切换至 "中华医学电子期刊资源库"

中华损伤与修复杂志(电子版) ›› 2019, Vol. 14 ›› Issue (02) : 91 -96. doi: 10.3877/cma.j.issn.1673-9450.2019.02.003

所属专题: 文献

论著

脂肪干细胞来源的外泌体促进肉芽组织来源的成纤维细胞增殖的初步研究
李全1, 崔凤瑞1,(), 巴特1, 王凌峰1, 李芳1, 陈强1, 周彪1, 闫增强1   
  1. 1. 014010 包头,内蒙古医科大学第三附属医院烧伤外科
  • 收稿日期:2019-02-01 出版日期:2019-04-01
  • 通信作者: 崔凤瑞
  • 基金资助:
    内蒙古自然科学基金项目(2017MS0877); 包头市科技计划项目(2017S2001-1-03)

Preliminary study of promotion effect of adipose derived stem cell-exosomes on fibroblast proliferation derived from granulation tissues

Quan Li1, Fengrui Cui1,(), Te Ba1, Lingfeng Wang1, Fang Li1, Qiang Chen1, Biao Zhou1, Zengqiang Yan1   

  1. 1. Department of Burns Surgery, Third Affiliated Hospital of Inner Mongolia Medical University, Baotou 014010, China
  • Received:2019-02-01 Published:2019-04-01
  • Corresponding author: Fengrui Cui
  • About author:
    Corresponding author: Cui Fengrui, Email:
引用本文:

李全, 崔凤瑞, 巴特, 王凌峰, 李芳, 陈强, 周彪, 闫增强. 脂肪干细胞来源的外泌体促进肉芽组织来源的成纤维细胞增殖的初步研究[J]. 中华损伤与修复杂志(电子版), 2019, 14(02): 91-96.

Quan Li, Fengrui Cui, Te Ba, Lingfeng Wang, Fang Li, Qiang Chen, Biao Zhou, Zengqiang Yan. Preliminary study of promotion effect of adipose derived stem cell-exosomes on fibroblast proliferation derived from granulation tissues[J]. Chinese Journal of Injury Repair and Wound Healing(Electronic Edition), 2019, 14(02): 91-96.

目的

研究脂肪干细胞来源的外泌体(ADSC-Exo)能否促进肉芽组织来源的成纤维细胞的增殖。

方法

取内蒙古医科大学第三附属医院术后废弃脂肪组织,分离培养脂肪干细胞(ADSC),超滤浓缩离心方法收集ADSC-Exo,电子显微镜下观察其形态,Western Blotting测定表面标志物,Nanosight分析仪检测粒径和浓度;取烧伤创面的肉芽组织,分离培养肉芽组织成纤维细胞,进行波形蛋白免疫组织化学染色。成纤维细胞划痕实验设立空白组和ADSC-Exo组,检测ADSC-Exo在培养24、48 h对成纤维细胞的迁移作用。Transwell共培养实验设立空白对照组、ADSC-Exo共培养组和ADSC共培养组,检测ADSC-Exo与ADSC在培养24、48、72、96 h对成纤维细胞的增殖作用。成纤维细胞划痕实验结果比较采用独立样本t检验;Transwell共培养实验结果采用单因素方差分析。

结果

电子显微镜下ADSC-Exo可见囊泡结构,直径在40~100 nm之间,ADSC-Exo标志物CD81、CD63的蛋白表达阳性,Nanosight检测显示其直径峰值聚集于55 nm。成纤维细胞镜下外形呈多角形或长梭形,波形蛋白免疫组织化学染色示细胞质呈棕黄色。培养24 h,ADSC-Exo组划痕迁移面积(46.2±9.8)%与空白组(31.7±8.6)%比较,差异有统计学意义(t=2.72, P<0.05);培养48 h,ADSC-Exo组迁移面积(85.5±5.3)%与空白组(71.2±8.9)%比较,差异有统计学意义(t=3.37, P<0.01)。Transwell共培养结果示培养48 h ADSC共培养组吸光度值(0.37±0.05)与空白对照组(0.29±0.06)比较差异有统计学意义(P<0.05);培养72 h,ADSC-Exo共培养组吸光度值(0.51±0.05)和ADSC共培养组吸光度值(0.53±0.08)显著高于空白对照组(0.38±0.06),培养96 h,ADSC-Exo共培养组吸光度值(0.68±0.07)和ADSC共培养组吸光度值(0.72±0.11)显著高于空白对照组(0.54±0.07),差异均有统计学意义(P值均小于0.05)。

结论

超滤浓缩离心方法能够分离ADSC-Exo;ADSC-Exo可显著促进肉芽组织来源成纤维细胞的增殖和迁移能力。

Objective

To study of promotion effect of adipose derived stem cells-exosomes (ADSC-Exo) on fibroblast proliferation derived from granulation tissues.

