切换至 "中华医学电子期刊资源库"

中华损伤与修复杂志(电子版) ›› 2026, Vol. 21 ›› Issue (01) : 75 -79. doi: 10.3877/cma.j.issn.1673-9450.2026.01.013

综述

RNA结合蛋白在糖尿病足溃疡中作用的研究进展
廖睿1, 查天建2, 刘小龙2,()   
  1. 1 830000 乌鲁木齐,新疆医科大学研究生院
    2 830000 乌鲁木齐,新疆维吾尔自治区人民医院烧伤创面修复科
  • 收稿日期:2025-09-17 出版日期:2026-02-01
  • 通信作者: 刘小龙
  • 基金资助:
    新疆维吾尔自治区科技计划项目(2024D01C82)

Research progress of RNA binding proteins in diabetic foot ulcers

Rui Liao1, Tianjian Zha2, Xiaolong Liu2,()   

  1. 1 Graduate School of Xinjiang Medical University, Urumqi 830000, China
    2 Department of Burns and Wound Repair Surgery,People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi 830000, China
  • Received:2025-09-17 Published:2026-02-01
  • Corresponding author: Xiaolong Liu
引用本文:

廖睿, 查天建, 刘小龙. RNA结合蛋白在糖尿病足溃疡中作用的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2026, 21(01): 75-79.

Rui Liao, Tianjian Zha, Xiaolong Liu. Research progress of RNA binding proteins in diabetic foot ulcers[J/OL]. Chinese Journal of Injury Repair and Wound Healing(Electronic Edition), 2026, 21(01): 75-79.

糖尿病足溃疡(DFU)是糖尿病最严重的慢性并发症之一,具有高致残率、高复发率及多重耐药性等临床特征。患者常因足部溃疡引发感染、功能状态下降等最终导致住院、截肢甚至死亡。DFU发病机制复杂,涉及慢性炎症、血管病变、细胞外基质代谢紊乱及神经损伤等多因素的交互作用。近年来,RNA结合蛋白(RBPs)在DFU病理进程中的调控作用逐渐成为研究热点。RBPs通过转录后调控机制,参与炎症因子表达、血管生成、胶原代谢及神经修复等关键病理过程的调控。因此,有必要对RBPs在DFU发生发展中的作用机制及研究进展进行综述,并重点探讨其作为治疗靶点的临床转化潜力,旨在为DFU的精准治疗提供新思路。

Diabetic foot ulcer (DFU) is one of the most serious chronic complications of diabetes, characterized by high disability and recurrence rates, as well as treatment resistance. DFU can lead to infection, declined functional status, hospitalization, lower limb amputation, and even death. The pathogenesis of DFU is complex, involving the interaction of multiple factors such as chronic inflammation, vascular lesions, extracellular matrix metabolism disorder, and nerve damage. Recently, the regulatory role of RNA binding proteins (RBPs) in pathogenesis of DFU has attracted increasing research interest. RBPs mediate post-transcriptional regulation of key pathological processes, such as the expression of inflammatory factors, angiogenesis, collagen metabolism, and nerve repair. Therefore, this article aims to review the mechanisms and research advances of RBPs in DFU development and progression, with a focus on their potential as therapeutic targets, thereby providing new insights for precision medicine in DFU.

