1 |
Sonnemann KJ, Bement WM. Wound repair: toward understanding and integration of single-cell and multicellular wound responses[J]. Annu Rev Cell Dev Biol, 2011, 27: 237-263.
|
2 |
Rowan MP, Cancio LC, Elster EA, et al. Burn wound healing and treatment: review and advancements[J]. Crit Care, 2015, 19: 243.
|
3 |
Oryan A, Alemzadeh E, Moshiri A. Burn wound healing: present concepts, treatment strategies and future directions[J]. J Wound Care, 2017, 26(1): 5-19.
|
4 |
Holmes JH 4th, Molnar JA, Shupp JW, et al. Demonstration of the safety and effectiveness of the RECELL® System combined with split-thickness meshed autografts for the reduction of donor skin to treat mixed-depth burn injuries[J]. Burns, 2019, 45(4): 772-782.
|
5 |
Meuli M, Hartmann-Fritsch F, Hüging M, et al. A Cultured Autologous Dermo-epidermal Skin Substitute for Full-Thickness Skin Defects: A Phase I, Open, Prospective Clinical Trial in Children[J]. Plast Reconstr Surg, 2019, 144(1): 188-198.
|
6 |
Fernando MR, Jiang C, Krzyzanowski GD, et al. New evidence that a large proportion of human blood plasma cell-free DNA is localized in exosomes[J]. PLoS One, 2017, 12(8): e0183915.
|
7 |
Ghosh D, Mcgrail DJ, Dawson MR. TGF-β1 Pretreatment Improves the Function of Mesenchymal Stem Cells in the Wound Bed[J]. Front Cell Dev Biol, 2017, 5: 28.
|
8 |
Swaminathan M, Stafford-Smith M, Chertow GM, et al. Allogeneic Mesenchymal Stem Cells for Treatment of AKI after Cardiac Surgery[J]. J Am Soc Nephrol, 2018, 29(1): 260-267.
|
9 |
Ghatak S, Maytin EV, Mack JA, et al. Roles of Proteoglycans and Glycosaminoglycans in Wound Healing and Fibrosis[J]. Int J Cell Biol, 2015, 2015: 834893.
|
10 |
Fiorenza A, Barco A. Role of Dicer and the miRNA system in neuronal plasticity and brain function[J]. Neurobiol Learn Mem, 2016, 135: 3-12.
|
11 |
Michlewski G, Cáceres JF. Post-transcriptional control of miRNA biogenesis[J]. RNA, 2019, 25(1): 1-16.
|
12 |
Li B, Luan S, Chen J, et al. The MSC-Derived Exosomal lncRNA H19 Promotes Wound Healing in Diabetic Foot Ulcers by Upregulating PTEN via MicroRNA-152-3p[J]. Mol Ther Nucleic Acids, 2020, 19: 814-826.
|
13 |
Lv Q, Deng J, Chen Y, et al. Engineered Human Adipose Stem-Cell-Derived Exosomes Loaded with miR-21-5p to Promote Diabetic Cutaneous Wound Healing[J]. Mol Pharm, 2020, 17(5): 1723-1733.
|
14 |
Landén NX, Li D, Ståhle M. Transition from inflammation to proliferation: a critical step during wound healing[J]. Cell Mol Life Sci, 2016, 73(20): 3861-3885.
|
15 |
Li X, Liu L, Yang J, et al. Exosome Derived From Human Umbilical Cord Mesenchymal Stem Cell Mediates MiR-181c Attenuating Burn-induced Excessive Inflammation[J]. EBioMedicine, 2016, 8: 72-82.
|
16 |
Ti D, Hao H, Tong C, et al. LPS-preconditioned mesenchymal stromal cells modify macrophage polarization for resolution of chronic inflammation via exosome-shuttled let-7b[J]. J Transl Med, 2015, 13: 308.
|
17 |
Xu D, Song M, Chai C, et al. Exosome-encapsulated miR-6089 regulates inflammatory response via targeting TLR4[J]. J Cell Physiol, 2019, 234(2): 1502-1511.
|
18 |
王晓. 胎儿真皮间充质干细胞外泌体促进皮肤创面愈合的机制研究[D]. 济南:山东大学,2019.
|
19 |
陈涛,高绍莹,郝艺,等. 人羊膜间充质干细胞外泌体通过微小RNA-135a促进成纤维细胞迁移实验研究[J]. 中国修复重建外科杂志,2020, 34(2): 234-239.
|
20 |
Yang C, Luo L, Bai X, et al. Highly-expressed micoRNA-21 in adipose derived stem cell exosomes can enhance the migration and proliferation of the HaCaT cells by increasing the MMP-9 expression through the PI3K/AKT pathway[J]. Arch Biochem Biophys, 2020, 681: 108259.
|
21 |
Wang J, Qiu Y, Shi NW, et al. microRNA-21 mediates the TGF-β1-induced migration of keratinocytes via targeting PTEN[J]. Eur Rev Med Pharmacol Sci, 2016, 20(18): 3748-3759.
|
22 |
Norton KA, Popel AS. Effects of endothelial cell proliferation and migration rates in a computational model of sprouting angiogenesis[J]. Sci Rep, 2016, 6: 36992.
|
23 |
陈俊秋,黄梁浒. 间充质干细胞及其外泌体促血管再生的分子机制研究进展[J]. 中国实验血液学杂志,2018, 26(6): 1858-1862.
|
24 |
Iqbal T, Saaiq M, Ali Z. Epidemiology and outcome of burns: early experience at the country′s first national burns centre[J]. Burns, 2013, 39(2): 358-362.
|
25 |
Liang X, Zhang L, Wang S, et al. Exosomes secreted by mesenchymal stem cells promote endothelial cell angiogenesis by transferring miR-125a[J]. J Cell Sci, 2016, 129(11): 2182-2189.
|
26 |
Kang T, Jones TM, Naddell C, et al. Adipose-Derived Stem Cells Induce Angiogenesis via Microvesicle Transport of miRNA-31[J]. Stem Cells Transl Med, 2016, 5(4): 440-450.
|
27 |
Hu Y, Rao SS, Wang ZX, et al. Exosomes from human umbilical cord blood accelerate cutaneous wound healing through miR-21-3p-mediated promotion of angiogenesis and fibroblast function[J]. Theranostics, 2018, 8(1): 169-184.
|
28 |
Xu J, Bai S, Cao Y, et al. miRNA-221-3p in Endothelial Progenitor Cell-Derived Exosomes Accelerates Skin Wound Healing in Diabetic Mice[J]. Diabetes Metab Syndr Obes, 2020, 13: 1259-1270.
|
29 |
Baquir B, Hancock RE. Exosomes, your body′s answer to immune health[J]. Ann Transl Med, 2017, 5(4): 81.
|
30 |
Fang S, Xu C, Zhang Y, et al. Umbilical Cord-Derived Mesenchymal Stem Cell-Derived Exosomal MicroRNAs Suppress Myofibroblast Differentiation by Inhibiting the Transforming Growth Factor-β/SMAD2 Pathway During Wound Healing[J]. Stem Cells Transl Med, 2016, 5(10): 1425-1439.
|
31 |
Zhu HY, Li C, Bai WD, et al. MicroRNA-21 regulates hTERT via PTEN in hypertrophic scar fibroblasts[J]. PLoS One, 2014, 9(5): e97114.
|