切换至 "中华医学电子期刊资源库"

中华损伤与修复杂志(电子版) ›› 2025, Vol. 20 ›› Issue (05) : 452 -457. doi: 10.3877/cma.j.issn.1673-9450.2025.05.015

综述

基于肠道-器官轴的烧伤并发症的研究进展
张勇1, 巴特2, 张倞3, 刘玲英1,3,()   
  1. 1 100037 北京,解放军总医院第四医学中心营养科
    2 014010 包头,内蒙古包钢医院烧伤科
    3 010107 呼和浩特,内蒙古医科大学基础医学院
  • 收稿日期:2024-12-17 出版日期:2025-10-01
  • 通信作者: 刘玲英

Research progress on the burn complications based on the gut-organ axis

Yong Zhang1, Te Ba2, Jing Zhang3, Lingying Liu1,3,()   

  1. 1 Department of Nutrition,the Fourth Medical Center Affiliated to PLA General Hospital,Beijing 100037,China
    2 Department of Burns Surgery,Baogang Hospital of Inner Mongolia,Baotou 014010,China
    3 College of Basic Medicine,Inner Mongolia Medical University,Hohhot 010107,China
  • Received:2024-12-17 Published:2025-10-01
  • Corresponding author: Lingying Liu
引用本文:

张勇, 巴特, 张倞, 刘玲英. 基于肠道-器官轴的烧伤并发症的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2025, 20(05): 452-457.

Yong Zhang, Te Ba, Jing Zhang, Lingying Liu. Research progress on the burn complications based on the gut-organ axis[J/OL]. Chinese Journal of Injury Repair and Wound Healing(Electronic Edition), 2025, 20(05): 452-457.

严重烧伤常伴有肠道屏障功能障碍,肠道通透性增加,细菌、内毒素可从肠道移位,导致肠道组织损伤,增加急性肠损伤的发生率。严重烧伤还可引发重症肺炎、急性肾损伤、心功能障碍、肝损伤,还会影响皮肤创面愈合,并引发内分泌紊乱等并发症发生。肠道-器官轴是肠道与各器官间存在的双向调控系统。肠道-器官轴是介导严重烧伤系列并发症发生发展的潜在分子机制载体,尤其是其涉及的代谢调节途径和免疫介导途径,可为阐明严重烧伤并发症的发生发展机制提供重要线索。

Severe burns are often associated with intestinal barrier dysfunction,elevated intestinal permeability,and bacterial and endotoxin translocation from the intestines,which can lead to intestinal tissue damage and increase the incidence of acute intestinal injury. Severe burns also can affect the development of complications such as severe pneumonia,acute kidney injury,cardiac dysfunction,liver injury,also affect the healing of skin wounds, and lead to endocrine disorder. The gut-organ axis refers to a bidirectional regulation system existing between the gut and various organs. The gut-organ axis is a potential carrier of molecular mechanisms that mediate the occurrence and development of a series of severe burn complications. In particular,the metabolic regulation pathways and immune-mediated pathways involved in it will provide important clues for clarifying the mechanism underlying the occurrence and development of severe burn complications.