[1]
吴晨葳,张书评,边红艳. 糖尿病足患者生存质量现状及其影响因素[J]. 中国卫生工程学202322(4):489-491. DOI:10.37155/2661-4766-0405-20.
[2]
Doğruel HA ydemir MBalci MK. Management of diabetic foot ulcers and the challenging points:an endocrine view[J]. World Journal of Diabetes202213(1):27. DOI: 10.4239/wjd.v13.i1.27.
[3]
Mcdermott KFang MBoulton AJ,et al. Etiology,epidemiology,and disparities in the burden of diabetic foot ulcers[J]. Diabetes Care202346(1):209-221. DOI: 10.2337/dci22-0043.
[4]
Wang SSun ZLei Z,et al. RNA-binding proteins and cancer metastasis[J]. Semin Cancer Biol202286(Pt 2):748-768. DOI: 10.1016/j.semcancer.2022.03.018.
[5]
Velázquez-Cruz ABaños-Jaime BDíaz-Quintana A,et al. Post-translational control of RNA-binding proteins and disease-related dysregulation[J]. Front Mol Biosci20218:658852. DOI: 10.3389/fmolb.2021.658852.
[6]
Wu XXu L. The RNA-binding protein HuR in human cancer:a friend or foe?[J]. Adv Drug Deliv Rev2022184:114179. DOI: 10. 1016/j. addr. 2022. 114179.
[7]
Varesi ACampagnoli LIMBarbieri A,et al. RNA binding proteins in senescence:a potential common linker for age-related diseases?[J]. Ageing Res Rev202388:101958. DOI: 10.1016/j.arr.2023.101958.
[8]
Eléouët MLu CZhou Y,et al. Insights on the biological functions and diverse regulation of RNA-binding protein 39 and their implication in human diseases[J]. Biochim Biophys Acta Gene Regul Mech20231866(1):194902. DOI:10.1016/j.bbagrm.2022.194902.
[9]
Chen XWu JLi Z,et al. Advances in the study of RNA-binding proteins in diabetic complications[J]. Mol Metab202262:101515. DOI: 10.1016/j.molmet.2022.101515.
[10]
陶克,曹涛,郝彤. 糖尿病足溃疡血管形成障碍的机制及干预策略[J]. 中华烧伤与创面修复杂志202541(2):120-126. DOI:10.3760/cma.j.cn501225-20241204-00474.
[11]
Sorber RAbularrage CJ. Diabetic foot ulcers:epidemiology and the role of multidisciplinary care teams[J]. Semin Vasc Surg202134(1):47-53. DOI: 10.1053/j.semvascsurg.2021.02.006.
[12]
Yang SHu LHan R,et al. Neuropeptides,inflammation,biofilms,and diabetic foot ulcers[J]. Exp Clin Endocrinol Diabetes2022130(7):439-446. DOI: 10.1055/a-1493-0458.
[13]
Luo YGuo QLiu C,et al. Adipose mesenchymal stem cell-derived extracellular vesicles regulate PINK1/parkin-mediated mitophagy to repair high glucose-induced dermal fibroblast senescence and promote wound healing in rats with diabetic foot ulcer[J]. Acta Diabetol202562(7):1041-1056. DOI: 10.1007/s00592-024-02422-x.
[14]
Gao XFeng QZhang Q,et al. Targeting enolase 1 reverses bortezomib resistance in multiple myeloma through YWHAZ/Parkin axis[J]. J Biomed Sci202532(1):9. DOI: 10.1186/s12929-024-01101-x.
[15]
Ayyasamy RFan SCzernik P,et al. 14-3-3ζ suppresses RANKL signaling by destabilizing TRAF6[J]. J Biol Chem2024300(7):107487. DOI: 10.1016/j.jbc.2024.107487.
[16]
Zhao YZhang KZou M,et al. Gga-miR-451 negatively regulates mycoplasma gallisepticum(HS strain)-induced inflammatory cytokine production via targeting YWHAZ[J]. Int J Mol Sci201819(4). DOI: 10.3390/ijms19041191.
[17]
Chen XYin JCao D,et al. The emerging roles of the RNA binding protein qki in cardiovascular development and function[J]. Front Cell Dev Biol20219:668659. DOI: 10.3389/fcell.2021.668659.
[18]
Wang LZhai DSRuan BJ,et al. Quaking deficiency amplifies inflammation in experimental endotoxemia via the aryl hydrocarbon receptor/signal transducer and activator of transcription 1-NF-κB pathway[J]. Front Immunol20178:1754. DOI: 10.3389/fimmu.2017.01754.
[19]
Wang HTang ZXie K,et al. Roquin-1 interaction with Regnase-1 inhibits the progression of rheumatoid arthritis via suppressing FGF2 expression and NF-κB pathway[J]. Inflamm Res202574(1):55. DOI: 10.1007/s00011-025-02012-9.
