[1] |
Jiang Z, Chen L, Huang L, et al.Bioactive materials that promote the homing of endogenous mesenchymal stem cells to improve wound healing[J]. Int J Nanomed, 2024, 19: 7751-7773.
|
[2] |
Safina I, Embree MC.Biomaterials for recruiting and activating endogenous stem cells in situ tissue regeneration[J]. Acta Biomater, 2022, 143: 26-38.
|
[3] |
Lui M, Gardiner EE, Arthur JF, et al.Novel stenotic microchannels to study thrombus formation in shear gradients: influence of shear forces and human platelet-related factors[J]. Int J Mol Sci, 2019, 20(12): 2967.
|
[4] |
van der Vliet A, Janssen-Heininger YM.Hydrogen peroxide as a damage signal in tissue injury and inflammation: murderer, mediator, or messenger?[J]. J Cell Biochem, 2014, 115(3): 427-435.
|
[5] |
Gaharwar AK, Singh I, Khademhosseini A.Engineered biomaterials for in situ tissue regeneration[J]. Nat Rev Mater, 2020, 5(9): 686-705.
|
[6] |
Peña OA, Martin P.Cellular and molecular mechanisms of skin wound healing[J]. Nat Rev Mol Cell Biol, 2024, 25(8): 599-616.
|
[7] |
Kolimi P, Narala S, Nyavanandi D, et al.Innovative treatment strategies to accelerate wound healing: trajectory and recent advancements[J]. Cells, 2022, 11(15): 2439.
|
[8] |
Wang Y, Cheng L, Zhao H, et al.The therapeutic role of ADSC-EVs in skin regeneration[J]. Front Med, 2022, 9: 858824.
|
[9] |
Mazini L, Rochette L, Admou B, et al.Hopes and limits of adipose-derived stem cells (ADSCs) and mesenchymal stem Cells (MSCs) in wound healing[J]. Int J Mol Sci, 2020, 21(4): 1306.
|
[10] |
Hassanshahi A, Hassanshahi M, Khabbazi S, et al.Adipose-derived stem cells for wound healing[J]. J Cell Physiol, 2019, 234(6): 7903-7914.
|
[11] |
Weiliang Z, Lili G.Research advances in the application of adipose-derived stem cells derived exosomes in cutaneous wound healing[J]. Ann Dermatol, 2021, 33(4): 309-317.
|
[12] |
Jo H, Brito S, Kwak BM, et al.Applications of mesenchymal stem cells in skin regeneration and rejuvenation[J]. Int J Mol Sci, 2021, 22(5): 2410.
|
[13] |
Qiu X, Liu J, Zheng C, et al.Exosomes released from educated mesenchymal stem cells accelerate cutaneous wound healing via promoting angiogenesis[J]. Cell Proliferation, 2020, 53(8): e12830.
|
[14] |
Tang X, Wang J, Chen J, et al.Epidermal stem cells: skin surveillance and clinical perspective[J]. J Transl Med, 2024, 22(1): 779.
|
[15] |
Villarreal-Ponce A, Tiruneh MW, Lee J, et al.Keratinocyte-macrophage crosstalk by the Nrf2/Ccl2/EGF signaling axis orchestrates tissue repair[J]. Cell Rep, 2020, 33(8): 108417.
|
[16] |
Liu Y, Ho C, Wen D, et al.Targeting the stem cell niche: role of collagen XVII in skin aging and wound repair[J]. Theranostics, 2022, 12(15): 6446-6454.
|
[17] |
Rousselle P, Braye F, Dayan G.Re-epithelialization of adult skin wounds: cellular mechanisms and therapeutic strategies[J]. Adv Drug Delivery Rev, 2019, 146: 344-365.
|
[18] |
Roshan A, Murai K, Fowler J, et al.Human keratinocytes have two interconvertible modes of proliferation[J]. Nat Cell Biol, 2016, 18(2): 145-156.
