[1] |
Nussbaum SR, Carter MJ, Fife CE, et al. An Economic Evaluation of the Impact, Cost, and Medicare Policy Implications of Chronic Nonhealing Wounds[J]. Value Health, 2018, 21(1): 27-32.
|
[2] |
Guest JF, Ayoub N, McIlwraith T, et al. Health economic burden that different wound types impose on the UK's National Health Service[J]. Int Wound J, 2017, 14(2): 322-330.
|
[3] |
Heyer K, Herberger K, Protz K, et al. Epidemiology of chronic wounds in Germany: Analysis of statutory health insurance data [J]. Wound Repair Regen, 2016, 24(2): 434-442.
|
[4] |
贾赤宇,鲍武,程夏霖. 创面愈合的机遇和挑战:组织工程皮肤 [J/CD]. 中华损伤与修复杂志(电子版), 2019, 14(6): 401-405.
|
[5] |
Atkin L. Chronic wounds: the challenges of appropriate management [J]. Br J Community Nurs, 2019, 24(Sup9): S26-S32.
|
[6] |
Zhang W, Bai X, Zhao B, et al. Cell-free therapy based on adipose tissue stem cell-derived exosomes promotes wound healing via the PI3K/Akt signaling pathway [J]. Exp Cell Res, 2018, 370(2): 333-342.
|
[7] |
Wu YY, Jiao YP, Xiao LL, et al. Experimental Study on Effects of Adipose-Derived Stem Cell-Seeded Silk Fibroin Chitosan Film on Wound Healing of a Diabetic Rat Model [J]. Ann Plast Surg, 2018, 80(5): 572-580.
|
[8] |
Luo Q, Guo D, Liu G, et al. Exosomes from MiR-126-Overexpressing Adscs Are Therapeutic in Relieving Acute Myocardial Ischaemic Injury [J]. Cell Physiol Biochem, 2017, 44(6): 2105-2116.
|
[9] |
崔凤瑞,李芳,张铁凝,等. 干细胞源性外泌体在损伤修复中作用的研究进展[J/CD]. 中华损伤与修复杂志(电子版), 2021, 16(1): 71-73.
|
[10] |
德奇,巴特,王宏宇,等. 外泌体携带的微小RNA在创面修复中的研究进展[J/CD]. 中华损伤与修复杂志(电子版), 2021, 16(1): 78-80.
|
[11] |
Kim MH, Wu WH, Choi JH, et al. Galectin-1 from conditioned medium of three-dimensional culture of adipose-derived stem cells accelerates migration and proliferation of human keratinocytes and fibroblasts [J]. Wound Repair Regen, 2018, 26 Suppl 1: S9-S18.
|
[12] |
Ren S, Chen J, Duscher D, et al. Microvesicles from human adipose stem cells promote wound healing by optimizing cellular functions via AKT and ERK signaling pathways[J]. Stem Cell Res Ther, 2019, 10(1): 47.
|
[13] |
何秀娟,林燕,刘青武,等. 皮肤成纤维细胞在创面愈合中的研究进展[J/CD]. 中华损伤与修复杂志(电子版), 2021, 16(1): 74-77.
|
[14] |
Kim WS, Park BS, Sung JH, et al. Wound healing effect of adipose-derived stem cells: a critical role of secretory factors on human dermal fibroblasts[J]. J Dermatol Sci, 2007, 48(1): 15-24.
|
[15] |
Guo S, Wang T, Zhang S, et al. Adipose-derived stem cell-conditioned medium protects fibroblasts at different senescent degrees from UVB irradiation damages[J]. Mol Cell Biochem, 2020, 463(1/2): 67-78.
|
[16] |
Shen T, Zheng QQ, Shen J, et al. Effects of Adipose-derived Mesenchymal Stem Cell Exosomes on Corneal Stromal Fibroblast Viability and Extracellular Matrix Synthesis [J]. Chin Med J (Engl), 2018, 131(6): 704-712.
|
[17] |
Cooper DR, Wang C, Patel R, et al. Human Adipose-Derived Stem Cell Conditioned Media and Exosomes Containing MALAT1 Promote Human Dermal Fibroblast Migration and Ischemic Wound Healing [J]. Adv Wound Care (New Rochelle), 2018, 7(9): 299-308.
|
[18] |
Hu L, Wang J, Zhou X, et al. Exosomes derived from human adipose mensenchymal stem cells accelerates cutaneous wound healing via optimizing the characteristics of fibroblasts [J]. Sci Rep, 2016, 6: 32993.
