[1] |
Zhang X,Liu H,Hashimoto K,et al. The gut-liver axis in sepsis: interaction mechanisms and therapeutic potential[J]. Crit Care,2022,26(1): 213.
|
[2] |
Giridharan VV,Generoso JS,Lence L,et al. A crosstalk between gut and brain in sepsisinduced cognitive decline[J]. J Neuroinflammation,2022,19(1): 114.
|
[3] |
Ahlawat S,Asha,Sharma KK. Gut–organ axis: a microbial outreach and networking[J]. Lett Appl Microbiol,2021,72(6): 636-668.
|
[4] |
Auger C,Samadi O,Jeschke MG. The biochemical alterations underlying post-burn hypermetabolism[J]. Biochim Biophys Acta Mol Basis Dis,2017,1863(10 Pt B):2633-2644.
|
[5] |
Chapman MJ,Deane AM. Gastrointestinal dysfunction relating to the provision of nutrition in the critically ill[J]. Curr Opin Clin Nutr Metab Care,2015,18(2):207-212.
|
[6] |
Lei YQ,Wan YT,Liang GT,et al. Extracellular RNAs/TLR3 signaling contributes to acute intestinal injury induced by intestinal ischemia reperfusion in mice[J]. Biochim Biophys Acta Mol Basis Dis,2023,1869(7):166790.
|
[7] |
Liu S,Chen HZ,Xu ZD,et al. Sodium butyrate inhibits the production of HMGB1 and attenuates severe burn plus delayed resuscitation-induced intestine injury via the p38 signaling pathway[J]. Burns,2019,45(3):649-658.
|
[8] |
Zhang DY,Qiu W,Jin P,et al. Role of autophagy and its molecular mechanisms in mice intestinal tract after severe burn[J]. J Trauma Acute Care Surg,2017,83(4):716-724.
|
[9] |
Zha X,Su S,Wu D,et al. The impact of gut microbiota changes on the intestinal mucus barrier in burned mice: a study using 16S rRNA and metagenomic sequencing[J]. Burns Trauma,2023,11:tkad056.
|
[10] |
Adiliaghdam F,Almpani M,Gharedaghi MH,et al. Targeting bacterial quorum sensing shows promise in improving intestinal barrier function following burn-site infection[J]. Mol Med Rep,2019,19(5):4057-4066.
|
[11] |
Nielson CB,Duethman NC,Howard JM,et al. Burns:pathophysiology of systemic complications and current management[J]. J Burn Care Res,2017,38(1):e469-e481.
|
[12] |
Aburto MR,Cryan JF. Gastrointestinal and brain barriers: unlocking gates of communication across the microbiota–gut–brain axis[J]. Nat Rev Gastroenterol Hepatol,2024,21(4):222-247.
|
[13] |
Zhang N,Zhang Y,Li M,et al. Efficacy of probiotics on stress in healthy volunteers: a systematic review and meta‐analysis based on randomized controlled trials[J]. Brain Behav,2020,10(9):e01699.
|
[14] |
Sivamaruthi BS,Kesika P,Chaiyasut C. Effect of probiotics supplementations on health status of athletes[J]. Inter J Environ Res Pub Heal,2019,16(22): 4469.
|
[15] |
Yang J,Ma K,Zhang C,et al. Burns impair blood-brain barrier and mesenchymal stem cells can reverse the process in mice[J]. Front Immunol,2020,11:578879.
|
[16] |
Hu J,Zhang Y,Ding S,et al. Dynamic observation on opening of the blood-brain barrier in the primary stage of severely scalded rabbits,a multimodal study[J]. J Burn Care Res,2016,37(3): e279-e286.
|
[17] |
Allahham A,Rowe G,Stevenson A,et al. The impact of burn injury on the central nervous system[J]. Burns Trauma,2024,12: tkad037.
|
[18] |
Chen J,Zhang D,Zhang J,et al. Pathological changes in the brain after peripheral burns[J]. Burns Trauma,2023,11: tkac061.
|
[19] |
Celorrio M,Abellanas MA,Rhodes J,et al. Gut microbial dysbiosis after traumatic brain injury modulates the immune response and impairs neurogenesis[J]. Acta Neuropathol Commun,2021,9(1):40.
|
[20] |
Li H,Sun J,Du J,et al. Clostridium butyricum exerts a neuroprotective effect in a mouse model of traumatic brain injury via the gut-brain axis[J]. Neurogastroenterol Motil,2018,30(5):e13260.