[1]
Zhang XLiu HHashimoto K,et al. The gut-liver axis in sepsis: interaction mechanisms and therapeutic potential[J]. Crit Care202226(1): 213.
[2]
Giridharan VVGeneroso JSLence L,et al. A crosstalk between gut and brain in sepsisinduced cognitive decline[J]. J Neuroinflammation202219(1): 114.
[3]
Ahlawat SAshaSharma KK. Gut–organ axis: a microbial outreach and networking[J]. Lett Appl Microbiol202172(6): 636-668.
[4]
Auger CSamadi OJeschke MG. The biochemical alterations underlying post-burn hypermetabolism[J]. Biochim Biophys Acta Mol Basis Dis20171863(10 Pt B):2633-2644.
[5]
Chapman MJDeane AM. Gastrointestinal dysfunction relating to the provision of nutrition in the critically ill[J]. Curr Opin Clin Nutr Metab Care201518(2):207-212.
[6]
Lei YQWan YTLiang GT,et al. Extracellular RNAs/TLR3 signaling contributes to acute intestinal injury induced by intestinal ischemia reperfusion in mice[J]. Biochim Biophys Acta Mol Basis Dis20231869(7):166790.
[7]
Liu SChen HZXu ZD,et al. Sodium butyrate inhibits the production of HMGB1 and attenuates severe burn plus delayed resuscitation-induced intestine injury via the p38 signaling pathway[J]. Burns201945(3):649-658.
[8]
Zhang DYQiu WJin P,et al. Role of autophagy and its molecular mechanisms in mice intestinal tract after severe burn[J]. J Trauma Acute Care Surg201783(4):716-724.
[9]
Zha XSu SWu D,et al. The impact of gut microbiota changes on the intestinal mucus barrier in burned mice: a study using 16S rRNA and metagenomic sequencing[J]. Burns Trauma202311:tkad056.
[10]
Adiliaghdam FAlmpani MGharedaghi MH,et al. Targeting bacterial quorum sensing shows promise in improving intestinal barrier function following burn-site infection[J]. Mol Med Rep201919(5):4057-4066.
[11]
Nielson CBDuethman NCHoward JM,et al. Burns:pathophysiology of systemic complications and current management[J]. J Burn Care Res201738(1):e469-e481.
[12]
Aburto MRCryan JF. Gastrointestinal and brain barriers: unlocking gates of communication across the microbiota–gut–brain axis[J]. Nat Rev Gastroenterol Hepatol202421(4):222-247.
[13]
Zhang NZhang YLi M,et al. Efficacy of probiotics on stress in healthy volunteers: a systematic review and meta‐analysis based on randomized controlled trials[J]. Brain Behav202010(9):e01699.
[14]
Sivamaruthi BSKesika PChaiyasut C. Effect of probiotics supplementations on health status of athletes[J]. Inter J Environ Res Pub Heal201916(22): 4469.
[15]
Yang JMa KZhang C,et al. Burns impair blood-brain barrier and mesenchymal stem cells can reverse the process in mice[J]. Front Immunol202011:578879.
[16]
Hu JZhang YDing S,et al. Dynamic observation on opening of the blood-brain barrier in the primary stage of severely scalded rabbits,a multimodal study[J]. J Burn Care Res201637(3): e279-e286.
[17]
Allahham ARowe GStevenson A,et al. The impact of burn injury on the central nervous system[J]. Burns Trauma202412: tkad037.
[18]
Chen JZhang DZhang J,et al. Pathological changes in the brain after peripheral burns[J]. Burns Trauma202311: tkac061.
[19]
Celorrio MAbellanas MARhodes J,et al. Gut microbial dysbiosis after traumatic brain injury modulates the immune response and impairs neurogenesis[J]. Acta Neuropathol Commun20219(1):40.
[20]
Li HSun JDu J,et al. Clostridium butyricum exerts a neuroprotective effect in a mouse model of traumatic brain injury via the gut-brain axis[J]. Neurogastroenterol Motil201830(5):e13260.
[21]
McGlennon TWBuchwald JNPories WJ,et al. Bypassing TBI: metabolic surgery and the link between obesity and traumatic brain injury-a review[J]. Obes Surg202030(12):4704-4714.
[22]
Urban RJPyles RBStewart CJ,et al. Altered fecal microbiome years after traumatic brain injury[J]. J Neurotrauma201937(8):1037-1051.
[23]
Earley ZMAkhtar SGreen SJ,et al. Burn injury alters the intestinal microbiome and increases gut permeability and bacterial translocation[J]. PLoS One201510(7): e0129996.