|
[19] |
Wang L, Hu L, Zhou X, et al. Exosomes secreted by human adipose mesenchymal stem cells promote scarless cutaneous repair by regulating extracellular matrix remodelling [J]. Sci Rep, 2017, 7(1): 13321.
|
[20] |
Kang T, Jones TM, Naddell C, et al. Adipose-Derived Stem Cells Induce Angiogenesis via Microvesicle Transport of miRNA-31 [J]. Stem Cells Transl Med, 2016, 5(4): 440-450.
|
[21] |
Han Y, Ren J, Bai Y, et al. Exosomes from hypoxia-treated human adipose-derived mesenchymal stem cells enhance angiogenesis through VEGF/VEGF-R [J]. Int J Biochem Cell Biol, 2019, 109: 59-68.
|
[22] |
Huang B, Huang LF, Zhao L, et al. Microvesicles (MIVs) secreted from adipose-derived stem cells (ADSCs) contain multiple microRNAs and promote the migration and invasion of endothelial cells [J]. Genes Dis, 2020, 7(2): 225-234.
|
[23] |
Shi R, Jin Y, Hu W, et al. Exosomes derived from mmu_circ_0000250-modified adipose-derived mesenchymal stem cells promote wound healing in diabetic mice by inducing miR-128-3p/SIRT1-mediated autophagy [J]. Am J Physiol Cell Physiol, 2020, 318(5): C848-C856.
|
[24] |
Li X, Xie X, Lian W, et al. Exosomes from adipose-derived stem cells overexpressing Nrf2 accelerate cutaneous wound healing by promoting vascularization in a diabetic foot ulcer rat model [J]. Exp Mol Med, 2018, 50(4): 1-14.
|
[25] |
Han YD, Bai Y, Yan XL, et al. Co-transplantation of exosomes derived from hypoxia-preconditioned adipose mesenchymal stem cells promotes neovascularization and graft survival in fat grafting [J]. Biochem Biophys Res Commun, 2018, 497(1): 305-312.
|
[26] |
Pu CM, Liu CW, Liang CJ, et al. Adipose-Derived Stem Cells Protect Skin Flaps against Ischemia/Reperfusion Injury via IL-6 Expression [J]. J Invest Dermatol, 2017, 137(6): 1353-1362.
|
[27] |
Xiong J, Liu Z, Wu M, et al. Comparison of Proangiogenic Effects of Adipose-Derived Stem Cells and Foreskin Fibroblast Exosomes on Artificial Dermis Prefabricated Flaps [J]. Stem Cells Int, 2020, 2020: 5293850.
|
[28] |
Bai Y, Han YD, Yan XL, et al. Adipose mesenchymal stem cell-derived exosomes stimulated by hydrogen peroxide enhanced skin flap recovery in ischemia-reperfusion injury [J]. Biochem Biophys Res Commun, 2018, 500(2): 310-317.
|
[29] |
Yang Y, Cai Y, Zhang Y, et al. Exosomes Secreted by Adipose-Derived Stem Cells Contribute to Angiogenesis of Brain Microvascular Endothelial Cells Following Oxygen-Glucose Deprivation In Vitro Through MicroRNA-181b/TRPM7 Axis [J]. J Mol Neurosci, 2018, 65(1): 74-83.
|
[30] |
Li D, Li X I, Wang A, et al. MicroRNA-31 Promotes Skin Wound Healing by Enhancing Keratinocyte Proliferation and Migration [J]. J Invest Dermatol, 2015, 135(6): 1676-1685.
|
[31] |
Yang C, Luo L, Bai X, et al. Highly-expressed micoRNA-21 in adipose derived stem cell exosomes can enhance the migration and proliferation of the HaCaT cells by increasing the MMP-9 expression through the PI3K/AKT pathway [J]. Arch Biochem Biophys, 2020, 681: 108259.
|
[32] |
Das A, Ganesh K, Khanna S, et al. Engulfment of apoptotic cells by macrophages: a role of microRNA-21 in the resolution of wound inflammation [J]. J Immunol, 2014, 192(3): 1120-1129.
|
[33] |
Madhyastha R, Madhyastha H, Nakajima Y, et al. MicroRNA signature in diabetic wound healing: promotive role of miR-21 in fibroblast migration [J]. Int Wound J, 2012, 9(4): 355-361.
|
[34] |
Lv Q, Deng J, Chen Y, et al. Engineered Human Adipose Stem-Cell-Derived Exosomes Loaded with miR-21-5p to Promote Diabetic Cutaneous Wound Healing [J]. Mol Pharm, 2020, 17(5): 1723-1733.