[20]
Majumder MChakraborty PMohan S,et al. HuR as a molecular target for cancer therapeutics and immune-related disorders[J]. Adv Drug Deliv Rev2022188:114442. DOI: 10.1016/j.addr.2022.114442.
[21]
Yugami MOkano HNakanishi A,et al. Analysis of the nucleocytoplasmic shuttling RNA-binding protein HNRNPU using optimized HITS-CLIP method[J]. PLoS One202015(4):e0231450. DOI:10.1371/journal.pone.0231450.
[22]
Xi ZHuang HHu J,et al. LINC00571 drives tricarboxylic acid cycle metabolism in triple-negative breast cancer through HNRNPK/ILF2/IDH2 axis[J]. J Exp Clin Cancer Res202443(1):22. DOI: 10.1186/s13046-024-02950-y.
[23]
Tang YJi HYan Y,et al. Enhancing diabetic foot ulcer healing:Impact of the regulation of the FUS and ILF2 RNA-binding proteins through negative pressure wound therapy[J]. Int J Mol Med202454(5). DOI: 10.3892/ijmm. 2024. 5427.
[24]
Sies HMailloux RJJakob U. Fundamentals of redox regulation in biology[J]. Nat Rev Mol Cell Biol202425(9):701-719. DOI: 10.1038/s41580-024-00730-2.
[25]
Bestehorn AVon Wirén JZeiler C,et al. Cytoplasmic mRNA decay controlling inflammatory gene expression is determined by pre-mRNa fate decision[J]. Mol Cell202585(4):742-755. e9. DOI: 10.1016/j.molcel.2025.01.001.
[26]
Asadi MRTalebi MGharesouran J,et al. Analysis of ROQUIN,Tristetraprolin(TTP),and BDNF/miR-16/TTP regulatory axis in late onset alzheimer's disease[J]. Front Aging Neurosci202214:933019. DOI: 10.3389/fnagi.2022.933019.
[27]
Zheng HZhang TZhang J,et al. AUF1-mediated inhibition of autophagic lysosomal degradation contributes to CagA stability and Helicobacter pylori-induced inflammation[J]. Gut Microbes202416(1):2382766. DOI: 10.1080/19490976.2024.2382766.
[28]
Salvato IRicciardi LDal Col J,et al. Expression of targets of the RNA-binding protein AUF-1 in human airway epithelium indicates its role in cellular senescence and inflammation[J]. Front Immunol202314:1192028. DOI: 10.3389/fimmu.2023.1192028.
[29]
Idrovo JPJacob AYang WL,et al. A deficiency in cold-inducible RNA-binding protein accelerates the inflammation phase and improves wound healing[J]. Int J Mol Med201637(2):423-428. DOI: 10.3892/ijmm.2016.2451.
[30]
Hu YLiu YQuan X,et al. RBM3 is an outstanding cold shock protein with multiple physiological functions beyond hypothermia[J]. J Cell Physiol2022237(10):3788-3802. DOI: 10.1002/jcp.30852.
[31]
Niu FLi ZRen Y,et al. Aberrant hyper-expression of the RNA binding protein GIGYF2 in endothelial cells modulates vascular aging and function[J]. Redox Biol202365:102824. DOI: 10.1016/j.redox.2023.102824.
[32]
Chen JLi XLiu H,et al. Bone marrow stromal cell-derived exosomal circular RNA improves diabetic foot ulcer wound healing by activating the nuclear factor erythroid 2-related factor 2 pathway and inhibiting ferroptosis[J]. Diabet Med202340(7):e15031. DOI: 10.1111/dme.15031.
[33]
Liang DLin W JRen M,et al. m6A reader YTHDC1 modulates autophagy by targeting SQSTM1 in diabetic skin[J]. Autophagy202218(6):1318-1337. DOI: 10.1080/15548627.2021.1974175.
[34]
Ren JZhao SLai J. Role and mechanism of COL3A1 in regulating the growth,metastasis,and drug sensitivity in cisplatin-resistant non-small cell lung cancer cells[J]. Cancer Biol Ther202425(1):2328382. DOI: 10.1080/15384047.2024.2328382.
[35]
Kuivaniemi HTromp G. Type Ⅲ collagen(COL3A1):gene and protein structure,tissue distribution,and associated diseases[J]. Gene2019707:151-171. DOI: 10.1016/j.gene.2019.05.003.
[36]
