切换至 "中华医学电子期刊资源库"

中华损伤与修复杂志(电子版) ›› 2021, Vol. 16 ›› Issue (01) : 78 -80. doi: 10.3877/cma.j.issn.1673-9450.2021.01.016

所属专题: 文献

综述

外泌体携带的微小RNA在创面修复中的研究进展
德奇1, 巴特2,(), 王宏宇1, 周彪2   
  1. 1. 010110 呼和浩特,内蒙古医科大学第三临床医学院
    2. 014010 包头,内蒙古包钢医院烧伤外科,内蒙古烧伤研究所
  • 收稿日期:2020-12-23 出版日期:2021-02-01
  • 通信作者: 巴特
  • 基金资助:
    内蒙古自治区自然科学基金项目(2015MS0815,2020MS08022); 内蒙古医科大学科技百万工程(联合)项目(YKD2016KJBW(LH)041)

Research progress of the microRNA carried by exosomes in wound repair

Qi De1, Te Ba2,(), Hongyu Wang1, Biao Zhou2   

  1. 1. Third Clinical Medical College of Inner Mongolia Medical University, Huhehot 010110, China
    2. Department of Burn Surgery, Inner Mongolia Burn Research Institute, Inner Mongolia BaoGang Hospital, Baotou 014010, China
  • Received:2020-12-23 Published:2021-02-01
  • Corresponding author: Te Ba
引用本文:

德奇, 巴特, 王宏宇, 周彪. 外泌体携带的微小RNA在创面修复中的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2021, 16(01): 78-80.

Qi De, Te Ba, Hongyu Wang, Biao Zhou. Research progress of the microRNA carried by exosomes in wound repair[J/OL]. Chinese Journal of Injury Repair and Wound Healing(Electronic Edition), 2021, 16(01): 78-80.

目前国内外均有大量文献表明外泌体在创面修复过程中能够发挥积极作用,但其具体机制尚不明确。近年来,已有研究发现外泌体中的微小RNA(miRNA)能够调节细胞反应,进而促进创面修复。本文对外泌体携带的miRNA在创面修复中的作用及相关机制进行综述,以期为更好地解决创面修复中的问题提供新策略。

At present, there are a large number of literatures at home and abroad indicating that exosomes can play an active role in the process of wound repair, but the specific mechanism is not clear. In recent years, it has been found that microRNA (miRNA) in exosomes can regulate cellular responses, which in turn promote wound repair. This article reviews the role of miRNA carried by exosomes in wound repair and the related mechanisms in order to provide new strategies for solving problems in wound repair.

