, 赵渊宇, 丁国善. 扩充胰岛移植供体池的机遇与挑战[J/OL]. 中华移植杂志(电子版), 2025, 19(02): 120-127.
[5] 张鑫, 成建军, 李鹏杰, 郑强, 杜兰庭, 申棚宇, 郝旭丽, 刘红耀. Allium金属覆膜支架治疗输尿管狭窄的临床观察[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(02): 187-191.
[6] 宋剑楠, 张翔翔, 杜承威, 邱镇, 张世革. Allium金属覆膜支架治疗中长段输尿管狭窄的应用[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(02): 192-196.
[7] 李雪铭, 伊诺, 卢智豪, 冯婧, 董健藤, 李健. 人脐带间充质干细胞来源外泌体抑制肝星状细胞活化发挥抗肝纤维化作用的实验研究[J/OL]. 中华细胞与干细胞杂志(电子版), 2025, 15(03): 148-156.
[8] 童生莲, 张茜. 异基因造血干细胞移植后感染新冠病毒发生可逆性后部脑病变综合征1 例并文献复习[J/OL]. 中华细胞与干细胞杂志(电子版), 2025, 15(03): 190-192.
[9] 张剑豪, 蔡丹文, 蒋辰浩, 张宇君, 韩路, 赵雪刚, 吕行, 萧家麒, 张杰滨, 隋昕, 张英才. 过表达POSTN 的间充质干细胞来源外泌体增强肝脏再生能力[J/OL]. 中华细胞与干细胞杂志(电子版), 2025, 15(02): 65-74.
[10] 廖丽斐, 廖鹏程, 石飒飒, 马瑞朝, 屈新军. 负载牙周膜干细胞的HA-TCP 支架复合体对牙周组织再生的影响[J/OL]. 中华细胞与干细胞杂志(电子版), 2025, 15(02): 93-99.
[11] 刘洋, 吴涛, 毛东锋, 高铭敏, 吴秋月, 梁丽霞. 异基因造血干细胞移植治疗伴复杂染色体核型的粒细胞肉瘤1例并文献复习[J/OL]. 中华细胞与干细胞杂志(电子版), 2025, 15(02): 109-111.
[12] 梁瑶瑶, 邬绿莹, 陈津. 负载干细胞外泌体水凝胶治疗糖尿病足溃疡的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2025, 15(02): 112-119.
[13] 黄瑛, 侯田田, 金紫怡, 耿兴超. 干细胞治疗国内外监管现状概述及对我国监管体系完善的启示[J/OL]. 中华细胞与干细胞杂志(电子版), 2025, 15(02): 120-126.
[14] 于倩, 崔庆超, 范一卉, 姚瑶. 施旺细胞衍生的细胞外囊泡通过Wnt/β-catenin信号通路促进牙髓再生的机制研究[J/OL]. 中华细胞与干细胞杂志(电子版), 2025, 15(01): 1-11.
[15] 张可颖, 冀雨薇, 付章宁, 张益帆, 王晓晨, 杨滟, 陈香美, 蔡广研, 洪权. 人参皂苷Rb1 预处理间充质干细胞的转录组分析及急性肾损伤治疗关键基因挖掘[J/OL]. 中华肾病研究电子杂志, 2025, 14(01): 26-33.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?