切换至 "中华医学电子期刊资源库"

中华损伤与修复杂志(电子版) ›› 2021, Vol. 16 ›› Issue (02) : 153 -157. doi: 10.3877/cma.j.issn.1673-9450.2021.02.012

所属专题: 文献

综述

间充质干细胞来源外泌体在椎间盘退变修复中的研究进展
赵文杰1, 张文捷2,(), 张亮3, 石鹏志1, 胡满1, 张钰3, 王平川3, 王俊武3   
  1. 1. 116044 大连医科大学研究生院
    2. 530001 南宁,广西中医药大学附属国际壮医医院骨科
    3. 225001 扬州大学临床医学院
  • 收稿日期:2021-01-08 出版日期:2021-04-01
  • 通信作者: 张文捷
  • 基金资助:
    江苏省青年医学重点人才项目(QNRC2016342); 江苏省妇幼健康科研重点资助项目(F201801); 江苏省高层次卫生人才"六个一工程"拔尖人才科研项目(LGY2019035); 广西省自然科学基金面上项目(No.2018JA1475)

Research progress of mesenchymal stem cell-derived exosomes in the repair of intervertebral disc degeneration

Wenjie Zhao1, Wenjie Zhang2,(), Liang Zhang3, Pengzhi Shi1, Man Hu1, Yu Zhang3, Pingchuan Wang3, Junwu Wang3   

  1. 1. Graduate School of Dalian Medical University, Dalian 116044, China
    2. Department of Orthopaedic, International Zhuang Medical Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning 530001, China
    3. Clinical Medical College of Yangzhou University, Yangzhou 225001, China
  • Received:2021-01-08 Published:2021-04-01
  • Corresponding author: Wenjie Zhang
引用本文:

赵文杰, 张文捷, 张亮, 石鹏志, 胡满, 张钰, 王平川, 王俊武. 间充质干细胞来源外泌体在椎间盘退变修复中的研究进展[J]. 中华损伤与修复杂志(电子版), 2021, 16(02): 153-157.

Wenjie Zhao, Wenjie Zhang, Liang Zhang, Pengzhi Shi, Man Hu, Yu Zhang, Pingchuan Wang, Junwu Wang. Research progress of mesenchymal stem cell-derived exosomes in the repair of intervertebral disc degeneration[J]. Chinese Journal of Injury Repair and Wound Healing(Electronic Edition), 2021, 16(02): 153-157.

间充质干细胞来源外泌体(MSC-Exos)是一类直径30~100 nm的细胞外囊泡,其携带有核酸、蛋白及脂质等生物活性物质,在细胞间通讯和物质交换中发挥重要作用。在椎间盘髓核细胞的体内及体外实验中,MSC-Exos可以通过发挥抗细胞焦亡、抗氧化应激、抗细胞凋亡、促进细胞外基质(ECM)合成等作用,延缓甚至逆转椎间退变。本文就近年来间充质干细胞来源的外泌体在椎间盘退变中的研究进展进行综述,为椎间盘退变性疾病的临床治疗提供参考。

Mesenchymal stem cell-derived exosomes (MSC-Exos) are a kind of extracellular vesicles with a diameter of 30~100 nm, which carry nucleic acids, proteins, lipids and other bioactive substances. MSC-Exos play an important role in intercellular communication and material exchange. MSC-Exos can not only inhibit cell pyrolysis, cell oxidative stress and cell apoptosis, but also increase the synthesis of extracellular matrix (ECM) in vivo and in vitro studies, thereby can retard or even reverse intervertebral disc degeneration. This article reviews the research progress of MSC-Exos in the study of intervertebral disc degeneration to provide references for the treatment of intervertebral disc degeneration disease.