1
Sonnemann KJ, Bement WM. Wound repair: toward understanding and integration of single-cell and multicellular wound responses[J]. Annu Rev Cell Dev Biol, 2011, 27: 237-263.
2
Rowan MP, Cancio LC, Elster EA, et al. Burn wound healing and treatment: review and advancements[J]. Crit Care, 2015, 19: 243.
3
Oryan A, Alemzadeh E, Moshiri A. Burn wound healing: present concepts, treatment strategies and future directions[J]. J Wound Care, 2017, 26(1): 5-19.
4
Holmes JH 4th, Molnar JA, Shupp JW, et al. Demonstration of the safety and effectiveness of the RECELL® System combined with split-thickness meshed autografts for the reduction of donor skin to treat mixed-depth burn injuries[J]. Burns, 2019, 45(4): 772-782.
5
Meuli M, Hartmann-Fritsch F, Hüging M, et al. A Cultured Autologous Dermo-epidermal Skin Substitute for Full-Thickness Skin Defects: A Phase I, Open, Prospective Clinical Trial in Children[J]. Plast Reconstr Surg, 2019, 144(1): 188-198.
6
Fernando MR, Jiang C, Krzyzanowski GD, et al. New evidence that a large proportion of human blood plasma cell-free DNA is localized in exosomes[J]. PLoS One, 2017, 12(8): e0183915.
7
Ghosh D, Mcgrail DJ, Dawson MR. TGF-β1 Pretreatment Improves the Function of Mesenchymal Stem Cells in the Wound Bed[J]. Front Cell Dev Biol, 2017, 5: 28.
8
Swaminathan M, Stafford-Smith M, Chertow GM, et al. Allogeneic Mesenchymal Stem Cells for Treatment of AKI after Cardiac Surgery[J]. J Am Soc Nephrol, 2018, 29(1): 260-267.
9
Ghatak S, Maytin EV, Mack JA, et al. Roles of Proteoglycans and Glycosaminoglycans in Wound Healing and Fibrosis[J]. Int J Cell Biol, 2015, 2015: 834893.
10
Fiorenza A, Barco A. Role of Dicer and the miRNA system in neuronal plasticity and brain function[J]. Neurobiol Learn Mem, 2016, 135: 3-12.
11
Michlewski G, Cáceres JF. Post-transcriptional control of miRNA biogenesis[J]. RNA, 2019, 25(1): 1-16.
12
Li B, Luan S, Chen J, et al. The MSC-Derived Exosomal lncRNA H19 Promotes Wound Healing in Diabetic Foot Ulcers by Upregulating PTEN via MicroRNA-152-3p[J]. Mol Ther Nucleic Acids, 2020, 19: 814-826.
13
Lv Q, Deng J, Chen Y, et al. Engineered Human Adipose Stem-Cell-Derived Exosomes Loaded with miR-21-5p to Promote Diabetic Cutaneous Wound Healing[J]. Mol Pharm, 2020, 17(5): 1723-1733.
14
Landén NX, Li D, Ståhle M. Transition from inflammation to proliferation: a critical step during wound healing[J]. Cell Mol Life Sci, 2016, 73(20): 3861-3885.
15
Li X, Liu L, Yang J, et al. Exosome Derived From Human Umbilical Cord Mesenchymal Stem Cell Mediates MiR-181c Attenuating Burn-induced Excessive Inflammation[J]. EBioMedicine, 2016, 8: 72-82.
16
Ti D, Hao H, Tong C, et al. LPS-preconditioned mesenchymal stromal cells modify macrophage polarization for resolution of chronic inflammation via exosome-shuttled let-7b[J]. J Transl Med, 2015, 13: 308.
17
Xu D, Song M, Chai C, et al. Exosome-encapsulated miR-6089 regulates inflammatory response via targeting TLR4[J]. J Cell Physiol, 2019, 234(2): 1502-1511.
18
王晓. 胎儿真皮间充质干细胞外泌体促进皮肤创面愈合的机制研究[D]. 济南:山东大学,2019.
19
陈涛,高绍莹,郝艺,等. 人羊膜间充质干细胞外泌体通过微小RNA-135a促进成纤维细胞迁移实验研究[J]. 中国修复重建外科杂志,2020, 34(2): 234-239.
20
Yang C, Luo L, Bai X, et al. Highly-expressed micoRNA-21 in adipose derived stem cell exosomes can enhance the migration and proliferation of the HaCaT cells by increasing the MMP-9 expression through the PI3K/AKT pathway[J]. Arch Biochem Biophys, 2020, 681: 108259.
21
Wang J, Qiu Y, Shi NW, et al. microRNA-21 mediates the TGF-β1-induced migration of keratinocytes via targeting PTEN[J]. Eur Rev Med Pharmacol Sci, 2016, 20(18): 3748-3759.