Methods

Waste adipose tissue after operation was collected from Third Affiliated Hospital of Inner Mongolia Medical University, ADSC-Exo were isolated by using ultrafiltration method, morphology of ADSC-Exo was observed by Nanosight and electron microscope, expression of proteins was detected by Western Blotting, particle size and concentration were measured by Nanosight analyzer. Granulation tissue from burn wounds was extracted; immunological cell staining was performed to observe the Vimentin in fibroblasts derived from granulation tissue. The effect of ADSC-Exo migration behavior on fibroblast was verified by scratch adhesion test at the time point of 24 h and 48 h. Blank control, ADSC-Exo and ADSC co-culture group were set in Transwell co-culture experiment, the promotion effect of ADSC and ADSC-Exo on fibroblast was verified by Transwell co-culture system at the time point of 24, 48, 72 and 96 h. The results of fibroblast scratch test were compared by independent sample t test, and the results of Transwell co-culture experiment were analyzed by one-way ANOVA.

Results

Electron microscope analysis showed ADSC-Exo had the diameter of 40-100 nm with characteristic morphology. The expression of CD81 and CD63 on ADSC-Exo was detected by Western Blotting, the peak diameter of ADSC-Exo detected by Nanosight was 55 nm. The shape of fibroblasts was long spindle under the microscope and histochemical staining of Vimentin showed the cytoplasm was brown. The scratch migration area of fibroblasts treated with ADSC-Exo(46.2±9.8)% for 24 h had statistical significance when comparing with blank group (31.7±8.6) % (t=2.72, P<0.05); the scratch migration area of fibroblasts treated with ADSC-Exo(85.5±5.3)% for 48 h had statistical significance when comparing with blank group(71.2±8.9)%(t=3.37, P<0.01). Transwell co-culture showed that ADSC group (0.37±0.05)was significantly higher in absorbance value than blank control group (0.29±0.06) at 48 h(P<0.05); the absorbance value of ADSC-Exo co-culture group (0.51±0.05) and ADSC co-culture group (0.53±0.08) cultured for 72 h were significantly higher than that of blank control group (0.38±0.06); the absorbance value of ADSC-Exo group (0.68±0.07) and ADSC group (0.72±0.11) cultured for 96 h were significantly higher than that of blank control group (0.54±0.07), the differences were all statistically significant (with P values below 0.05).

Conclusion

ADSC-Exo isolated by ultrafiltration method is stable; ADSC-Exo promotes fibroblasts migration behavior significantly and has promotion effect on fibroblast derived from granulation tissues.