|
[19] |
Huang S, Hu Z, Wang P, et al.Rat epidermal stem cells promote the angiogenesis of full-thickness wounds[J]. Stem Cell Res Ther, 2020, 11(1): 344.
|
[20] |
Ito M, Liu Y, Yang Z, et al.Stem cells in the hair follicle bulge contribute to wound repair but not to homeostasis of the epidermis[J]. Nat Med, 2005, 11(12): 1351-1354.
|
[21] |
Adam RC, Yang H, Ge Y, et al.Temporal layering of signaling effectors drives chromatin remodeling during hair follicle stem cell lineage progression[J]. Cell Stem Cell, 2018, 22(3): 398-413.e7.
|
[22] |
Huang C, Du Y, Nabzdy CS, et al.Regeneration of hair and other skin appendages: a microenvironment-centric view[J]. Wound Repair Regen, 2016, 24(5): 759-766.
|
[23] |
Keshavarz R, Olsen S, Almeida B.Using biomaterials to improve mesenchymal stem cell therapies for chronic, nonhealing wounds[J]. Bioeng Transl Med, 2023, 9(1): e10598.
|
[24] |
Li C, Zhao H, Cheng L, et al.Allogeneic vs. autologous mesenchymal stem/stromal cells in their medication practice[J]. Cell Biosci, 2021, 11(1): 187.
|
[25] |
Kaushik K, Das A.TWIST1-reprogrammed endothelial cell transplantation potentiates neovascularization-mediated diabetic wound tissue regeneration[J]. Diabetes, 2020, 69(6): 1232-1247.
|
[26] |
Chen Y, Li Y, Lu F, et al.Endogenous bone marrow-derived stem cell mobilization and homing for in situ tissue regeneration[J]. Stem Cells, 2023, 41(6): 541-551.
|
[27] |
Abdulghani S, Mitchell GR.Biomaterials for in situ tissue regeneration: a review[J]. Biomolecules, 2019, 9(11): 750.
|
[28] |
Zhang Q, Liu Y, Li J, et al.Recapitulation of growth factor-enriched microenvironment via BMP receptor activating hydrogel[J]. Bioact Mater, 2022, 20: 638-650.
|
[29] |
Luo T, Tan B, Zhu L, et al.A review on the design of hydrogels with different stiffness and their effects on tissue repair[J]. Front Bioeng Biotechnol, 2022, 10: 817391.
|
[30] |
Burdick JA, Anseth KS.Photoencapsulation of osteoblasts in injectable RGD-modified PEG hydrogels for bone tissue engineering[J]. Biomaterials, 2002, 23(22): 4315-4323.
|
[31] |
Brokesh AM, Gaharwar AK.Inorganic biomaterials for regenerative medicine[J]. ACS Appl Mater Interfaces, 2020, 12(5): 5319-5344.
|
[32] |
Yang G, Chen Q, Wen D, et al.A therapeutic microneedle patch made from hair-derived keratin for promoting hair regrowth[J]. ACS Nano, 2019, 13(4): 4354-4360.
|
[33] |
Li Y, Fan L, Liu S, et al.The promotion of bone regeneration through positive regulation of angiogenic-osteogenic coupling using microRNA-26a[J]. Biomaterials, 2013, 34(21): 5048-5058.
|
[34] |
Chung L, Maestas DR, Housseau F, et al.Key players in the immune response to biomaterial scaffolds for regenerative medicine[J]. Adv Drug Delivery Rev, 2017, 114: 184-192.
|
[35] |
Gaharwar AK, Cross LM, Peak CW, et al.2D nanoclay for biomedical applications: regenerative medicine, therapeutic delivery, and additive manufacturing[J]. Adv Mater, 2019, 31(23): e1900332.