22
Norton KA, Popel AS. Effects of endothelial cell proliferation and migration rates in a computational model of sprouting angiogenesis[J]. Sci Rep, 2016, 6: 36992.
23
陈俊秋,黄梁浒. 间充质干细胞及其外泌体促血管再生的分子机制研究进展[J]. 中国实验血液学杂志,2018, 26(6): 1858-1862.
24
Iqbal T, Saaiq M, Ali Z. Epidemiology and outcome of burns: early experience at the country′s first national burns centre[J]. Burns, 2013, 39(2): 358-362.
25
Liang X, Zhang L, Wang S, et al. Exosomes secreted by mesenchymal stem cells promote endothelial cell angiogenesis by transferring miR-125a[J]. J Cell Sci, 2016, 129(11): 2182-2189.
26
Kang T, Jones TM, Naddell C, et al. Adipose-Derived Stem Cells Induce Angiogenesis via Microvesicle Transport of miRNA-31[J]. Stem Cells Transl Med, 2016, 5(4): 440-450.
27
Hu Y, Rao SS, Wang ZX, et al. Exosomes from human umbilical cord blood accelerate cutaneous wound healing through miR-21-3p-mediated promotion of angiogenesis and fibroblast function[J]. Theranostics, 2018, 8(1): 169-184.
28
Xu J, Bai S, Cao Y, et al. miRNA-221-3p in Endothelial Progenitor Cell-Derived Exosomes Accelerates Skin Wound Healing in Diabetic Mice[J]. Diabetes Metab Syndr Obes, 2020, 13: 1259-1270.
29
Baquir B, Hancock RE. Exosomes, your body′s answer to immune health[J]. Ann Transl Med, 2017, 5(4): 81.
30
Fang S, Xu C, Zhang Y, et al. Umbilical Cord-Derived Mesenchymal Stem Cell-Derived Exosomal MicroRNAs Suppress Myofibroblast Differentiation by Inhibiting the Transforming Growth Factor-β/SMAD2 Pathway During Wound Healing[J]. Stem Cells Transl Med, 2016, 5(10): 1425-1439.
31
Zhu HY, Li C, Bai WD, et al. MicroRNA-21 regulates hTERT via PTEN in hypertrophic scar fibroblasts[J]. PLoS One, 2014, 9(5): e97114.
[1] 刘昌玲, 张金丽, 张志, 李孝建, 汤文彬, 胡逸萍, 陈宾, 谢晓娜. 负载人脂肪干细胞外泌体的甲基丙烯酰化明胶水凝胶对人皮肤成纤维细胞增殖和迁移的影响[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 517-525.
[2] 雷子威, 凌萍, 沈纵, 魏晨如, 朱邦晖, 伍国胜, 孙瑜. 类器官肺损伤疾病模型构建及应用的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 531-535.
[3] 宋勤琴, 李双汝, 李林, 杜鹃, 刘继松. 间充质干细胞源性外泌体在改善病理性瘢痕中作用的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 550-553.
[4] 关丁丁, 李伟, 孔维诗, 包郁露, 孙瑜. 负载干细胞的光交联蛋白基水凝胶在组织工程中应用的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(05): 447-452.
[5] 祝炜安, 林华慧, 吴建杰, 黄炯煅, 吴婷婷, 赖文杰. RDM1通过CDK4促进前列腺癌细胞进展的研究[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 618-625.
[6] 傅红兴, 王植楷, 谢贵林, 蔡娟娟, 杨威, 严盛. 间充质干细胞促进胰岛移植效果的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 351-360.
[7] 王大伟, 陆雅斐, 皇甫少华, 陈玉婷, 陈澳, 江滨. 间充质干细胞通过调控免疫机制促进创面愈合的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 361-366.
[8] 刘文竹, 唐窈, 刘付臣. 诱导多潜能干细胞在神经肌肉疾病研究中的应用进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 367-373.
[9] 袁园园, 岳乐淇, 张华兴, 武艳, 李全海. 间充质干细胞在呼吸系统疾病模型中肺组织分布及治疗机制的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 374-381.
[10] 黄程鑫, 陈莉, 刘伊楚, 王水良, 赖晓凤. OPA1 在乳腺癌组织的表达特征及在ER阳性乳腺癌细胞中的生物学功能研究[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(05): 275-284.
[11] 蔡艺丹, 方坚, 张志强, 陈莉, 张世安, 夏磊, 阮梅, 李东良. 经颈静脉肝内门体分流术对肝硬化门脉高压患者肠道菌群及肝功能的影响[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(05): 285-293.
[12] 王俊楠, 刘晔, 李若涵, 叶青松. 间充质干细胞调控肠脑轴治疗神经系统疾病的潜力[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(05): 313-319.
[13] 袁雨涵, 杨盛力. 体液和组织蛋白质组学分析在肝癌早期分子诊断中的研究进展[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 883-888.
[14] 王向前, 李清峰, 陈磊, 丘文丹, 姚志成, 李熠, 吴荣焕. 姜黄素抑制肝细胞癌索拉非尼耐药作用及其调控机制[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(05): 729-735.
[15] 王国强, 张纲, 唐建坡, 张玉国, 杨永江. LINC00839 调节miR-17-5p/WEE1 轴对结直肠癌细胞增殖、凋亡和迁移的影响[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 491-499.
阅读次数
全文


摘要