切换至 "中华医学电子期刊资源库"

中华损伤与修复杂志(电子版) ›› 2021, Vol. 16 ›› Issue (03) : 260 -264. doi: 10.3877/cma.j.issn.1673-9450.2021.03.017

所属专题: 文献

综述

脂肪间充质干细胞外泌体促进创面修复的研究进展
沈括1, 张锦鑫2, 王洪涛1, 胡大海1,()   
  1. 1. 710032 西安,空军军医大学第一附属医院烧伤与皮肤外科,全军烧伤中心
    2. 710032 西安,空军军医大学第一附属医院烧伤与皮肤外科,急诊科
  • 收稿日期:2021-05-10 出版日期:2021-06-01
  • 通信作者: 胡大海
  • 基金资助:
    国家自然科学基金重点项目(81530064); 国家自然科学基金面上项目(81772071,81971835)

Research progress of exosomes derived from adipose derived mesenchymal stem cell in wound healing

Kuo Shen1, Jinxin Zhang2, Hongtao Wang1, Dahai Hu1,()   

  1. 1. Department of Burns and Cutaneous Surgery, Burn Center of PLA, Air Force Medical University, Xi′an 710032, China
    2. Department of Emergency, First Affiliated Hospital, Air Force Medical University, Xi′an 710032, China
  • Received:2021-05-10 Published:2021-06-01
  • Corresponding author: Dahai Hu
引用本文:

沈括, 张锦鑫, 王洪涛, 胡大海. 脂肪间充质干细胞外泌体促进创面修复的研究进展[J]. 中华损伤与修复杂志(电子版), 2021, 16(03): 260-264.

Kuo Shen, Jinxin Zhang, Hongtao Wang, Dahai Hu. Research progress of exosomes derived from adipose derived mesenchymal stem cell in wound healing[J]. Chinese Journal of Injury Repair and Wound Healing(Electronic Edition), 2021, 16(03): 260-264.

脂肪间充质干细胞(ADSC)外泌体作为细胞间交流的重要手段,在创面修复与组织再生方面的作用受到越来越多的关注。本文通过阐述ADSC外泌体在创面愈合中对成纤维细胞(Fb)、内皮细胞、角质形成细胞(KC)和巨噬细胞调控作用的研究进展,以期为创面修复提供新的思路。

Exosomes from adipose derived mesenchymal stem cell (ADSC), a crucial means of intercellular communication, have been widely applied in wound healing and tissue regeneration in recent years. This article mainly describes the research progress of regulative effects of ADSC exosomes on fibroblasts, endothelial cells, keratinocytes, and macrophages in the process of wound healing, in order to provide novel insight to wound healing.

