切换至 "中华医学电子期刊资源库"

中华损伤与修复杂志(电子版) ›› 2025, Vol. 20 ›› Issue (05) : 447 -451. doi: 10.3877/cma.j.issn.1673-9450.2025.05.014

综述

脂肪干细胞治疗慢性创面优化策略的研究进展
姚丹娜, 肖宇杰, 冯蓉琴, 孙盼盼, 魏莱, 王洪涛()   
  1. 710032 西安,空军军医大学第一附属医院全军烧伤中心烧伤与皮肤外科
  • 收稿日期:2025-05-27 出版日期:2025-10-01
  • 通信作者: 王洪涛
  • 基金资助:
    陕西省重点产业创新链(群)课题(2023-ZDLSF-37); 空军军医大学临床研究计划(2023LC2317)

Research progress on optimization strategies for adipose-derived stem cells therapy in chronic wounds

Danna Yao, Yujie Xiao, Rongqin Feng, Panpan Sun, Lai Wei, Hongtao Wang()   

  1. Department of Burns and Cutaneous Surgery,the First Affiliated Hospital of Air Force Medical University,Xi'an 710032,China
  • Received:2025-05-27 Published:2025-10-01
  • Corresponding author: Hongtao Wang
引用本文:

姚丹娜, 肖宇杰, 冯蓉琴, 孙盼盼, 魏莱, 王洪涛. 脂肪干细胞治疗慢性创面优化策略的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2025, 20(05): 447-451.

Danna Yao, Yujie Xiao, Rongqin Feng, Panpan Sun, Lai Wei, Hongtao Wang. Research progress on optimization strategies for adipose-derived stem cells therapy in chronic wounds[J/OL]. Chinese Journal of Injury Repair and Wound Healing(Electronic Edition), 2025, 20(05): 447-451.

随着全球人口老龄化进程的加快,糖尿病足溃疡、压力性损伤、静脉溃疡等慢性创面发病率逐年升高,已成为临床救治的难点,严重影响患者生活质量,给医疗系统带来沉重负担。近年来,脂肪干细胞(ADSCs)在慢性创面治疗领域展现出巨大的应用潜力。然而,创面复杂的微环境严重影响ADSCs的存活与功能发挥。为解决这一问题,多种处理策略应运而生。本文聚焦慢性创面治疗中优化ADSCs修复效能的处理策略,从不同预处理方法、细胞因子联合使用以及生物材料与组织工程协同运载等方面,系统综述了近年来各类处理策略在增强ADSCs治疗慢性创面潜力方面的研究进展。同时,深入分析了各策略的作用机制、独特优势及局限性,旨在为推动ADSCs在慢性创面治疗领域的临床应用提供参考。

With the aging of the global population,the incidence of chronic wounds (such as diabetic foot ulcers,pressure injuries,venous ulcers) is increasing year by year,which has become a major challenge in clinical management,seriously compromising patient quality of life and imposing a heavy burden on the healthcare system. In recent years,adipose-derived stem cells (ADSCs) have shown great potential in the field of chronic wound therapy. However,the complex microenvironment of the wound seriously affects the survival and function of ADSCs. To address this challenge,a variety of optimization strategies have emerged. This article focuses on strategies to enhance the therapeutic efficacy of ADSCs for chronic wound treatment,systematically reviewing recent research progress in different treatment strategies,including various pretreatment methods,combination therapies with cytokines,and co-delivery systems utilizing biomaterials and tissue engineering. Furthermore, it critically analyzes the underlying mechanisms,unique advantages,and limitations of each strategy,aiming to provide a reference for advancing the clinical translation of ADSCs in chronic wound therapy.