[24]
Sbihi HBoutin RCCutler C,et al. Thinking bigger: how early-life environmental exposures shape the gut microbiome and influence the development of asthma and allergic disease[J]. Allergy201974(11):2103-2115.
[25]
Li NLiu BXiong R,et al. HDAC3 deficiency protects against acute lung injury by maintaining epithelial barrier integrity through preserving mitochondrial quality control[J]. Redox Biol202363:102746.
[26]
罗成,叶远航,郑岚,等. 中医药基于“肺-肠"轴调节肠道菌群治疗重症肺炎机制的研究进展[J]. 中国医药导报202320(6): 33-36.
[27]
包晟川,闫曙光,陈婷,等. 肺肠合治法治疗肺系疾病的研究进展[J].中国实验方剂学杂志202228(8):116-122.
[28]
耿欢,游丽娇,杨小芳,等.“肺与大肠相表里”理论在重症肺炎治疗中的应用探析[J].中国中医急症202231(1):84-86.
[29]
Sheu CCGong MNZhai R,et al. Clinical characteristics and outcomes of sepsis-related vs non-sepsis-related ARDS[J]. Chest2010138(3):559-567.
[30]
Xie BWang MZhang X,et al. Gut-derived memory γδ T17 cells exacerbate sepsis-induced acute lung injury in mice[J]. Nat Commun202415(1):6737.
[31]
Dries DJLorenz KKovacs EJ. Differential neutrophil traffic in gut and lung after scald injury[J]. J Burn Care Rehabil200122(3):203-209.
[32]
Yang TRichards EMPepine CJ,et al. The gut microbiota and the brain–gut–kidney axis in hypertension and chronic kidney disease[J]. Nat Rev Nephrol201814(7):442-456.
[33]
Legrand MClark ATNeyra JA,et al. Acute kidney injury in patients with burns[J]. Nat Rev Nephrol202420(3):188-200.
[34]
Chou YTKan WCShiao CC. Acute kidney injury and gut dysbiosis: a narrative review focus on pathophysiology and treatment[J]. Int J Mol Sci202223(7):3658.
[35]
Tilg HAdolph TETrauner M. Gut-liver axis: pathophysiological concepts and clinical implications[J]. Cell Metab202234(11):1700-1718.
[36]
Enomoto NTakei YYamashina S,et al. Burn injury sensitizes rat Kupffer cells via mechanisms dependent on gut-derived endotoxin[J]. J Gastroenterol200439(12): 1175-1181.
[37]
Chen MMCarter SRCurtis BJ,et al. Alcohol modulation of the postburn hepatic response[J]. J Burn Care Res201738(1):e144-e157.
[38]
Adiliaghdam FCavallaro PMohad V,et al. Targeting the gut to prevent sepsis from a cutaneous burn[J]. JCI Insight20205(19):e137128.
[39]
Zhao JZhang QCheng CW,et al. Heart-gut-microbiota communication determines the severity of cardiac injury after myocardial ischemia/reperfusion[J]. Cardiovas Res2023119(6):1390-1402.
[40]
Liu XRZheng XFJi SZ,et al. Metabolomic analysis of thermally injured and/or septic rats[J]. Burns201036(2010) : 992-998.
[41]
Bennett BJde Aguiar Vallim TQWang Z,et al. Trimethylamine-N-oxide,a metabolite associated with atherosclerosis,exhibits complex genetic and dietary regulation[J]. Cell Metab201317(1):49-60.
[42]
Huang ZBHu ZLu CX,et al. Gut microbiota-derived indole 3-propionic acid partially activates arylhydrocarbon receptor to promote macrophage phagocytosis and attenuate septic injury[J]. Front Cell Infect Microbiol202212:1015386.
[43]
Xue HChen XYu C,et al. Gut microbially produced indole-3-propionic acid inhibits atherosclerosis by promoting reverse cholesterol transport and its deficiency is causally related to atherosclerotic cardiovascular disease[J]. Circ Res2022131(5):404-420.
[44]
Su SZhang YWu D,et al. 1H-nuclear magnetic resonance analysis reveals dynamic changes in the metabolic profile of patients with severe burns[J]. Burns Trauma202412: tkae007.
[45]
Jeschke MGvan Baar MEChoudhry MA,et al. Burn injury[J]. Nat Rev Dis Primers20206(1):1-11.
[46]
Hoesel LMNiederbichler ADSchaefer J,et al. C5a-blockade improves burn-induced cardiac dysfunction[J]. J Immunol2007178(12): 7902-7910.
[47]
Sinha SLin GFerenczi K. The skin microbiome and the gut-skin axis[J]. Clin dermatol202139(5): 829-839.
[48]
Holowacz SBlondeau CGuinobert I,et al. Lactobacillus salivarius LA307 and Lactobacillus rhamnosus LA305 attenuate skin inflammation in mice[J]. Benef Microbes20189(2):299-309.