|
[36] |
Park SH, Ju HJ, Ji YB, et al.Endogenous stem cell-based in situ tissue regeneration using electrostatically interactive hydrogel with a newly discovered substance P analog and VEGF-mimicking peptide[J]. Small, 2021, 17(40): e2103244.
|
[37] |
Tong L, Pu X, Liu Q, et al.Nanostructured 3D-printed hybrid scaffold accelerates bone regeneration by photointegrating nanohydroxyapatite[J]. Adv Sci, 2023, 10(13): e2300038.
|
[38] |
Liu J, Xie X, Wang T, et al.Promotion of wound healing using nanoporous silk fibroin sponges[J]. ACS Appl Mater Interfaces, 2023, 15(10): 12696-12707.
|
[39] |
Lee NM, Erisken C, Iskratsch T, et al.Polymer fiber-based models of connective tissue repair and healing[J]. Biomaterials, 2017, 112: 303-312.
|
[40] |
Zhong Y, Wei ET, Wu L, et al.Novel biomaterials for wound healing and tissue regeneration[J]. ACS Omega, 2024, 9(30): 32268-32286.
|
[41] |
Sung HJ, Meredith C, Johnson C, et al.The effect of scaffold degradation rate on three-dimensional cell growth and angiogenesis[J]. Biomaterials, 2004, 25(26): 5735-5742.
|
[42] |
Chu L, Jiang G, Hu XL, et al.Osteogenesis, vascularization and osseointegration of a bioactive multiphase macroporous scaffold in the treatment of large bone defects[J]. J Mater Chem B, 2018, 6(25): 4197-4204.
|
[43] |
Mimeault M, Batra SK.Recent progress on tissue-resident adult stem cell biology and their therapeutic implications[J]. Stem Cell Rev, 2008, 4(1): 27-49.
|
[44] |
Neves J, Zhu J, Sousa-Victor P, et al.Immune modulation by MANF promotes tissue repair and regenerative success in the retina[J]. Science, 2016, 353(6294): aaf3646.
|
[45] |
Loebel C, Mauck RL, Burdick JA.Local nascent protein deposition and remodelling guide mesenchymal stromal cell mechanosensing and fate in three-dimensional hydrogels[J]. Nat Mater, 2019, 18(8): 883-891.
|
[46] |
Zhang X, Zhang S, Wang T.How the mechanical microenvironment of stem cell growth affects their differentiation: a review[J]. Stem Cell Res Ther, 2022, 13(1): 415.
|
[47] |
Visalakshan RM, MacGregor MN, Sasidharan S, et al.Biomaterial surface hydrophobicity-mediated serum protein adsorption and immune responses[J]. ACS Appl Mater Interfaces, 2019, 11(31): 27615-27623.
|
[48] |
Huang Y, Wu C, Zhang X, et al.Regulation of immune response by bioactive ions released from silicate bioceramics for bone regeneration[J]. Acta Biomater, 2018, 66: 81-92.
|
[49] |
Liesveld JL, Sharma N, Aljitawi OS.Stem cell homing: from physiology to therapeutics[J]. Stem Cells, 2020, 38(10): 1241-1253.
|
[50] |
Yin Y, Li X, He XT, et al.Leveraging stem cell homing for therapeutic regeneration[J]. J Dent Res, 2017, 96(6): 601-609.
|
[51] |
Suila H, Hirvonen T, Kotovuori A, et al.Human umbilical cord blood-derived mesenchymal stromal cells display a novel interaction between P-selectin and galectin-1[J]. Scand J Immunol, 2014, 80(1): 12-21.
|
[52] |
Sedlář A, Trávníčková M, Bojarová P, et al.Interaction between galectin-3 and integrins mediates cell-matrix adhesion in endothelial cells and mesenchymal stem cells[J]. Int J Mol Sci, 2021, 22(10): 5144.
|
[53] |
Cui LL, Nitzsche F, Pryazhnikov E, et al.Integrin α4 overexpression on rat mesenchymal stem cells enhances transmigration and reduces cerebral embolism after intracarotid injection[J]. Stroke, 2017, 48(10): 2895-2900.
