[1] |
蔡程浩,韩春茂,王新刚.创面外部微环境因素对创面愈合影响的研究进展[J]. 中华烧伤与创面修复杂志,2024,40(5):489-494.
|
[2] |
Trivisonno A, Alexander RW, Baldari S, et al.Intraoperative strategies for minimal manipulation of autologous adipose tissue for cell- and tissue-based therapies: concise review[J]. Stem Cells Transl Med, 2019, 8(12): 1265-1271.
|
[3] |
Francis A, Wang WZ, Goldman JJ, et al.Enhancement of viable adipose-derived stem cells in lipoaspirate by buffering tumescent with sodium bicarbonate[J]. PRS Glob Open, 2019, 7(3): e2138.
|
[4] |
Cremona M, Gallazzi M, Rusconi G, et al.State of the art in the standardization of stromal vascular fraction processing[J]. Biomolecules, 2025, 15(2): 199.
|
[5] |
You D, Jang MJ, Kim BH, et al.Comparative study of autologous stromal vascular fraction and adipose-derived stem cells for erectile function recovery in a rat model of cavernous nerve injury[J]. Stem Cells Transl Med, 2015, 4(4): 351-358.
|
[6] |
Turner LG.Federal regulatory oversight of US clinics marketing adipose-derived autologous stem cell interventions: insights from 3 new FDA draft guidance documents[J]. Mayo Clin Proc, 2015, 90(5): 567-571.
|
[7] |
Raposio E, Ciliberti R.Clinical use of adipose-derived stem cells: European legislative issues[J]. Ann Med Surg (Lond), 2017, 24: 61-64.
|
[8] |
Pilgaard L, Lund P, Rasmussen JG, et al.Comparative analysis of highly defined proteases for the isolation of adipose tissue-derived stem cells[J]. Regen Med, 2008, 3(5): 705-715.
|
[9] |
Jahr H, Hering B, Federlin K, et al.Activation of human complement by collagenase and ficoll[J]. Exp Clin Endocrinol Diabetes, 1995, 103(Suppl 2): 27-29.
|
[10] |
彭巍,刘旭,刘佳琦.脱细胞细胞外基质在皮肤损伤修复中的研究进展[J]. 中华损伤与修复杂志(电子版), 2025,20(2): 169-173.
|
[11] |
Kochhar A, Wu I, Mohan R, et al.A comparison of the rheologic properties of an adipose-derived extracellular matrix biomaterial, lipoaspirate, calcium hydroxylapatite, and cross-linked hyaluronic acid[J]. JAMA Facial Plast Surg, 2014, 16(6): 405-409.
|
[12] |
Sharath SS, Ramu J, Nair SV, et al.Human adipose tissue derivatives as a potent native biomaterial for tissue regenerative therapies[J]. Tissue Eng Regen Med, 2020, 17(2): 123-140.
|
[13] |
Wang LN, Johnson JA, Zhang QX, et al.Combining decellularized human adipose tissue extracellular matrix and adipose-derived stem cells for adipose tissue engineering[J]. Acta Biomater, 2013, 9(11): 8921-8931.
|
[14] |
Laukka M, Kauhanen S, Hockerstedt A, et al.Tissue-level effects of autologous fat grafting in hypertrophic scars: a case series study[J]. J Surg Res, 2025, 305: 246-257.
|
[15] |
Padoin AV, Braga-Silva J, Martins P, et al.Sources of processed lipoaspirate cells: influence of donor site on cell concentration[J]. Plast Reconstr Surg, 2008, 122(2): 614-618.
|
[16] |
Sinna R, Delay E, Garson S, et al.Breast fat grafting (lipomodelling) after extended latissimus dorsi flap breast reconstruction: a preliminary report of 200 consecutive cases[J]. J Plast Reconstr Aesthet Surg, 2010, 63(11): 1769-1777.
|
[17] |
Smith OJ, Jell G, Mosahebi A.The use of fat grafting and platelet-rich plasma for wound healing: a review of the current evidence[J]. Int Wound J, 2019, 16(1): 275-285.
|
[18] |
Han X, Ji D, Liu Y, et al.Efficacy and safety of transplantation of autologous fat, platelet-rich plasma (PRP) and stromal vascular fraction (SVF) in the treatment of acne scar: systematic review and meta-analysis[J]. Aesthetic Plast Surg, 2023, 47(4): 1623-1632.