|
[35] |
贾文斌,胡大海,王洪涛,等. 小鼠脂肪来源间充质干细胞培养上清液对热损伤引起的角质形成细胞凋亡的影响[J]. 中华烧伤杂志,2014, 30(2): 102-108.
|
[36] |
Ma T, Fu B, Yang X, et al. Adipose mesenchymal stem cell-derived exosomes promote cell proliferation, migration, and inhibit cell apoptosis via Wnt/β-catenin signaling in cutaneous wound healing [J]. J Cell Biochem, 2019, 120(6): 10847-10854.
|
[37] |
Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation [J]. Nat Rev Immunol, 2008, 8(12): 958-969.
|
[38] |
Fantin A, Vieira JM, Gestri G, et al. Tissue macrophages act as cellular chaperones for vascular anastomosis downstream of VEGF-mediated endothelial tip cell induction [J]. Blood, 2010, 116(5): 829-840.
|
[39] |
Hesketh M, Sahin KB, West ZE, et al. Macrophage Phenotypes Regulate Scar Formation and Chronic Wound Healing [J]. Int J Mol Sci, 2017, 18(7):1545.
|
[40] |
Irving S. Managing chronic, nonhealing wounds stalled in the inflammatory phase: a case series using a novel matrix therapy, CACIPLIQ20 [J]. Br J Community Nurs, 2019, 24(Sup9): S33-S37.
|
[41] |
Loots MA, Lamme EN, Zeegelaar J, et al. Differences in cellular infiltrate and extracellular matrix of chronic diabetic and venous ulcers versus acute wounds [J]. J Invest Dermatol, 1998, 111(5): 850-857.
|
[42] |
Barminko JA, Nativ NI, Schloss R, et al. Fractional factorial design to investigate stromal cell regulation of macrophage plasticity [J]. Biotechnol Bioeng, 2014, 111(11): 2239-2251.
|
[43] |
Kruger MJ, Conradie MM, Conradie M, et al. ADSC-conditioned media elicit an ex vivo anti-inflammatory macrophage response [J]. J Mol Endocrinol, 2018, 61(4): 173-184.
|
[44] |
Bai X, Li J, Li L, et al. Extracellular Vesicles From Adipose Tissue-Derived Stem Cells Affect Notch-miR148a-3p Axis to Regulate Polarization of Macrophages and Alleviate Sepsis in Mice [J]. Front Immunol, 2020, 11:1391.
|
[45] |
Shen K, Jia Y, Wang X, et al. Exosomes from adipose-derived stem cells alleviate the inflammation and oxidative stress via regulating Nrf2/HO-1 axis in macrophages[J]. Free Radic Biol Med, 2021, 165: 54-66.
|
[46] |
Zhao J, Li X, Hu J, et al. Mesenchymal stromal cell-derived exosomes attenuate myocardial ischemia-reperfusion injury through miR-182-regulated macrophage polarization [J]. Cardiovasc Res, 2019, 115(7): 1205-1216.
|
[47] |
Aliotta JM, Pereira M, Wen S, et al. Exosomes induce and reverse monocrotaline-induced pulmonary hypertension in mice [J]. Cardiovasc Res, 2016, 110(3): 319-330.
|
[48] |
Jiang M, Wang H, Jin M, et al. Exosomes from MiR-30d-5p-ADSCs Reverse Acute Ischemic Stroke-Induced, Autophagy-Mediated Brain Injury by Promoting M2 Microglial/Macrophage Polarization [J]. Cell Physiol and Biochem, 2018, 47(2): 864-878.
|
[49] |
Flaherty SE 3rd, Grijalva A, Xu X, et al. A lipase-independent pathway of lipid release and immune modulation by adipocytes [J]. Science, 2019, 363(6430): 989-993.
|
[50] |
Zhao H, Shang Q, Pan Z, et al. Exosomes From Adipose-Derived Stem Cells Attenuate Adipose Inflammation and Obesity Through Polarizing M2 Macrophages and Beiging in White Adipose Tissue [J]. Diabetes, 2018, 67(2): 235-247.
|
[51] |
Krzyszczyk P, Schloss R, Palmer A, et al. The Role of Macrophages in Acute and Chronic Wound Healing and Interventions to Promote Pro-wound Healing Phenotypes [J]. Front Physiol, 2018, 9: 419.
|
[52] |
祁放,王达利. 间充质干细胞源性外泌体在促创面愈合中的应用与挑战[J/CD]. 中华损伤与修复杂志(电子版), 2021, 16(1): 1-5.
|