[49]
Atabati HEsmaeili SASaburi E,et al. Probiotics with ameliorating effects on the severity of skin inflammation in psoriasis:evidence from experimental and clinical studies[J]. J Cellular Physiol2020235(12):8925-8937.
[50]
Patel BKPatel KHHuang RY,et al. The gut-skin microbiota axis and its role in diabetic wound healing—a review based on current literature[J]. Int J Mol Sci202223(4):2375.
[51]
Finnerty CCJeschke MGHerndon DN,et al. Temporal cytokine profiles in severely burned patients: a comparison of adults and children[J]. Mol Med200814(9-10):553-560.
[52]
Hur JYang HTChun W,et al. Inflammatory cytokines and their prognostic ability in cases of major burn injury[J]. Ann Lab Med201535(1):105-110.
[53]
Tagliari ECampos LFCampos AC,et al. Effect of probiotic oral administration on skin wound healing in rats[J]. Arq Bras Cir Dig201932(3):e1457.
[54]
Lai YDi Nardo ANakatsuji T,et al. Commensal bacteria regulate Toll-like receptor 3-dependent inflammation after skin injury[J]. Nat Med200915(12):1377-1382.
[55]
Zhao FFeng JLi J,et al. Alterations of the gut microbiota in hashimoto's thyroiditis patients[J]. Thyroid201828(2): 175-186.
[56]
Fröhlich EWahl R. Microbiota and thyroid interaction in health and disease[J]. Trends Endocrinol Metab201930(8):479-490.
[57]
Knezevic JStarchl CBerisha AT,et al. Thyroid-gut-axis: how does the microbiota influence thyroid function?[J]. Nutrients202012(6):1769.
[58]
Jeschke MGBarrow REMlcak RP,et al. Endogenous anabolic hormones and hypermetabolism: effect of trauma and gender differences[J]. Ann Surg2005241(5): 759-767; discussion 767-768.
[59]
Hao JWLiu HSLiu LY,et al. Citrus pectin protects mice from burn injury by modulating intestinal microbiota,GLP-1 secretion and immune response[J]. Inter Immunopharmacol2024131:111912.
[60]
Frankiensztajn LMElliott EKoren O. The microbiota and the hypothalamus-pituitary- adrenocortical (HPA) axis,implications for anxiety and stress disorders[J]. Curr Opin Neurobiol202062:76-82.
[1] 张家乐, 田璐, 伍国胜, 刘莹莹, 李志, 吴琼, 纪世召. 浅析人工智能在海战烧伤诊疗中的应用前景[J/OL]. 中华损伤与修复杂志(电子版), 2025, 20(05): 426-430.
[2] 黄书润, 曾纯, 刘江涛, 苏惠强, 刘丁井, 叶维奇, 阮明珍. 改良足底取皮法治疗大面积深度烧伤患者的临床效果[J/OL]. 中华损伤与修复杂志(电子版), 2025, 20(05): 384-390.
[3] 张子远, 姜笃银. 基于网络药理学和分子对接探讨沙棘促进烧烫伤创面修复的作用机制[J/OL]. 中华损伤与修复杂志(电子版), 2025, 20(05): 404-411.
[4] 王毅, 孔剑桥, 张鹏, 代扬, 李恒平. 腹腔镜超声引导十二指肠镜治疗胆囊合并胆总管结石[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(06): 658-661.
[5] 马超, 王传嘉, 张武坊. 经腋窝入路单孔腔镜保乳术与传统开放手术治疗早期乳腺癌的对比研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(06): 674-677.
[6] 张超, 常剑. 混合入路与中间入路行腹腔镜右半结肠癌根治术的近中期随访比较[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(06): 685-688.
[7] 王婷文, 黄家晴, 卞晓洁, 陆晓峰, 管文贤. 基于CiteSpace和VOSviewer对胃肠道恶性肿瘤患者肠内免疫营养支持的文献计量分析[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(06): 693-697.
[8] 周丽君, 李姣姣, 孙燕, 王露, 钱蓉. 不同吻合方式对腹腔镜辅助远端胃癌根治术患者术后恢复的影响[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(06): 642-645.
[9] 菅锎宇, 常如玉, 王达, 顼倩茹, 蒋麟, 贾宝雷, 邱宇轩, 梁峰. 进展期食管胃结合部癌不同手术方式的近期疗效研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(05): 517-522.
[10] 杨敏, 辛林璞, 杜峻峰. 三精准管理方案对直肠癌造口术后造口并发症的预防效果研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(05): 531-534.
[11] 刘小娜, 史博慧, 马晓霞, 陈瑶, 郝娜. 乳腺癌不同手术方式对术后并发症及康复影响的对比观察[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(05): 551-554.
[12] 欧阳骏骏, 蔡宝, 徐冰. 经脐单孔及常规腹腔镜阑尾切除术对阑尾炎患儿的影响[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(05): 566-569.
[13] 邓吟咏, 钟洁, 蒋理立, 杨婕. 结直肠肿瘤手术后并发症的预测与预防:基于临床研究的最新进展[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(05): 579-583.
[14] 王珂, 岳育民, 武珍珍, 许泽宇, 惠晓辉, 赵云, 窦维佳, 赵青川. 腹腔镜经自然腔道手术对结直肠癌患者肠道功能及远期效果的影响[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(04): 413-416.
[15] 王美, 赵勇, 张健, 张俐娜, 丁健华, 曹煜. 基于CT测量肾周脂肪面积对Lap-ISR吻合口并发症的预测价值[J/OL]. 中华临床医师杂志(电子版), 2025, 19(05): 367-373.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?