|
[19] |
Liao HT, Marra KG, Rubin JP.Application of platelet-rich plasma and platelet-rich fibrin in fat grafting: basic science and literature review[J]. Tissue Eng Part B Rev, 2014, 20(4): 267-277.
|
[20] |
Yun Z, Wu J, Sun X, et al.Neural-enhancing PRP/Alg/GelMA triple-network hydrogel for neurogenesis and angiogenesis after spinal cord injury via PI3K/AKT/mTOR signaling pathway[J]. Theranostics, 2025, 15(9): 3837-3861.
|
[21] |
Jiang Y, Hu J, Cui C, et al.Netrin1-enriched exosomes from genetically modified ADSCs as a novel treatment for diabetic limb ischemia[J]. Adv Healthc Mater, 2025, 14(2): e2403521.
|
[22] |
Shan H, Wang X, Zhang J.Dendritic epidermal T cell hydrogel induces the polarization of M2 macrophages to promote the healing of deep tissue pressure injury[J]. J Tissue Viability, 2024, 33(3): 440-448.
|
[23] |
Horie T, Hirata H, Sakamoto T, et al.Multiomics analyses reveal adipose-derived stem cells inhibit the inflammatory response of M1-like macrophages through secreting lactate[J]. Stem Cell Res Ther, 2024, 15(1): 485.
|
[24] |
Paliwal S, Chaudhuri R, Agrawal A, et al.Regenerative abilities of mesenchymal stem cells through mitochondrial transfer[J]. J Biomed Sci, 2018, 25: 1-12.
|
[25] |
Mahrouf-Yorgov M, Augeul L, Da Silva CC, et al.Mesenchymal stem cells sense mitochondria released from damaged cells as danger signals to activate their rescue properties[J]. Cell Death Differ, 2017, 24(7): 1224-1238.
|
[26] |
Wan X, Ni X, Xie Y, et al.Research progress and application prospect of adipose-derived stem cell secretome in diabetes foot ulcers healing[J]. Stem Cell Res Ther, 2024, 15(1): 279.
|
[27] |
Deptula M, Brzezicka A, Skoniecka A, et al.Adipose-derived stromal cells for nonhealing wounds: emerging opportunities and challenges[J]. Med Res Rev, 2021, 41(4): 2130-2171.
|
[28] |
Zarei F, Abbaszadeh A.Application of cell therapy for anti-aging facial skin[J]. Curr Stem Cell Res Ther, 2019, 14(3): 244-248.
|
[29] |
Soejima K, Kashimura T, Kazama T, et al.Effect of mature adipocyte-derived dedifferentiated fat cells on formation of basement membrane after cultured epithelial autograft on artificial dermis[J]. Plast Reconstr Surg, 2019, 143(5): 983e-992e.
|
[30] |
Huang H, Liang L, Sun D, et al.Rab37 promotes endothelial differentiation and accelerates ADSC-mediated diabetic wound healing through regulating secretion of Hsp90α and TIMP1[J]. Stem Cell Rev Rep, 2023,19(4):1019-1033.
|
[31] |
Ebrahim N, Dessouky AA, Mostafa O, et al.Adipose mesenchymal stem cells combined with platelet-rich plasma accelerate diabetic wound healing by modulating the Notch pathway[J]. Stem Cell Res Ther, 2021, 12(1): 392.
|
[32] |
Gadelkarim M, Abushouk AI, Ghanem E, et al.Adipose-derived stem cells: effectiveness and advances in delivery in diabetic wound healing[J]. Biomed Pharmacother, 2018, 107: 625-633.
|
[33] |
Gersch RP, Raum JC, Calvert C, et al.Fibroblasts derived from human adipose stem cells produce more effective extracellular matrix and migrate faster compared to primary dermal fibroblasts[J]. Aesthet Surg J, 2020, 40(1): 108-117.
|
[34] |
Huayllani MT, Sarabia-Estrada R, Restrepo DJ, et al.Adipose-derived stem cells in wound healing of full-thickness skin defects: a review of the literature[J]. J Plast Surg Hand Surg, 2020, 54(5): 263-279.