表1 MSC-Exos在IVDD修复中的作用
[1]
Hay SI, Jayaraman SP, Truelsen T, et al. GBD 2015 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015 [J]. Lancet, 2016, 388(10053): 1545-1602.
[2]
Urits I, Burshtein A, Sharma M, et al. Low back pain, a comprehensive review: pathophysiology, diagnosis, and treatment[J]. Curr Pain Headache Rep, 2019, 23(3): 23.
[3]
Grunhagen T, Shirazi-Adl A, Fairbank JC, et al. Intervertebral disk nutrition: a review of factors influencing concentrations of nutrients and metabolites[J]. Orthop Clin North Am, 2011, 42(4): 465-477.
[4]
Xie L, Chen Z, Liu M, et al. MSC-Derived Exosomes Protect Vertebral Endplate Chondrocytes against Apoptosis and Calcification via the miR-31-5p/ATF6 Axis[J]. Mol Mol Ther Nucleic Acids, 2020, 22: 601-614.
[5]
Pennicooke B, Moriguchi Y, Hussain I, et al. Biological treatment approaches for degenerative disc disease: a Review of clinical trials and future directions[J]. Cureus, 2016, 8(11): e892-e892.
[6]
Ural IH, Alptekin K, Ketenci A, et al. Fibroblast transplantation results to the degenerated rabbit lumbar intervertebraldiscs[J]. Open Orthop J, 2017, 11: 404-416.
[7]
Doench I, Torres-Ramos MEW, Montembault A, et al. Injectable and gellable chitosan formulations filled with cellulose nanofibers for intervertebral disc tissue engineering[J]. Polymers (Basel), 2018, 10(11): 1202.
[8]
Ren S, Liu Y, Ma J, et al. Treatment of rabbit intervertebral disc degeneration with co-transfection by adeno-associated virus-mediated SOX9 and osteogenic protein-1 double genes in vivo[J]. Int J Mol Med, 2013, 32(5): 1063-1068.
[9]
Chujo T, An HS, Akeda K, et al. Effects of growth differentiation factor-5 on the intervertebral disc - In vitro bovine study and in vivo rabbit disc degeneration model study[J]. Spine, 2006, 31(25): 2909-2917.
[10]
Gruber HE, Ingram JA, Norton HJ, et al. Senescence in cells of the aging and degenerating intervertebral disc - Immunolocalization of senescence-associated beta-galactosidase in human and sand rat discs[J]. Spine, 2007, 32(3): 321-327.
[11]
Liao Z, Luo R, Li G, et al. Exosomes from mesenchymal stem cells modulate endoplasmic reticulum stress to protect against nucleus pulposus cell death and ameliorate intervertebral disc degeneration in vivo[J]. Theranostics, 2019, 9(14): 4084-4100.
[12]
Cheng X, Zhang G, Zhang L, et al. Mesenchymal stem cells deliver exogenous miR-21 via exosomes to inhibit nucleus pulposus cell apoptosis and reduce intervertebral disc degeneration[J]. J Cell Mol Med, 2018, 22(1): 261-276.
[13]
Lu K, Li H-y, Yang K, et al. Exosomes as potential alternatives to stem cell therapy for intervertebral disc degeneration: in-vitro study on exosomes in interaction of nucleus pulposus cells and bone marrow mesenchymal stem cells[J]. Stem Cell Res Ther, 2017, 8(1): 108.
[14]
Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement[J]. Cytotherapy, 2006, 8(4): 315-317.
[15]
Phan J, Kumar P, Hao D, et al. Engineering mesenchymal stem cells to improve their exosome efficacy and yield for cell-free therapy[J]. J Extracell Vesicles, 2018, 7(1): 1522236.
[16]
Keller S, Ridinger J, Rupp A-K, et al. Body fluid derived exosomes as a novel template for clinical diagnostics[J]. J Transl Med, 2011, 9: 86.
[17]
Lässer C, Eldh M, Lötvall J. Isolation and Characterization of RNA-Containing Exosomes[J]. J Vis Exp, 2012(59): e3037.
[18]
Lasser C, O′Neil SE, Ekerljung L, et al. RNA-containing exosomes in human nasal secretions[J]. Am J Rhinol Allergy, 2011, 25(2): 89-93.
[19]
Théry C, Amigorena S, Raposo G, et al. Isolation and characterization of exosomes from cell culture supernatants and biological fluids[J]. Curr Protoc Cell Biol, 2006, Chapter 3: Unit 3.22.
[20]
Simons M, Raposo G. Exosomes-vesicular carriers for intercellular communication[J]. Curr Opin Cell Biol, 2009, 21(4): 575-581.
[21]
Mathivanan S, Fahner CJ, Reid GE, et al. ExoCarta 2012: database of exosomal proteins, RNA and lipids[J]. Nucleic Acids Res, 2012, 40(D1): D1241-D1244.
[22]
Basu J, Ludlow JW. Exosomes for repair, regeneration and rejuvenation[J]. Expert Opin Biol Ther, 2016, 16(4): 489-506.
[23]
Lai RC, Yeo RWY, Tan SS, et al. Mesenchymal Stem Cell Exosomes: The Future MSC-Based Therapy?[J]. Stem Cell Res Ther, 2013: 39-61.
[24]
Lai RC, Tan SS, Teh BJ, et al. Proteolytic potential of the MSC exosome proteome: implications for an exosome-mediated delivery of therapeutic proteasome[J]. Int J Proteomics, 2012, 2012: 971907.
[25]
Lai RC, Yeo RW, Lim SK. Mesenchymal stem cell exosomes[J]. Semin Cell Dev Biol, 2015, 40: 82-88.
[26]
Wang K, Chen TT, Ying XZ, et al. Ligustilide alleviated IL-1 beta induced apoptosis and extracellular matrix degradation of nucleus pulposus cells and attenuates intervertebral disc degeneration in vivo[J]. Int Immunopharmacol, 2019, 69: 398-407.
[27]
Hingert D, Ekstrom K, Aldridge J, et al. Extracellular vesicles from human mesenchymal stem cells expedite chondrogenesis in 3D human degenerative disc cell cultures[J]. Stem Cell Res Ther, 2020, 11(1): 323.
[28]
龚东亮,付文芹. 间充质干细胞外泌体上调Mir-21调控HO-1机制促进椎间盘退变的修复[J]. 解剖学研究, 2020, 42(2): 140-145.
[29]
Qi L, Wang R, Shi Q, et al. Umbilical cord mesenchymal stem cell conditioned medium restored the expression of collagen II and aggrecan in nucleus pulposus mesenchymal stem cells exposed to high glucose[J]. J Bone Miner Metab, 2019, 37(3): 455-466.
[30]
蒋长青,蓝蔚仁,李海音, 等. 大鼠骨髓间充质干细胞来源外泌体对退变髓核细胞的影响[J]. 中国脊柱脊髓杂志, 2019, 29(2): 147-155.
[31]
Zhu G, Yang X, Peng C, et al. Exosomal miR-532-5p from bone marrow mesenchymal stem cells reduce intervertebral disc degeneration by targeting RASSF5[J]. Exp Cell Res, 2020, 393(2): 112109.
[32]
