切换至 "中华医学电子期刊资源库"

中华损伤与修复杂志(电子版) ›› 2025, Vol. 20 ›› Issue (04) : 352 -357. doi: 10.3877/cma.j.issn.1673-9450.2025.04.013

所属专题: 文献

综述

脂肪组织及其衍生物在皮肤修复与再生中的应用
金方1, 汤宋佳2, 韩春茂1, 王新刚1, 张惟3,()   
  1. 1 310009 杭州,浙江大学医学院附属第二医院烧伤与创面修复科
    2 310006 杭州市第一人民医院医疗美容科
    3 310009 杭州,浙江大学医学院附属第二医院整形科
  • 收稿日期:2025-04-14 出版日期:2025-08-01
  • 通信作者: 张惟
  • 基金资助:
    国家重点研发计划(2022YFC2403100)

Application of adipose tissue and its derivatives in skin repair and regeneration

Fang Jin1, Songjia Tang2, Chunmao Han1, Xingang Wang1, Wei Zhang,3()   

  1. 1 Department of Burns and Wound Repair,the Second Affiliated Hospital of Zhejiang University College of Medicine,Hangzhou 310009,China
    2 Department of Plastic and Aesthetic Surgery,Hangzhou First People′s Hospital,Hangzhou 310006,China
    3 Department of Plastic Surgery,the Second Affiliated Hospital of Zhejiang University College of Medicine,Hangzhou 310009,China
  • Received:2025-04-14 Published:2025-08-01
  • Corresponding author: Wei Zhang
引用本文:

金方, 汤宋佳, 韩春茂, 王新刚, 张惟. 脂肪组织及其衍生物在皮肤修复与再生中的应用[J/OL]. 中华损伤与修复杂志(电子版), 2025, 20(04): 352-357.

Fang Jin, Songjia Tang, Chunmao Han, Xingang Wang, Wei Zhang. Application of adipose tissue and its derivatives in skin repair and regeneration[J/OL]. Chinese Journal of Injury Repair and Wound Healing(Electronic Edition), 2025, 20(04): 352-357.

创面愈合是一个动态连续的过程,每个阶段均受到内外环境信号的精密调控。脂肪组织包含多种细胞类型及信号分子,且易于获取。脂肪组织及其衍生物对新生血管形成、胶原沉积、全层皮肤移植物存活以及改善移植表皮细胞存活等创面愈合过程具有积极作用。该文对人体脂肪组织及其衍生物在皮肤修复与再生领域中应用的研究进展进行总结。

Wound healing is a dynamic and continuous process, where each phase is precisely regulated by signals from both internal and external environments. Adipose tissue contains various cell types and signaling molecules, and it is easy to obtain. Adipose tissue and its derivatives are beneficial for key processes in wound healing, such as neovascularization, collagen deposition, full-thickness skin graft survival, and improved survival of epidermal cells in transplants. This article reviews the research progress on the application of human adipose tissue and its derivatives in the field of skin repair and regeneration.