|
[35] |
Eke G, Mangir N, Hasirci N, et al.Development of a UV crosslinked biodegradable hydrogel containing adipose derived stem cells to promote vascularization for skin wounds and tissue engineering[J]. Biomaterials, 2017, 129: 188-198.
|
[36] |
Vizoso FJ, Eiro N, Cid S, et al.Mesenchymal stem cell secretome: toward cell-free therapeutic strategies in regenerative medicine[J]. Int J Mol Sci, 2017, 18(9): 1852.
|
[37] |
Zomer HD, Varela G, Delben PB, et al.In vitro comparative study of human mesenchymal stromal cells from dermis and adipose tissue for application in skin wound healing[J]. J Tissue Eng Regen Med, 2019, 13(5): 729-741.
|
[38] |
Kim MH, Wu WH, Choi JH, et al.Galectin-1 from conditioned medium of three-dimensional culture of adipose-derived stem cells accelerates migration and proliferation of human keratinocytes and fibroblasts[J]. Wound Repair Regen, 2018, 26: S9-S18.
|
[39] |
De Gregorio C, Contador D, Diaz D, et al.Human adipose-derived mesenchymal stem cell-conditioned medium ameliorates polyneuropathy and foot ulceration in diabetic BKS db/db mice[J]. Stem Cell Res Ther, 2020, 11(1): 1-21.
|
[40] |
Hu P, Yang QX, Wang Q, et al.Mesenchymal stromal cells-exosomes: a promising cell-free therapeutic tool for wound healing and cutaneous regeneration[J]. Burns Trauma, 2019, 7:38.
|
[41] |
Li Y, Zhang W, Gao JX, et al.Adipose tissue-derived stem cells suppress hypertrophic scar fibrosis via the p38/MAPK signaling pathway[J]. Stem Cell Res Ther, 2016,7(1):102.
|
[42] |
Bermudez MA, Sendon-Lago J, Eiro N, et al.Corneal epithelial wound healing and bactericidal effect of conditioned medium from human uterine cervical stem cells[J]. Invest Ophthalmol Vis Sci, 2015, 56(2): 983-992.
|
[43] |
Xu X, Lai Y, Hua ZC.Apoptosis and apoptotic body: disease message and therapeutic target potentials[J]. Biosci Rep, 2019, 39(1): BSR20180992.
|
[44] |
Yang S, Sun Y, Yan C.Recent advances in the use of extracellular vesicles from adipose-derived stem cells for regenerative medical therapeutics[J]. J Nanobiotechnology, 2024, 22(1): 316.
|
[45] |
Escola JM, Kleijmeer MJ, Stoorvogel W, et al.Selective enrichment of tetraspan proteins on the internal vesicles of multivesicular endosomes and on exosomes secreted by human B-lymphocytes[J]. J Biol Chem, 1998, 273(32): 20121-20127.
|
[46] |
An Y, Lin S, Tan X, et al.Exosomes from adipose-derived stem cells and application to skin wound healing[J]. Cell Prolif, 2021, 54(3): e12993.
|
[47] |
Hu L, Wang J, Zhou X, et al.Exosomes derived from human adipose mesenchymal stem cells accelerate cutaneous wound healing via optimizing the characteristics of fibroblasts[J]. Sci Rep, 2016, 6: 32993.
|
[48] |
Deng ZB, Poliakov A, Hardy RW, et al.Adipose tissue exosome-like vesicles mediate activation of macrophage-induced insulin resistance[J]. Diabetes, 2009, 58(11): 2498-2505.
|
[49] |
Ogawa R, Tanaka C, Sato M, et al.Adipocyte-derived microvesicles contain RNA that is transported into macrophages and might be secreted into blood circulation[J]. Biochem Biophys Res Commun, 2010, 398(4): 723-729.
|
[50] |
Lin R, Wang S, Zhao RC.Exosomes from human adipose-derived mesenchymal stem cells promote migration through Wnt signaling pathway in a breast cancer cell model[J]. Mol Cell Biochem, 2013, 383(1-2): 13-20.
|
[51] |
Choi EW, Seo MK, Woo EY, et al.Exosomes from human adipose-derived stem cells promote proliferation and migration of skin fibroblasts[J]. Exp Dermatol, 2018, 27(10): 1170-1172.