|
[21] |
McGlennon TW,Buchwald JN,Pories WJ,et al. Bypassing TBI: metabolic surgery and the link between obesity and traumatic brain injury-a review[J]. Obes Surg,2020,30(12):4704-4714.
|
[22] |
Urban RJ,Pyles RB,Stewart CJ,et al. Altered fecal microbiome years after traumatic brain injury[J]. J Neurotrauma,2019,37(8):1037-1051.
|
[23] |
Earley ZM,Akhtar S,Green SJ,et al. Burn injury alters the intestinal microbiome and increases gut permeability and bacterial translocation[J]. PLoS One,2015,10(7): e0129996.
|
[24] |
Sbihi H,Boutin RC,Cutler C,et al. Thinking bigger: how early-life environmental exposures shape the gut microbiome and influence the development of asthma and allergic disease[J]. Allergy,2019,74(11):2103-2115.
|
[25] |
Li N,Liu B,Xiong R,et al. HDAC3 deficiency protects against acute lung injury by maintaining epithelial barrier integrity through preserving mitochondrial quality control[J]. Redox Biol,2023,63:102746.
|
[26] |
罗成,叶远航,郑岚,等. 中医药基于“肺-肠"轴调节肠道菌群治疗重症肺炎机制的研究进展[J]. 中国医药导报,2023,20(6): 33-36.
|
[27] |
包晟川,闫曙光,陈婷,等. 肺肠合治法治疗肺系疾病的研究进展[J].中国实验方剂学杂志,2022,28(8):116-122.
|
[28] |
耿欢,游丽娇,杨小芳,等.“肺与大肠相表里”理论在重症肺炎治疗中的应用探析[J].中国中医急症,2022,31(1):84-86.
|
[29] |
Sheu CC,Gong MN,Zhai R,et al. Clinical characteristics and outcomes of sepsis-related vs non-sepsis-related ARDS[J]. Chest,2010,138(3):559-567.
|
[30] |
Xie B,Wang M,Zhang X,et al. Gut-derived memory γδ T17 cells exacerbate sepsis-induced acute lung injury in mice[J]. Nat Commun,2024,15(1):6737.
|
[31] |
Dries DJ,Lorenz K,Kovacs EJ. Differential neutrophil traffic in gut and lung after scald injury[J]. J Burn Care Rehabil,2001,22(3):203-209.
|
[32] |
Yang T,Richards EM,Pepine CJ,et al. The gut microbiota and the brain–gut–kidney axis in hypertension and chronic kidney disease[J]. Nat Rev Nephrol,2018,14(7):442-456.
|
[33] |
Legrand M,Clark AT,Neyra JA,et al. Acute kidney injury in patients with burns[J]. Nat Rev Nephrol,2024,20(3):188-200.
|
[34] |
Chou YT,Kan WC,Shiao CC. Acute kidney injury and gut dysbiosis: a narrative review focus on pathophysiology and treatment[J]. Int J Mol Sci,2022,23(7):3658.
|
[35] |
Tilg H,Adolph TE,Trauner M. Gut-liver axis: pathophysiological concepts and clinical implications[J]. Cell Metab,2022,34(11):1700-1718.
|
[36] |
Enomoto N,Takei Y,Yamashina S,et al. Burn injury sensitizes rat Kupffer cells via mechanisms dependent on gut-derived endotoxin[J]. J Gastroenterol,2004,39(12): 1175-1181.
|
[37] |
Chen MM,Carter SR,Curtis BJ,et al. Alcohol modulation of the postburn hepatic response[J]. J Burn Care Res,2017,38(1):e144-e157.
|
[38] |
Adiliaghdam F,Cavallaro P,Mohad V,et al. Targeting the gut to prevent sepsis from a cutaneous burn[J]. JCI Insight,2020,5(19):e137128.
|
[39] |
Zhao J,Zhang Q,Cheng CW,et al. Heart-gut-microbiota communication determines the severity of cardiac injury after myocardial ischemia/reperfusion[J]. Cardiovas Res,2023,119(6):1390-1402.
|
[40] |
Liu XR,Zheng XF,Ji SZ,et al. Metabolomic analysis of thermally injured and/or septic rats[J]. Burns,2010,36(2010) : 992-998.