图1 Transwell培养基原理和实验照片
图2 ADSC-Exo电子显微镜下照片和Western Blotting鉴定结果
图3 Nanosight测定ADSC-Exo粒径与浓度结果
图4 成纤维细胞分离和鉴定结果
图5 空白组和ADSC-Exo组在成纤维细胞0、24、48 h划痕实验结果;ADSC-Exo为脂肪干细胞来源的外泌体
图6 不同组别成纤维细胞Tranwell共培养结果,同一时间点与空白对照组比较,aP<0.05,bP<0.01
[1]
Cuttle L, Kempf M, Liu PY, et al. The optimal duration and delay of first aid treatment for deep partial thickness burn injuries [J]. Burns, 2010, 36(5): 673-679.
[2]
杜娟,刘雪来. 皮肤成纤维细胞"干"性特征及其在创伤治疗中的应用前景[J/CD]. 中华损伤与修复杂志(电子版), 2018, 13(3): 230-233.
[3]
Zhang LX, Shen LL, Ge SH, et al. Systemic bmsc homing in the regeneration of pulp-like tissue and the enhancing effect of stromal cell-derived factor-1 on bmsc homing [J]. Int J Clin Exp Pathol, 2015, 8(9): 10261-10271.
[4]
Li T, Yan Y, Wang B, et al. Exosomes derived from human umbilical cord mesenchymal stem cells alleviate liver fibrosis [J]. Stem Cells Dev, 2013, 22(6): 845-854.
[5]
杨飞,谢卫国. 成人腹部来源脂肪干细胞生物学特性研究[J/CD]. 中华损伤与修复杂志(电子版), 2017, 12(6): 425-431.
[6]
Nakamura Y, Miyaki S, Ishitobi H, et al. Mesenchymal-stem-cell-derived exosomes accelerate skeletal muscle regeneration [J]. FEBS Lett, 2015, 589(11): 1257-1265.
[7]
Mobergslien A, Sioud M. Exosome-derived mirnas and cellular mirnas activate innate immunity [J]. J Innate Immun, 2014, 6(1): 105-110.
[8]
Gauthier SA, Perez-Gonzalez R, Sharma A, et al. Enhanced exosome secretion in down syndrome brain- a protective mechanism to alleviate neuronal endosomal abnormalities [J]. Acta Neuropathol Commun, 2017, 5(1): 65.
[9]
Chen B, Li Q, Zhao B, et al. Stem cell-derived extracellular vesicles as a novel potential therapeutic tool for tissue repair [J]. Stem Cells Transl Med, 2017, 6(9): 1753-1758.
[10]
Ko SF, Yip HK, Zhen YY, et al. Adipose-derived mesenchymal stem cell exosomes suppress hepatocellular carcinoma growth in a rat model: Apparent diffusion coefficient, natural killer t-cell responses, and histopathological features [J]. Stem Cells Int, 2015: 853506.
[11]
肖春红,冉曦,冉新泽. 干细胞治疗皮肤创伤的研究[J/CD]. 中华损伤与修复杂志(电子版), 2016, 11(5): 357-360.
[12]
New SE, Alvarez-Gonzalez C, Vagaska B, et al. A matter of identity-phenotype and differentiation potential of human somatic stem cells [J]. Stem Cell Res, 2015, 15(1): 1-13.
[13]
曹胜军,王凌峰,巴特,等. 脂肪源性间充质干细胞的基础与临床应用研究进展[J]. 中华烧伤杂志,2017, 33(3): 184-189.
[14]
李洪超,金银鹏,王皙,等. 人脂肪干细胞及其外泌体的分离与鉴定[J]. 中国组织工程研究,2018, 22(13): 2033-2038.
[15]
Cabral J, Ryan AE, Griffin MD, et al. Extracellular vesicles as modulators of wound healing [J]. Adv Drug Deliv Rev, 2018, 129: 394-406.
[16]
Hu L, Wang J, Zhou X, et al. Exosomes derived from human adipose mensenchymal stem cells accelerates cutaneous wound healing via optimizing the characteristics of fibroblasts [J]. Sci Rep, 2016, 6: 32993.
[17]
Li P, Kaslan M, Lee SH, et al. Progress in exosome isolation techniques[J]. Theranostics, 2017, 7(3): 789-804.
[18]
Quesenberry PJ, Dooner MS, Aliotta JM. Stem cell plasticity revisited: The continuum marrow model and phenotypic changes mediated by microvesicles[J]. Exp Hematol, 2010, 38(7): 581-592.
[1] 王岩, 马剑雄, 郎爽, 董本超, 田爱现, 李岩, 孙磊, 靳洪震, 卢斌, 王颖, 柏豪豪, 马信龙. 外泌体在骨质疏松症诊疗中应用的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(05): 673-678.
[2] 贺敬龙, 孙炜, 高明宏, 谢伟, 姜骆永, 何琦非, 岳家吉. 外泌体非编码RNA在骨关节炎发病机制中的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(04): 520-527.
[3] 代雯荣, 赵丽娟, 李智慧. 细胞外囊泡对胚胎着床影响的研究进展[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 616-620.
[4] 涂家金, 廖武强, 刘金晶, 涂志鹏, 毛远桂. 严重烧伤患者鲍曼不动杆菌血流感染的危险因素及预后分析[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 491-497.
[5] 王成, 张慧君, 覃凤均, 陈辉. 网状植皮与ReCell表皮细胞种植在深Ⅱ度烧伤治疗中的疗效对比[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 498-502.
[6] 姚咏明. 如何精准评估烧伤脓毒症患者免疫状态[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 552-552.
[7] 中华医学会烧伤外科学分会小儿烧伤学组. 儿童烧伤早期休克液体复苏专家共识(2023版)[J]. 中华损伤与修复杂志(电子版), 2023, 18(05): 371-376.
[8] 蔡柔妹, 曾洁梅, 黄伟丽, 谢文敏, 刘燕丹, 吴漫君, 蔡楚燕. 利用QC小组干预降低经烧伤创面股静脉置管导管相关性感染发生率的临床观察[J]. 中华损伤与修复杂志(电子版), 2023, 18(05): 399-404.
[9] 何雪锋, 赵世新, 李珮珊, 刘恒登, 谢举临. 卡奴卡叶提取物通过增强真皮成纤维细胞功能促进大鼠创面修复的效果观察[J]. 中华损伤与修复杂志(电子版), 2023, 18(05): 405-412.
[10] 贾蔓箐, 卞婧, 周业平. 对小剂量胰岛素局部注射促进脂肪干细胞移植成活及改善糖尿病创面愈合临床观察[J]. 中华损伤与修复杂志(电子版), 2023, 18(04): 312-316.
[11] 高雷, 李芳, 巴雅力嘎, 李全, 巴特. 干细胞源性外泌体在创伤修复中免疫作用的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(04): 364-367.
[12] 江振剑, 蒋明, 黄大莉. TK1、Ki67蛋白在分化型甲状腺癌组织中的表达及预后价值研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 623-626.
[13] 李颖思, 符芳, 杨昕, 邓琼, 周航, 程肯, 李东至, 廖灿. 单细胞RNA测序技术探究CCN2基因在特纳综合征胎儿颈部淋巴水囊瘤中的关键作用[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 220-228.
[14] 王楚风, 蒋安. 原发性肝癌的分子诊断[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 499-503.
[15] 王燕, 郭蕊, 王淑杰. 老年烧伤气管切开患者死亡风险诊断模型构建及对策分析[J]. 中华诊断学电子杂志, 2023, 11(04): 249-253.
阅读次数
全文


摘要