[1]
Sun HSaeedi PKaruranga S,et al. IDF Diabetes Atlas: global,regional and country-level diabetes prevalence estimates for 2021 and projections for 2045[J]. Diabetes Res Clin Pract2022183: 109119.
[2]
Wang YWang CZheng L. Bibliometric analysis of systematic review and meta-analysis on diabetic foot ulcer[J]. Heliyon202410(6): e27534.
[3]
Peña OAMartin P. Cellular and molecular mechanisms of skin wound healing[J]. Nat Rev Mol Cell Biol202425(8): 599-616.
[4]
Veith APHenderson KSpencer A,et al. Therapeutic strategies for enhancing angiogenesis in wound healing[J]. Adv Drug Deliv Rev2019146: 97-125.
[5]
Tyeb SShiekh PAVerma V,et al. Adipose-derived stem cells (ADSCs) loaded gelatin-sericin-laminin cryogels for tissue regeneration in diabetic wounds[J]. Biomacromolecules202021(2): 294-304.
[6]
Kocan BMaziarz ATabarkiewicz J,et al. Trophic activity and phenotype of adipose tissue-derived mesenchymal stem cells as a background of their regenerative potential[J]. Stem Cells Int20172017: 1653254.
[7]
Gandolfi SSanouj AChaput B,et al. The role of adipose tissue-derived stromal cells,macrophages and bioscaffolds in cutaneous wound repair[J]. Biol Direct202419(1): 85.
[8]
An YLin STan X,et al. Exosomes from adipose-derived stem cells and application to skin wound healing[J]. Cell Prolif202154(3): e12993.
[9]
Hu YTao RChen L,et al. Exosomes derived from pioglitazone-pretreated MSCs accelerate diabetic wound healing through enhancing angiogenesis[J]. J Nanobiotechnology202119(1): 150.
[10]
Li YXiao YShang Y,et al. Exosomes derived from adipose tissue-derived stem cells alleviated H2O2-induced oxidative stress and endothelial-to-mesenchymal transition in human umbilical vein endothelial cells by inhibition of the mir-486-3p/Sirt6/Smad signaling pathway[J]. Cell Biol Toxicol202440(1): 39.
[11]
Dong YZhang YLi F,et al. GKT137831 in combination with adipose-derived stem cells alleviates high glucose-induced inflammaging and improves diabetic wound healing[J]. J Leukoc Biol2024115(5): 882-892.
[12]
Li SLi YWu Z,et al. Diabetic ferroptosis plays an important role in triggering on inflammation in diabetic wound[J]. Am J Physiol Endocrinol Metab2021321(4): E509-E520.
[13]
Kakudo NMorimoto NOgawa T,et al. Hypoxia enhances proliferation of human adipose-derived stem cells via HIF-1ɑ activation[J]. PLoS One201510(10): e0139890.
[14]
Li SSun JYang J,et al. Gelatin methacryloyl (GelMA) loaded with concentrated hypoxic pretreated adipose-derived mesenchymal stem cells(ADSCs) conditioned medium promotes wound healing and vascular regeneration in aged skin[J]. Biomater Res202327(1): 11.
[15]
Zhao YZhang MLu GL,et al. Hypoxic preconditioning enhances cellular viability and pro-angiogenic paracrine activity: the roles of VEGF-A and SDF-1a in rat adipose stem cells[J]. Front Cell Dev Biol20208: 580131.
[16]
Wang JWu HPeng Y,et al. Hypoxia adipose stem cell-derived exosomes promote high-quality healing of diabetic wound involves activation of PI3K/Akt pathways[J]. J Nanobiotechnology202119(1): 202.
[17]
Hu NCai ZJiang X,et al. Hypoxia-pretreated ADSC-derived exosome-embedded hydrogels promote angiogenesis and accelerate diabetic wound healing[J]. Acta Biomater2023157: 175-186.
[18]
He JFang BShan S,et al. Mechanical stretch promotes hypertrophic scar formation through mechanically activated cation channel Piezo1[J]. Cell Death Dis202112(3): 226.
[19]