[1]
蔡程浩,韩春茂,王新刚.创面外部微环境因素对创面愈合影响的研究进展[J]. 中华烧伤与创面修复杂志202440(5):489-494.
[2]
Trivisonno AAlexander RWBaldari S, et al.Intraoperative strategies for minimal manipulation of autologous adipose tissue for cell- and tissue-based therapies: concise review[J]. Stem Cells Transl Med20198(12): 1265-1271.
[3]
Francis AWang WZGoldman JJ, et al.Enhancement of viable adipose-derived stem cells in lipoaspirate by buffering tumescent with sodium bicarbonate[J]. PRS Glob Open20197(3): e2138.
[4]
Cremona MGallazzi MRusconi G, et al.State of the art in the standardization of stromal vascular fraction processing[J]. Biomolecules202515(2): 199.
[5]
You DJang MJKim BH, et al.Comparative study of autologous stromal vascular fraction and adipose-derived stem cells for erectile function recovery in a rat model of cavernous nerve injury[J]. Stem Cells Transl Med20154(4): 351-358.
[6]
Turner LG.Federal regulatory oversight of US clinics marketing adipose-derived autologous stem cell interventions: insights from 3 new FDA draft guidance documents[J]. Mayo Clin Proc201590(5): 567-571.
[7]
Raposio ECiliberti R.Clinical use of adipose-derived stem cells: European legislative issues[J]. Ann Med Surg (Lond)201724: 61-64.
[8]
Pilgaard LLund PRasmussen JG, et al.Comparative analysis of highly defined proteases for the isolation of adipose tissue-derived stem cells[J]. Regen Med20083(5): 705-715.
[9]
Jahr HHering BFederlin K, et al.Activation of human complement by collagenase and ficoll[J]. Exp Clin Endocrinol Diabetes1995103(Suppl 2): 27-29.
[10]
彭巍,刘旭,刘佳琦.脱细胞细胞外基质在皮肤损伤修复中的研究进展[J]. 中华损伤与修复杂志(电子版)202520(2): 169-173.
[11]
Kochhar AWu IMohan R, et al.A comparison of the rheologic properties of an adipose-derived extracellular matrix biomaterial, lipoaspirate, calcium hydroxylapatite, and cross-linked hyaluronic acid[J]. JAMA Facial Plast Surg201416(6): 405-409.
[12]
Sharath SSRamu JNair SV, et al.Human adipose tissue derivatives as a potent native biomaterial for tissue regenerative therapies[J]. Tissue Eng Regen Med202017(2): 123-140.
[13]
Wang LNJohnson JAZhang QX, et al.Combining decellularized human adipose tissue extracellular matrix and adipose-derived stem cells for adipose tissue engineering[J]. Acta Biomater20139(11): 8921-8931.
[14]
Laukka MKauhanen SHockerstedt A, et al.Tissue-level effects of autologous fat grafting in hypertrophic scars: a case series study[J]. J Surg Res2025305: 246-257.
[15]
Padoin AVBraga-Silva JMartins P, et al.Sources of processed lipoaspirate cells: influence of donor site on cell concentration[J]. Plast Reconstr Surg2008122(2): 614-618.
[16]
Sinna RDelay EGarson S, et al.Breast fat grafting (lipomodelling) after extended latissimus dorsi flap breast reconstruction: a preliminary report of 200 consecutive cases[J]. J Plast Reconstr Aesthet Surg201063(11): 1769-1777.
[17]
Smith OJJell GMosahebi A.The use of fat grafting and platelet-rich plasma for wound healing: a review of the current evidence[J]. Int Wound J201916(1): 275-285.
[18]
Han XJi DLiu Y, et al.Efficacy and safety of transplantation of autologous fat, platelet-rich plasma (PRP) and stromal vascular fraction (SVF) in the treatment of acne scar: systematic review and meta-analysis[J]. Aesthetic Plast Surg202347(4): 1623-1632.
[19]
Liao HTMarra KGRubin JP.Application of platelet-rich plasma and platelet-rich fibrin in fat grafting: basic science and literature review[J]. Tissue Eng Part B Rev201420(4): 267-277.
[20]
Yun ZWu JSun X, et al.Neural-enhancing PRP/Alg/GelMA triple-network hydrogel for neurogenesis and angiogenesis after spinal cord injury via PI3K/AKT/mTOR signaling pathway[J]. Theranostics202515(9): 3837-3861.
[21]