|
[41] |
Bennett BJ,de Aguiar Vallim TQ,Wang Z,et al. Trimethylamine-N-oxide,a metabolite associated with atherosclerosis,exhibits complex genetic and dietary regulation[J]. Cell Metab,2013,17(1):49-60.
|
[42] |
Huang ZB,Hu Z,Lu CX,et al. Gut microbiota-derived indole 3-propionic acid partially activates arylhydrocarbon receptor to promote macrophage phagocytosis and attenuate septic injury[J]. Front Cell Infect Microbiol,2022,12:1015386.
|
[43] |
Xue H,Chen X,Yu C,et al. Gut microbially produced indole-3-propionic acid inhibits atherosclerosis by promoting reverse cholesterol transport and its deficiency is causally related to atherosclerotic cardiovascular disease[J]. Circ Res,2022,131(5):404-420.
|
[44] |
Su S,Zhang Y,Wu D,et al. 1H-nuclear magnetic resonance analysis reveals dynamic changes in the metabolic profile of patients with severe burns[J]. Burns Trauma,2024,12: tkae007.
|
[45] |
Jeschke MG,van Baar ME,Choudhry MA,et al. Burn injury[J]. Nat Rev Dis Primers,2020,6(1):1-11.
|
[46] |
Hoesel LM,Niederbichler AD,Schaefer J,et al. C5a-blockade improves burn-induced cardiac dysfunction[J]. J Immunol,2007,178(12): 7902-7910.
|
[47] |
Sinha S,Lin G,Ferenczi K. The skin microbiome and the gut-skin axis[J]. Clin dermatol,2021,39(5): 829-839.
|
[48] |
Holowacz S,Blondeau C,Guinobert I,et al. Lactobacillus salivarius LA307 and Lactobacillus rhamnosus LA305 attenuate skin inflammation in mice[J]. Benef Microbes,2018,9(2):299-309.
|
[49] |
Atabati H,Esmaeili SA,Saburi E,et al. Probiotics with ameliorating effects on the severity of skin inflammation in psoriasis:evidence from experimental and clinical studies[J]. J Cellular Physiol,2020,235(12):8925-8937.
|
[50] |
Patel BK,Patel KH,Huang RY,et al. The gut-skin microbiota axis and its role in diabetic wound healing—a review based on current literature[J]. Int J Mol Sci,2022,23(4):2375.
|
[51] |
Finnerty CC,Jeschke MG,Herndon DN,et al. Temporal cytokine profiles in severely burned patients: a comparison of adults and children[J]. Mol Med,2008,14(9-10):553-560.
|
[52] |
Hur J,Yang HT,Chun W,et al. Inflammatory cytokines and their prognostic ability in cases of major burn injury[J]. Ann Lab Med,2015,35(1):105-110.
|
[53] |
Tagliari E,Campos LF,Campos AC,et al. Effect of probiotic oral administration on skin wound healing in rats[J]. Arq Bras Cir Dig,2019,32(3):e1457.
|
[54] |
Lai Y,Di Nardo A,Nakatsuji T,et al. Commensal bacteria regulate Toll-like receptor 3-dependent inflammation after skin injury[J]. Nat Med,2009,15(12):1377-1382.
|
[55] |
Zhao F,Feng J,Li J,et al. Alterations of the gut microbiota in hashimoto's thyroiditis patients[J]. Thyroid,2018,28(2): 175-186.
|
[56] |
Fröhlich E,Wahl R. Microbiota and thyroid interaction in health and disease[J]. Trends Endocrinol Metab,2019,30(8):479-490.
|
[57] |
Knezevic J,Starchl C,Berisha AT,et al. Thyroid-gut-axis: how does the microbiota influence thyroid function?[J]. Nutrients,2020,12(6):1769.
|
[58] |
Jeschke MG,Barrow RE,Mlcak RP,et al. Endogenous anabolic hormones and hypermetabolism: effect of trauma and gender differences[J]. Ann Surg,2005,241(5): 759-767; discussion 767-768.
|
[59] |
Hao JW,Liu HS,Liu LY,et al. Citrus pectin protects mice from burn injury by modulating intestinal microbiota,GLP-1 secretion and immune response[J]. Inter Immunopharmacol,2024,131:111912.
|
[60] |
Frankiensztajn LM,Elliott E,Koren O. The microbiota and the hypothalamus-pituitary- adrenocortical (HPA) axis,implications for anxiety and stress disorders[J]. Curr Opin Neurobiol,2020,62:76-82.
|