Xue ZHu DTang H,et al. Mechanical force regulates the paracrine functions of ADSCs to assist skin expansion in rats[J]. Stem Cell Res Ther202415(1): 250.
[20]
He JShan SJiang T,et al. Mechanical stretch preconditioned adipose-derived stem cells elicit polarization of anti-inflammatory M2-like macrophages and improve chronic wound healing[J]. FASEB J202438(10): e23626.
[21]
Fang BLiu YZheng D,et al. The effects of mechanical stretch on the biological characteristics of human adipose-derived stem cells[J]. J Cell Mol Med201923(6): 4244-4255.
[22]
Maziarz AKocan BBester M,et al. How electromagnetic fields can influence adult stem cells: positive and negative impacts[J]. Stem Cell Res Ther20167(1): 54.
[23]
Sendera APikuła BBanaś-Ząbczyk A. Preconditioning of pesenchymal stem cells with electromagnetic fields and its impact on biological responses and "fate"-potential use in therapeutic applications[J]. Front Biosci (Landmark Ed)202328(11): 285.
[24]
Zerillo LColetta CCMadera JR,et al. Extremely low frequency-electromagnetic fields promote chondrogenic differentiation of adipose-derived mesenchymal stem cells through a conventional genetic program[J]. Sci Rep202414(1): 10182.
[25]
Tao ZLiu LWu M,et al. Metformin promotes angiogenesis by enhancing VEGFa secretion by adipose-derived stem cells via the autophagy pathway[J]. Regen Biomater202310: rbad043.
[26]
Li SZhao CShang G,et al. α-ketoglutarate preconditioning extends the survival of engrafted adipose-derived mesenchymal stem cells to accelerate healing of burn wounds[J]. Exp Cell Res2024439(1): 114095.
[27]
Cremers NALundvig DMvan Dalen SC,et al. Curcumin-induced heme oxygenase-1 expression prevents H2O2-induced cell death in wild type and heme oxygenase-2 knockout adipose-derived mesenchymal stem cells[J]. Int J Mol Sci201415(10): 17974-17999.
[28]
Azam MGhufran HButt H,et al. Curcumin preconditioning enhances the efficacy of adipose-derived mesenchymal stem cells to accelerate healing of burn wounds[J]. Burns Trauma20219: tkab021.
[29]
Liao NShi YZhang C,et al. Antioxidants inhibit cell senescence and preserve stemness of adipose tissue-derived stem cells by reducing ROS generation during long-term in vitro expansion[J]. Stem Cell Res Ther201910(1): 306.
[30]
Levy OKuai RSiren EMJ,et al. Shattering barriers toward clinically meaningful MSC therapies[J]. Sci Adv20206(30): eaba6884.
[31]
Srifa WKosaric NAmorin A,et al. Cas9-AAV6-engineered human mesenchymal stromal cells improved cutaneous wound healing in diabetic mice[J]. Nat Commun202011(1): 2470.
[32]
Lopez-Yus MGarcía-Sobreviela MPDel Moral-Bergos R,et al. Gene therapy based on mesenchymal stem cells derived from adipose tissue for the treatment of obesity and its metabolic complications[J]. Int J Mol Sci202324(8): 7468.
[33]
Xu JLiu XZhao F,et al. HIF1α overexpression enhances diabetic wound closure in high glucose and low oxygen conditions by promoting adipose-derived stem cell paracrine function and survival[J]. Stem Cell Res Ther202011(1): 148.
[34]
Song SZhang GChen X,et al. HIF-1α increases the osteogenic capacity of ADSCs by coupling angiogenesis and osteogenesis via the HIF-1α/VEGF/AKT/mTOR signaling pathway[J]. J Nanobiotechnology202321(1): 257.
[35]
Li YLi DYou L,et al. dCas9-based PDGFR-β activation ADSCs accelerate wound healing in diabetic mice through angiogenesis and ECM remodeling[J]. Int J Mol Sci202324(6): 5949.
[36]
Kim MHHong HNHong JP,et al. The effect of VEGF on the myogenic differentiation of adipose tissue derived stem cells within thermosensitive hydrogel matrices[J]. Biomaterials201031(6): 1213-1218.