Jiang YHu JCui C, et al.Netrin1-enriched exosomes from genetically modified ADSCs as a novel treatment for diabetic limb ischemia[J]. Adv Healthc Mater202514(2): e2403521.
[22]
Shan HWang XZhang J.Dendritic epidermal T cell hydrogel induces the polarization of M2 macrophages to promote the healing of deep tissue pressure injury[J]. J Tissue Viability202433(3): 440-448.
[23]
Horie THirata HSakamoto T, et al.Multiomics analyses reveal adipose-derived stem cells inhibit the inflammatory response of M1-like macrophages through secreting lactate[J]. Stem Cell Res Ther202415(1): 485.
[24]
Paliwal SChaudhuri RAgrawal A, et al.Regenerative abilities of mesenchymal stem cells through mitochondrial transfer[J]. J Biomed Sci201825: 1-12.
[25]
Mahrouf-Yorgov MAugeul LDa Silva CC, et al.Mesenchymal stem cells sense mitochondria released from damaged cells as danger signals to activate their rescue properties[J]. Cell Death Differ201724(7): 1224-1238.
[26]
Wan XNi XXie Y, et al.Research progress and application prospect of adipose-derived stem cell secretome in diabetes foot ulcers healing[J]. Stem Cell Res Ther202415(1): 279.
[27]
Deptula MBrzezicka ASkoniecka A, et al.Adipose-derived stromal cells for nonhealing wounds: emerging opportunities and challenges[J]. Med Res Rev202141(4): 2130-2171.
[28]
Zarei FAbbaszadeh A.Application of cell therapy for anti-aging facial skin[J]. Curr Stem Cell Res Ther201914(3): 244-248.
[29]
Soejima KKashimura TKazama T, et al.Effect of mature adipocyte-derived dedifferentiated fat cells on formation of basement membrane after cultured epithelial autograft on artificial dermis[J]. Plast Reconstr Surg2019143(5): 983e-992e.
[30]
Huang HLiang LSun D, et al.Rab37 promotes endothelial differentiation and accelerates ADSC-mediated diabetic wound healing through regulating secretion of Hsp90α and TIMP1[J]. Stem Cell Rev Rep202319(4):1019-1033.
[31]
Ebrahim NDessouky AAMostafa O, et al.Adipose mesenchymal stem cells combined with platelet-rich plasma accelerate diabetic wound healing by modulating the Notch pathway[J]. Stem Cell Res Ther202112(1): 392.
[32]
Gadelkarim MAbushouk AIGhanem E, et al.Adipose-derived stem cells: effectiveness and advances in delivery in diabetic wound healing[J]. Biomed Pharmacother2018107: 625-633.
[33]
Gersch RPRaum JCCalvert C, et al.Fibroblasts derived from human adipose stem cells produce more effective extracellular matrix and migrate faster compared to primary dermal fibroblasts[J]. Aesthet Surg J202040(1): 108-117.
[34]
Huayllani MTSarabia-Estrada RRestrepo DJ, et al.Adipose-derived stem cells in wound healing of full-thickness skin defects: a review of the literature[J]. J Plast Surg Hand Surg202054(5): 263-279.
[35]
Eke GMangir NHasirci N, et al.Development of a UV crosslinked biodegradable hydrogel containing adipose derived stem cells to promote vascularization for skin wounds and tissue engineering[J]. Biomaterials2017129: 188-198.
[36]
Vizoso FJEiro NCid S, et al.Mesenchymal stem cell secretome: toward cell-free therapeutic strategies in regenerative medicine[J]. Int J Mol Sci201718(9): 1852.
[37]
Zomer HDVarela GDelben PB, et al.In vitro comparative study of human mesenchymal stromal cells from dermis and adipose tissue for application in skin wound healing[J]. J Tissue Eng Regen Med201913(5): 729-741.
[38]
Kim MHWu WHChoi JH, et al.Galectin-1 from conditioned medium of three-dimensional culture of adipose-derived stem cells accelerates migration and proliferation of human keratinocytes and fibroblasts[J]. Wound Repair Regen201826: S9-S18.
[39]
De Gregorio CContador DDiaz D, et al.Human adipose-derived mesenchymal stem cell-conditioned medium ameliorates polyneuropathy and foot ulceration in diabetic BKS db/db mice[J]. Stem Cell Res Ther202011(1): 1-21.