|
[54] |
Meng Z, Feng G, Hu X, et al.SDF Factor-1α promotes the migration, proliferation, and osteogenic differentiation of mouse bone marrow mesenchymal stem cells through the Wnt/β-catenin pathway[J]. Stem Cells Dev, 2021, 30(2): 106-117.
|
[55] |
Deng QJ, Xu XF, Ren J.Effects of SDF-1/CXCR4 on the repair of traumatic brain injury in rats by mediating bone marrow derived mesenchymal stem cells[J]. Cell Mol Neurobiol, 2018, 38(2): 467-477.
|
[56] |
Zhang C, Yuan TJ, Tan MH, et al.Smart graphene-based hydrogel promotes recruitment and neural-like differentiation of bone marrow derived mesenchymal stem cells in rat skin[J]. Biomater Sci, 2021, 9(6): 2146-2161.
|
[57] |
Kim YH, Kim S, Ju HJ, et al.In-situ wound healing by SDF-1-mimic peptide-loaded click crosslinked hyaluronic acid scaffold[J]. J Controlled Release, 2023, 364: 420-434.
|
[58] |
Haque N, Fareez IM, Fong LF, et al.Role of the CXCR4-SDF1-HMGB1 pathway in the directional migration of cells and regeneration of affected organs[J]. World J Stem Cells, 2020, 12(9): 938-951.
|
[59] |
Steingen C, Brenig F, Baumgartner L, et al.Characterization of key mechanisms in transmigration and invasion of mesenchymal stem cells[J]. J Mol Cell Cardiol, 2008, 44(6): 1072-1084.
|
[60] |
Szydlak R.Biological, chemical and mechanical factors regulating migration and homing of mesenchymal stem cells[J]. World J Stem Cells, 2021, 13(6): 619-631.
|
[61] |
Hao D, Ma B, He C, et al.Surface modification of polymeric electrospun scaffolds via a potent and high-affinity integrin α4β1 ligand improved the adhesion, spreading and survival of human chorionic villus-derived mesenchymal stem cells: a new insight for fetal tissue engineering[J]. J Mater Chem B, 2020, 8(8): 1649-1659.
|
[62] |
Burk J, Sassmann A, Kasper C, et al.Extracellular matrix synthesis and remodeling by mesenchymal stromal cells is context-sensitive[J]. Int J Mol Sci, 2022, 23(3): 1758.
|
[63] |
Yen JH, Chio WT, Chuang CJ, et al.Improved wound healing by naringin associated with MMP and the VEGF pathway[J]. Molecules, 2022, 27(5): 1695.
|
[64] |
Almalki SG, Agrawal DK.Effects of matrix metalloproteinases on the fate of mesenchymal stem cells[J]. Stem Cell Res Ther, 2016, 7(1): 129.
|
[65] |
Szydlak R.Mesenchymal stem cells' homing and cardiac tissue repair[J]. Acta Biochim Pol, 2019, 66(4): 483-489.
|
[66] |
Shafiq M, Jung Y, Kim SH.Covalent immobilization of stem cell inducing/recruiting factor and heparin on cell-free small-diameter vascular graft for accelerated in situ tissue regeneration[J]. J Biomed Mater Res A, 2016, 104(6): 1352-1371.
|
[67] |
Sussman EM, Halpin MC, Muster J, et al.Porous implants modulate healing and induce shifts in local macrophage polarization in the foreign body reaction[J]. Ann Biomed Eng, 2014, 42(7): 1508-1516.
|
[68] |
Galili U, Goldufsky JW, Schaer GL.α-Gal nanoparticles mediated homing of endogenous stem cells for repair and regeneration of external and internal injuries by localized complement activation and macrophage recruitment[J]. Int J Mol Sci, 2022, 23(19): 11490.
|