[37]
Ebrahim NDessouky AAMostafa O,et al. Adipose mesenchymal stem cells combined with platelet-rich plasma accelerate diabetic wound healing by modulating the Notch pathway[J]. Stem Cell Res Ther202112(1): 392.
[38]
Leong JHong YTWu YF,et al. Surface tethering of inflammation-modulatory nanostimulators to stem cells for ischemic muscle repair[J]. ACS Nano202014(5): 5298-5313.
[39]
Brizio MMancini MLora M,et al. Cytokine priming enhances the antifibrotic effects of human adipose derived mesenchymal stromal cells conditioned medium[J]. Stem Cell Res Ther202415(1): 329.
[40]
Wang PCai FLi Y,et al. Emerging trends in the application of hydrogel-based biomaterials for enhanced wound healing: a literature review[J]. Int J Biol Macromol2024261(Pt 1): 129300.
[41]
Sridhar RLakshminarayanan RMadhaiyan K,et al. Electrosprayed nanoparticles and electrospun nanofibers based on natural materials: applications in tissue regeneration,drug delivery and pharmaceuticals[J]. Chem Soc Rev201544(3): 790-814.
[42]
Kong WBao YLi W,et al. Collaborative enhancement of diabetic wound healing and skin regeneration by recombinant human collagen hydrogel and hADSCs[J]. Adv Healthc Mater202413(29): e2401012.
[43]
Tang YTong XConrad B,et al. Injectable and in situ crosslinkable gelatin microribbon hydrogels for stem cell delivery and bone regeneration in vivo[J]. Theranostics202010(13): 6035-6047.
[44]
Sun YLi YDing X,et al. An NIR-responsive hydrogel loaded with polydeoxyribonucleotide nano-vectors for enhanced chronic wound healing[J]. Biomaterials2025314: 122789.
[1] 张子远, 姜笃银. 基于网络药理学和分子对接探讨沙棘促进烧烫伤创面修复的作用机制[J/OL]. 中华损伤与修复杂志(电子版), 2025, 20(05): 404-411.
[2] 黄宇哲, 吴镔莎. 脂肪干细胞及其衍生物在不同创面愈合中应用的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2025, 20(05): 442-446.
[3] 金方, 汤宋佳, 韩春茂, 王新刚, 张惟. 脂肪组织及其衍生物在皮肤修复与再生中的应用[J/OL]. 中华损伤与修复杂志(电子版), 2025, 20(04): 352-357.
[4] 高仪轩, 张筱伟, 李宝龙, 胡文治, 郝永红, 邹晓防. 对全厚微粒皮移植治疗自身免疫病相关性溃疡的临床疗效分析[J/OL]. 中华损伤与修复杂志(电子版), 2025, 20(04): 290-295.
[5] 彭巍, 刘旭, 刘佳琦. 脱细胞细胞外基质在皮肤损伤修复中的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2025, 20(02): 169-173.
[6] 靳顺欣, 庞嘉越成, 肖仕初. 基于上皮嵴微结构的移植物在促进创面愈合中的作用机制与临床应用进展[J/OL]. 中华损伤与修复杂志(电子版), 2025, 20(02): 174-178.
[7] 刘昌玲, 张金丽, 张志, 李孝建, 汤文彬, 胡逸萍, 陈宾, 谢晓娜. 负载人脂肪干细胞外泌体的甲基丙烯酰化明胶水凝胶对人皮肤成纤维细胞增殖和迁移的影响[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 517-525.
[8] 关丁丁, 李伟, 孔维诗, 包郁露, 孙瑜. 负载干细胞的光交联蛋白基水凝胶在组织工程中应用的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(05): 447-452.
[9] 侯义振, 张鲲, 卢仙明, 张小雷. 膀胱造瘘导致巨大膀胱结石一例报告[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(02): 259-261.
[10] 李晓, 张娇娇, 董友玉, 张在鹏, 蔡萌萌, 徐峰波. 间充质干细胞在再生医学中的基础研究与临床应用进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2025, 15(04): 229-237.
[11] 梁瑶瑶, 邬绿莹, 陈津. 负载干细胞外泌体水凝胶治疗糖尿病足溃疡的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2025, 15(02): 112-119.
[12] 万周程, 钟章锋, 钟侨霖, 王景浩, 刘婷, 王华军, 郑小飞. 中药有效成分结合生物材料在骨组织工程中作用的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(04): 249-253.
[13] 张昊悦, 朱慧婷, 吴鸿浩, 王业皇, 嵇灵, 王雅娴, 章阳. 主动灌洗引流技术应用于高位复杂性肛瘘手术后创面的前瞻性、多中心、随机对照研究[J/OL]. 中华结直肠疾病电子杂志, 2025, 14(01): 62-70.
[14] 张艺, 任秀君, 郭孟玮, 赵雅芳, 李一凡, 李佳阳, 任晓暄, 邬继红, 卢海洋. 电针预处理对脑缺血再灌注大鼠行为学及外周血内皮祖细胞的影响[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(02): 71-77.
[15] 李杨春雪, 高杰, 郭文治, 刘智. 远端缺血预处理器官保护与年龄相关性差异研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(12): 1150-1154.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?