[40]
Hu PYang QXWang Q, et al.Mesenchymal stromal cells-exosomes: a promising cell-free therapeutic tool for wound healing and cutaneous regeneration[J]. Burns Trauma20197:38.
[41]
Li YZhang WGao JX, et al.Adipose tissue-derived stem cells suppress hypertrophic scar fibrosis via the p38/MAPK signaling pathway[J]. Stem Cell Res Ther20167(1):102.
[42]
Bermudez MASendon-Lago JEiro N, et al.Corneal epithelial wound healing and bactericidal effect of conditioned medium from human uterine cervical stem cells[J]. Invest Ophthalmol Vis Sci201556(2): 983-992.
[43]
Xu XLai YHua ZC.Apoptosis and apoptotic body: disease message and therapeutic target potentials[J]. Biosci Rep201939(1): BSR20180992.
[44]
Yang SSun YYan C.Recent advances in the use of extracellular vesicles from adipose-derived stem cells for regenerative medical therapeutics[J]. J Nanobiotechnology202422(1): 316.
[45]
Escola JMKleijmeer MJStoorvogel W, et al.Selective enrichment of tetraspan proteins on the internal vesicles of multivesicular endosomes and on exosomes secreted by human B-lymphocytes[J]. J Biol Chem1998273(32): 20121-20127.
[46]
An YLin STan X, et al.Exosomes from adipose-derived stem cells and application to skin wound healing[J]. Cell Prolif202154(3): e12993.
[47]
Hu LWang JZhou X, et al.Exosomes derived from human adipose mesenchymal stem cells accelerate cutaneous wound healing via optimizing the characteristics of fibroblasts[J]. Sci Rep20166: 32993.
[48]
Deng ZBPoliakov AHardy RW, et al.Adipose tissue exosome-like vesicles mediate activation of macrophage-induced insulin resistance[J]. Diabetes200958(11): 2498-2505.
[49]
Ogawa RTanaka CSato M, et al.Adipocyte-derived microvesicles contain RNA that is transported into macrophages and might be secreted into blood circulation[J]. Biochem Biophys Res Commun2010398(4): 723-729.
[50]
Lin RWang SZhao RC.Exosomes from human adipose-derived mesenchymal stem cells promote migration through Wnt signaling pathway in a breast cancer cell model[J]. Mol Cell Biochem2013383(1-2): 13-20.
[51]
Choi EWSeo MKWoo EY, et al.Exosomes from human adipose-derived stem cells promote proliferation and migration of skin fibroblasts[J]. Exp Dermatol201827(10): 1170-1172.
[52]
Ren SChen JDuscher D, et al.Microvesicles from human adipose stem cells promote wound healing by optimizing cellular functions via AKT and ERK signaling pathways[J]. Stem Cell Res Ther201910(1): 47.
[53]
Yang CLuo LBai XZ, et al.Highly-expressed microRNA-21 in adipose derived stem cell exosomes can enhance the migration and proliferation of the HaCaT cells by increasing the MMP-9 expression through the PI3K/AKT pathway[J]. Arch Biochem Biophys2020681: 108259.
[54]
Yu CBianco JBrown C, et al.Porous decellularized adipose tissue foams for soft tissue regeneration[J]. Biomaterials201334(13): 3290-3302.
[55]
Choi JSYang HJKim BS, et al.Human extracellular matrix (ECM) powders for injectable cell delivery and adipose tissue engineering[J]. J Control Release2009139(1): 2-7.
[56]
Giatsidis GSuccar JHaddad A, et al.Preclinical optimization of a shelf-ready, injectable, human-derived, decellularized allograft adipose matrix[J]. Tissue Eng Part A201925(3-4): 271-287.
[57]
Kim BSChoi JSKim JD, et al.Recellularization of decellularized human adipose-tissue-derived extracellular matrix sheets with other human cell types[J]. Cell Tissue Res2012348(3): 559-567.
[58]
Pati FJang JHa DH, et al.Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink[J]. Nat Commun20145(1): 3935.
[59]
Tang JZLi HCPeng H, et al.Pre-clinical evaluation of thermosensitive decellularized adipose tissue/platelet-rich plasma interpenetrating polymer network hydrogel for wound healing[J]. Mater Today Bio202217: 100498.