Zhu L, Shi Y, Liu L, et al. Mesenchymal stem cells-derived exosomes ameliorate nucleus pulposus cells apoptosis via delivering miR-142-3p: therapeutic potential for intervertebral disc degenerative diseases[J]. Cell Cycle, 2020, 19(14): 1727-1739.
[33]
Yuan Q, Wang X, Liu L, et al. Exosomes derived from human placental mesenchymal stromal cells carrying antagomiR-4450 alleviate intervertebral disc degeneration through upregulation of ZNF121[J]. Stem Cells Dev, 2020, 29(16): 1038-1058.
[34]
Li ZQ, Kong L, Liu C, et al. Human bone marrow mesenchymal stem cell-derived exosomes attenuate IL-1beta-induced annulus fibrosus cell damage[J]. Am J Med Sci, 2020, 360(6): 693-700.
[35]
Liu Y, Li Y, Nan LP, et al. Insights of stem cell-based endogenous repair of intervertebral disc degeneration[J]. World J Stem Cells, 2020, 12(4): 266-276.
[36]
Xia C, Zeng Z, Fang B, et al. Mesenchymal stem cell-derived exosomes ameliorate intervertebral disc degeneration via anti-oxidant and anti-inflammatory effects[J]. Free Radic Biol Med, 2019, 143: 1-15.
[37]
Zhang J, Zhang J, Zhang Y, et al. Mesenchymal stem cells-derived exosomes ameliorate intervertebral disc degeneration through inhibiting pyroptosis[J]. J Cell Mol Med, 2020, 24(20): 11742-11754.
[1] 卫杨文祥, 黄浩然, 刘予豪, 陈镇秋, 王海彬, 周驰. 股骨头坏死细胞治疗的前景和挑战[J]. 中华关节外科杂志(电子版), 2023, 17(05): 694-700.
[2] 王岩, 马剑雄, 郎爽, 董本超, 田爱现, 李岩, 孙磊, 靳洪震, 卢斌, 王颖, 柏豪豪, 马信龙. 外泌体在骨质疏松症诊疗中应用的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(05): 673-678.
[3] 贺敬龙, 孙炜, 高明宏, 谢伟, 姜骆永, 何琦非, 岳家吉. 外泌体非编码RNA在骨关节炎发病机制中的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(04): 520-527.
[4] 符卓毅, 唐圣成, 卜俏梅, 徐高兵, 吴安平, 蔡巍, 杨明, 谭海涛. 镁在骨关节炎治疗中的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(03): 354-362.
[5] 代雯荣, 赵丽娟, 李智慧. 细胞外囊泡对胚胎着床影响的研究进展[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 616-620.
[6] 高雷, 李芳, 巴雅力嘎, 李全, 巴特. 干细胞源性外泌体在创伤修复中免疫作用的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(04): 364-367.
[7] 黄瑞娟, 德奇, 巴特, 周彪. 对人脐带间充质干细胞外泌体影响热损伤人皮肤成纤维细胞迁移的分析[J]. 中华损伤与修复杂志(电子版), 2023, 18(03): 229-234.
[8] 甄妙, 李婧婷, 王鹏, 舒斌. 对表皮干细胞外泌体影响增生性瘢痕成纤维细胞作用的观察[J]. 中华损伤与修复杂志(电子版), 2023, 18(02): 134-143.
[9] 纪文鑫, 王茂, 邱春丽, 李尚鹏, 代引海. 血清外泌体circ PVT1与circ 0014606在三阴性乳腺癌中的表达及临床意义[J]. 中华普外科手术学杂志(电子版), 2023, 17(03): 267-271.
[10] 黄承路, 廖飞, 刘显平, 王志强. 血清外泌体Has_circ_0060937过度表达与NSCLC转移和不良预后的关系[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 490-494.
[11] 郑晴晴, 王剑, 阳韬. 外泌体miRNA对肺结节的诊断进展[J]. 中华肺部疾病杂志(电子版), 2023, 16(02): 293-295.
[12] 雷双银, 习剑鑫, 贺羽轩, 姚静宜, 石博雅, 马杰, 池光范, 李美英. 间充质干细胞源外泌体在神经退行性疾病治疗中的应用与进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(02): 93-100.
[13] 王楚风, 蒋安. 原发性肝癌的分子诊断[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 499-503.
[14] 陈客宏. 干细胞外泌体防治腹膜透析腹膜纤维化新技术研究[J]. 中华肾病研究电子杂志, 2023, 12(03): 180-180.
[15] 高雷, 李全, 巴雅力嘎, 陈强, 侯智慧, 曹胜军, 巴特. 重度烧伤患者血小板外泌体对凝血功能调节作用的初步研究[J]. 中华卫生应急电子杂志, 2023, 09(03): 149-154.
阅读次数
全文


摘要