|
[52] |
Ren S, Chen J, Duscher D, et al.Microvesicles from human adipose stem cells promote wound healing by optimizing cellular functions via AKT and ERK signaling pathways[J]. Stem Cell Res Ther, 2019, 10(1): 47.
|
[53] |
Yang C, Luo L, Bai XZ, et al.Highly-expressed microRNA-21 in adipose derived stem cell exosomes can enhance the migration and proliferation of the HaCaT cells by increasing the MMP-9 expression through the PI3K/AKT pathway[J]. Arch Biochem Biophys, 2020, 681: 108259.
|
[54] |
Yu C, Bianco J, Brown C, et al.Porous decellularized adipose tissue foams for soft tissue regeneration[J]. Biomaterials, 2013, 34(13): 3290-3302.
|
[55] |
Choi JS, Yang HJ, Kim BS, et al.Human extracellular matrix (ECM) powders for injectable cell delivery and adipose tissue engineering[J]. J Control Release, 2009, 139(1): 2-7.
|
[56] |
Giatsidis G, Succar J, Haddad A, et al.Preclinical optimization of a shelf-ready, injectable, human-derived, decellularized allograft adipose matrix[J]. Tissue Eng Part A, 2019, 25(3-4): 271-287.
|
[57] |
Kim BS, Choi JS, Kim JD, et al.Recellularization of decellularized human adipose-tissue-derived extracellular matrix sheets with other human cell types[J]. Cell Tissue Res, 2012, 348(3): 559-567.
|
[58] |
Pati F, Jang J, Ha DH, et al.Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink[J]. Nat Commun, 2014, 5(1): 3935.
|
[59] |
Tang JZ, Li HC, Peng H, et al.Pre-clinical evaluation of thermosensitive decellularized adipose tissue/platelet-rich plasma interpenetrating polymer network hydrogel for wound healing[J]. Mater Today Bio, 2022, 17: 100498.
|
[60] |
Francois P, Giraudo L, Veran J, et al.Development and validation of a fully GMP-compliant process for manufacturing stromal vascular fraction: a cost-effective alternative to automated methods[J]. Cells, 2020, 9(10): 2158.
|
[61] |
Frueh FS, Später T, Scheuer C, et al.Isolation of murine adipose tissue-derived microvascular fragments as vascularization units for tissue engineering[J]. J Vis Exp, 2017, (122): 55721.
|
[62] |
Frueh FS, Später T, Lindenblatt N, et al.Adipose tissue-derived microvascular fragments improve vascularization, lymphangiogenesis, and integration of dermal skin substitutes[J]. J Invest Dermatol, 2017, 137(1): 217-227.
|
[63] |
Laschke MW, Kontaxi E, Scheuer C, et al.Insulin-like growth factor 1 stimulates the angiogenic activity of adipose tissue-derived microvascular fragments[J]. J Tissue Eng, 2019, 10: 2041731419879837.
|
[64] |
Spater T, Frueh FS, Nickels RM, et al.Prevascularization of collagen-glycosaminoglycan scaffolds: stromal vascular fraction versus adipose tissue-derived microvascular fragments[J]. J Biol Eng, 2018, 12: 24.
|
[65] |
Gao Y, Liang C, Yang B, et al.Application and mechanism of adipose tissue-derived microvascular fragments in tissue repair and regeneration[J]. Biomolecules, 2025, 15(3): 422.
|
[66] |
Casteilla L, Planat-Benard V, Laharrague P, et al.Adipose-derived stromal cells: their identity and uses in clinical trials, an update[J]. World J Stem Cells, 2011, 3(4): 25-33.
|
[67] |
Bai X, Yan Y, Song YH, et al.Both cultured and freshly isolated adipose tissue-derived stem cells enhance cardiac function after acute myocardial infarction[J]. Eur Heart J, 2010, 31(4): 489-501.
|
[68] |
Garcia-Olmo D, Herreros D, Pascual M, et al.Treatment of enterocutaneous fistula in Crohn's disease with adipose-derived stem cells: a comparison of protocols with and without cell expansion[J]. Int J Colorectal Dis, 2009, 24(1): 27-30.
|
[69] |
Van Dongen JA, Van Boxtel J, Uguten M, et al.Tissue stromal vascular fraction improves early scar healing: a prospective randomized multicenter clinical trial[J]. Aesthet Surg J, 2022, 42(7): NP477-NP488.
|