Xu ZZhou YLiu S,et al. KHSRP stabilizes m6A-Modified transcripts to activate FAK signaling and promote pancreatic ductal adenocarcinoma progression[J]. Cancer Res202484(21):3602-3616. DOI: 10.1158/0008-5472.CAN-24-0927.
[37]
Li WChen JYSun C,et al. Nanchangmycin regulates FYN,PTK2,and MAPK1/3 to control the fibrotic activity of human hepatic stellate cells[J]. Elife202211. DOI: 10.7554/eLife.74513.
[38]
Devos HZoidakis JRoubelakis MG,et al. Reviewing the regulators of COL1A1[J]. Int J Mol Sci202324(12). DOI: 10.3390/ijms241210004.
[39]
Moss NDWells KLTheis A,et al. Modulation of insulin secretion by RBFOX2-mediated alternative splicing[J]. Nat Commun202314(1):7732. DOI: 10.1038/s41467-023-43605-4.
[40]
Zhai KGu LYang Z,et al. RNA-binding protein CUGBP1 regulates insulin secretion via activation of phosphodiesterase 3B in mice[J]. Diabetologia201659(9):1959-1967. DOI: 10.1007/s00125-016-4005-5.
[41]
Xiong LGong YLiu H,et al. CircGlis3 promotes β-cell dysfunction by binding to heterogeneous nuclear ribonucleoprotein F and encoding Glis3-348aa protein[J]. iScience202427(1):108680. DOI: 10.1016/j.isci.2023.108680.
[42]
Mugabo YZhao CTan JJ,et al. 14-3-3ζ constrains insulin secretion by regulating mitochondrial function in pancreatic β cells[J]. JCI Insight20227(8). DOI: 10.1172/jci.insight.156378.
[43]
Zhang RLiu FYe S,et al. Proteomics profiles of blood glucose-related proteins involved in a Chinese longevity cohort[J]. Clin Proteomics202219(1):45. DOI: 10.1186/s12014-022-09382-w.
[44]
郝彤,曹涛,计鹏,等. 施万细胞在糖尿病周围神经病变中的作用研究进展[J]. 中华烧伤与创面修复杂志202339(12):1190-1194. DOI: 10.12677/ACM.2022.127975.
[45]
Yao ZFu LJia F,et al. Rethinking IRPs/IRE system in neurodegenerative disorders:looking beyond iron metabolism[J]. Ageing Res Rev202273:101511. DOI: 10.1016/j.arr.2021.101511.
[46]
Colucci-D'Amato LSperanza LVolpicelli F. Neurotrophic factor BDNF,physiological functions and therapeutic potential in depression,neurodegeneration and brain cancer[J]. Int J Mol Sci202021(20). DOI: 10.3390/ijms21207777.
[1] 张婉佳, 梁彤, 涂滨, 王丹郁. 高频超声应用于肱二头肌远端肌腱损伤的诊断价值[J/OL]. 中华医学超声杂志(电子版), 2025, 22(10): 976-981.
[2] 韦俊名, 许德玮, 林荣钊, 彭亮权. 富血小板血浆注射治疗肩袖部分撕裂的研究进展[J/OL]. 中华关节外科杂志(电子版), 2025, 19(06): 720-727.
[3] 潘子杭, 杨丽华, 孙轶群, 丁美军, 薛珂. 表皮干细胞来源外泌体在创面修复中应用的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2026, 21(01): 58-62.
[4] 何林霞, 相阳, 刘心如, 郑兴锋. 巨噬细胞代谢重编程在脓毒症急性肺损伤中作用的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2026, 21(01): 69-74.
[5] 汪黎, 王喻, 丁杰, 李文薇, 欧阳婧, 张旭. 凶险性前置胎盘输尿管损伤治疗策略分析[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(06): 753-758.
[6] 周福安, 陈戬. 经皮肾镜碎石取石术后肾功能恶化的围术期影响因素研究进展[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(06): 792-795.
[7] 唐健雄, 李绍杰, 李绍春. 疝病微创技术核心体系的发展与应用[J/OL]. 中华疝和腹壁外科杂志(电子版), 2025, 19(06): 605-608.
[8] 崔潇龙, 郭云童, 刘辉, 黄庆兴. 放射性肠损伤12例外科治疗经验与教训[J/OL]. 中华结直肠疾病电子杂志, 2025, 14(06): 559-566.
[9] 周懿, 黄容华, 刘政疆. 5-羟色胺与铁死亡介导的脓毒症心肌病的研究进展[J/OL]. 中华临床医师杂志(电子版), 2025, 19(08): 612-617.
[10] 俞若婷, 高威, 刘宇浩, 刘琛. 肺挫伤病理生理机制及相关治疗研究[J/OL]. 中华临床医师杂志(电子版), 2025, 19(07): 536-543.
[11] 周爽, 蔡东东, 胡敏. 急性心肌梗死患者血清Hcy、Cys-C、UA、脂蛋白a水平与心肌损伤程度的相关性研究[J/OL]. 中华卫生应急电子杂志, 2025, 11(06): 321-324.
[12] 邵燕, 童继春, 吴彩娟, 李冬梅, 金雅香, 郭姣. 损伤控制理念在多发肋骨骨折伴急性血气胸患者中的应用效果[J/OL]. 中华卫生应急电子杂志, 2025, 11(06): 341-345.
[13] 刘鑫, 王文惠, 吴守振. 脓毒症相关急性胃肠损伤患者I-FABP、D-乳酸及炎症因子变化及意义[J/OL]. 中华卫生应急电子杂志, 2025, 11(06): 351-355.
[14] 王彧姣, 付景伟, 曹颖, 关争梅, 王亚. 急诊危重患者一次性无损伤吸痰管的应用效果评价[J/OL]. 中华卫生应急电子杂志, 2025, 11(06): 361-364.
[15] 徐凤华, 路童, 朱连连, 王欢, 白黎智, 宋轶, 战丽彬, 路晓光. 大黄附子汤调控SLC7A11/GPX4轴抑制H/R诱导的Caco-2细胞铁死亡的作用研究[J/OL]. 中华卫生应急电子杂志, 2025, 11(06): 380-387.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?