[60]
Francois PGiraudo LVeran J, et al.Development and validation of a fully GMP-compliant process for manufacturing stromal vascular fraction: a cost-effective alternative to automated methods[J]. Cells20209(10): 2158.
[61]
Frueh FSSpäter TScheuer C, et al.Isolation of murine adipose tissue-derived microvascular fragments as vascularization units for tissue engineering[J]. J Vis Exp2017, (122): 55721.
[62]
Frueh FSSpäter TLindenblatt N, et al.Adipose tissue-derived microvascular fragments improve vascularization, lymphangiogenesis, and integration of dermal skin substitutes[J]. J Invest Dermatol2017137(1): 217-227.
[63]
Laschke MWKontaxi EScheuer C, et al.Insulin-like growth factor 1 stimulates the angiogenic activity of adipose tissue-derived microvascular fragments[J]. J Tissue Eng201910: 2041731419879837.
[64]
Spater TFrueh FSNickels RM, et al.Prevascularization of collagen-glycosaminoglycan scaffolds: stromal vascular fraction versus adipose tissue-derived microvascular fragments[J]. J Biol Eng201812: 24.
[65]
Gao YLiang CYang B, et al.Application and mechanism of adipose tissue-derived microvascular fragments in tissue repair and regeneration[J]. Biomolecules202515(3): 422.
[66]
Casteilla LPlanat-Benard VLaharrague P, et al.Adipose-derived stromal cells: their identity and uses in clinical trials, an update[J]. World J Stem Cells20113(4): 25-33.
[67]
Bai XYan YSong YH, et al.Both cultured and freshly isolated adipose tissue-derived stem cells enhance cardiac function after acute myocardial infarction[J]. Eur Heart J201031(4): 489-501.
[68]
Garcia-Olmo DHerreros DPascual M, et al.Treatment of enterocutaneous fistula in Crohn's disease with adipose-derived stem cells: a comparison of protocols with and without cell expansion[J]. Int J Colorectal Dis200924(1): 27-30.
[69]
Van Dongen JAVan Boxtel JUguten M, et al.Tissue stromal vascular fraction improves early scar healing: a prospective randomized multicenter clinical trial[J]. Aesthet Surg J202242(7): NP477-NP488.
[1] 钱嘉天, 符培亮. 3D打印脱细胞的细胞外基质修复软骨缺损的研究进展[J/OL]. 中华关节外科杂志(电子版), 2023, 17(03): 368-375.
[2] 高仪轩, 张筱伟, 李宝龙, 胡文治, 郝永红, 邹晓防. 对全厚微粒皮移植治疗自身免疫病相关性溃疡的临床疗效分析[J/OL]. 中华损伤与修复杂志(电子版), 2025, 20(04): 290-295.
[3] 彭巍, 刘旭, 刘佳琦. 脱细胞细胞外基质在皮肤损伤修复中的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2025, 20(02): 169-173.
[4] 靳顺欣, 庞嘉越成, 肖仕初. 基于上皮嵴微结构的移植物在促进创面愈合中的作用机制与临床应用进展[J/OL]. 中华损伤与修复杂志(电子版), 2025, 20(02): 174-178.
[5] 关丁丁, 李伟, 孔维诗, 包郁露, 孙瑜. 负载干细胞的光交联蛋白基水凝胶在组织工程中应用的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(05): 447-452.
[6] 程宇欣, 张伟, 孔维诗, 孙瑜. 胶原蛋白敷料在创面修复中应用的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(01): 73-77.
[7] 周子慧, 李恭驰, 李炳辉, 王知, 刘慧真, 王卉, 邹利军. 细胞自噬在创面愈合中作用的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2023, 18(06): 542-546.
[8] 陈继秋, 朱世辉. 皮肤牵张装置的临床应用现状[J/OL]. 中华损伤与修复杂志(电子版), 2023, 18(05): 451-453.
[9] 王湘滔, 张爱娟, 王万春, 王芳萍, 徐颖婕, 孟洋. 中药白及在口腔疾病中的研究与应用[J/OL]. 中华口腔医学研究杂志(电子版), 2023, 17(05): 371-375.
[10] 侯义振, 张鲲, 卢仙明, 张小雷. 膀胱造瘘导致巨大膀胱结石一例报告[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(02): 259-261.
[11] 钟文文, 李科, 刘碧好, 蔡炳, 脱颖, 叶雷, 马波, 瞿虎, 汪中扬, 王德娟, 邱剑光. 不同比例聚乳酸/丝素蛋白复合支架在兔尿道缺损修复中的疗效[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(05): 516-522.
[12] 梁瑶瑶, 邬绿莹, 陈津. 负载干细胞外泌体水凝胶治疗糖尿病足溃疡的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2025, 15(02): 112-119.
[13] 万周程, 钟章锋, 钟侨霖, 王景浩, 刘婷, 王华军, 郑小飞. 中药有效成分结合生物材料在骨组织工程中作用的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(04): 249-253.
[14] 张昊悦, 朱慧婷, 吴鸿浩, 王业皇, 嵇灵, 王雅娴, 章阳. 主动灌洗引流技术应用于高位复杂性肛瘘手术后创面的前瞻性、多中心、随机对照研究[J/OL]. 中华结直肠疾病电子杂志, 2025, 14(01): 62-70.
[15] 门航, 厉周, 韩帅. 肥胖与2 型糖尿病研究进展[J/OL]. 中华肥胖与代谢病电子杂志, 2025, 11(01): 62-69.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?