[1]
Nussbaum SR, Carter MJ, Fife CE, et al. An Economic Evaluation of the Impact, Cost, and Medicare Policy Implications of Chronic Nonhealing Wounds[J]. Value Health, 2018, 21(1): 27-32.
[2]
Guest JF, Ayoub N, McIlwraith T, et al. Health economic burden that different wound types impose on the UK's National Health Service[J]. Int Wound J, 2017, 14(2): 322-330.
[3]
Heyer K, Herberger K, Protz K, et al. Epidemiology of chronic wounds in Germany: Analysis of statutory health insurance data [J]. Wound Repair Regen, 2016, 24(2): 434-442.
[4]
贾赤宇,鲍武,程夏霖. 创面愈合的机遇和挑战:组织工程皮肤 [J/CD]. 中华损伤与修复杂志(电子版), 2019, 14(6): 401-405.
[5]
Atkin L. Chronic wounds: the challenges of appropriate management [J]. Br J Community Nurs, 2019, 24(Sup9): S26-S32.
[6]
Zhang W, Bai X, Zhao B, et al. Cell-free therapy based on adipose tissue stem cell-derived exosomes promotes wound healing via the PI3K/Akt signaling pathway [J]. Exp Cell Res, 2018, 370(2): 333-342.
[7]
Wu YY, Jiao YP, Xiao LL, et al. Experimental Study on Effects of Adipose-Derived Stem Cell-Seeded Silk Fibroin Chitosan Film on Wound Healing of a Diabetic Rat Model [J]. Ann Plast Surg, 2018, 80(5): 572-580.
[8]
Luo Q, Guo D, Liu G, et al. Exosomes from MiR-126-Overexpressing Adscs Are Therapeutic in Relieving Acute Myocardial Ischaemic Injury [J]. Cell Physiol Biochem, 2017, 44(6): 2105-2116.
[9]
崔凤瑞,李芳,张铁凝,等. 干细胞源性外泌体在损伤修复中作用的研究进展[J/CD]. 中华损伤与修复杂志(电子版), 2021, 16(1): 71-73.
[10]
德奇,巴特,王宏宇,等. 外泌体携带的微小RNA在创面修复中的研究进展[J/CD]. 中华损伤与修复杂志(电子版), 2021, 16(1): 78-80.
[11]
Kim MH, Wu WH, Choi JH, et al. Galectin-1 from conditioned medium of three-dimensional culture of adipose-derived stem cells accelerates migration and proliferation of human keratinocytes and fibroblasts [J]. Wound Repair Regen, 2018, 26 Suppl 1: S9-S18.
[12]
Ren S, Chen J, Duscher D, et al. Microvesicles from human adipose stem cells promote wound healing by optimizing cellular functions via AKT and ERK signaling pathways[J]. Stem Cell Res Ther, 2019, 10(1): 47.
[13]
何秀娟,林燕,刘青武,等. 皮肤成纤维细胞在创面愈合中的研究进展[J/CD]. 中华损伤与修复杂志(电子版), 2021, 16(1): 74-77.
[14]
Kim WS, Park BS, Sung JH, et al. Wound healing effect of adipose-derived stem cells: a critical role of secretory factors on human dermal fibroblasts[J]. J Dermatol Sci, 2007, 48(1): 15-24.
[15]
Guo S, Wang T, Zhang S, et al. Adipose-derived stem cell-conditioned medium protects fibroblasts at different senescent degrees from UVB irradiation damages[J]. Mol Cell Biochem, 2020, 463(1/2): 67-78.
[16]
Shen T, Zheng QQ, Shen J, et al. Effects of Adipose-derived Mesenchymal Stem Cell Exosomes on Corneal Stromal Fibroblast Viability and Extracellular Matrix Synthesis [J]. Chin Med J (Engl), 2018, 131(6): 704-712.
[17]
Cooper DR, Wang C, Patel R, et al. Human Adipose-Derived Stem Cell Conditioned Media and Exosomes Containing MALAT1 Promote Human Dermal Fibroblast Migration and Ischemic Wound Healing [J]. Adv Wound Care (New Rochelle), 2018, 7(9): 299-308.
[18]
Hu L, Wang J, Zhou X, et al. Exosomes derived from human adipose mensenchymal stem cells accelerates cutaneous wound healing via optimizing the characteristics of fibroblasts [J]. Sci Rep, 2016, 6: 32993.
[19]
Wang L, Hu L, Zhou X, et al. Exosomes secreted by human adipose mesenchymal stem cells promote scarless cutaneous repair by regulating extracellular matrix remodelling [J]. Sci Rep, 2017, 7(1): 13321.
[20]
Kang T, Jones TM, Naddell C, et al. Adipose-Derived Stem Cells Induce Angiogenesis via Microvesicle Transport of miRNA-31 [J]. Stem Cells Transl Med, 2016, 5(4): 440-450.
[21]
Han Y, Ren J, Bai Y, et al. Exosomes from hypoxia-treated human adipose-derived mesenchymal stem cells enhance angiogenesis through VEGF/VEGF-R [J]. Int J Biochem Cell Biol, 2019, 109: 59-68.
[22]
Huang B, Huang LF, Zhao L, et al. Microvesicles (MIVs) secreted from adipose-derived stem cells (ADSCs) contain multiple microRNAs and promote the migration and invasion of endothelial cells [J]. Genes Dis, 2020, 7(2): 225-234.
[23]
Shi R, Jin Y, Hu W, et al. Exosomes derived from mmu_circ_0000250-modified adipose-derived mesenchymal stem cells promote wound healing in diabetic mice by inducing miR-128-3p/SIRT1-mediated autophagy [J]. Am J Physiol Cell Physiol, 2020, 318(5): C848-C856.
[24]
Li X, Xie X, Lian W, et al. Exosomes from adipose-derived stem cells overexpressing Nrf2 accelerate cutaneous wound healing by promoting vascularization in a diabetic foot ulcer rat model [J]. Exp Mol Med, 2018, 50(4): 1-14.
[25]
Han YD, Bai Y, Yan XL, et al. Co-transplantation of exosomes derived from hypoxia-preconditioned adipose mesenchymal stem cells promotes neovascularization and graft survival in fat grafting [J]. Biochem Biophys Res Commun, 2018, 497(1): 305-312.
[26]
Pu CM, Liu CW, Liang CJ, et al. Adipose-Derived Stem Cells Protect Skin Flaps against Ischemia/Reperfusion Injury via IL-6 Expression [J]. J Invest Dermatol, 2017, 137(6): 1353-1362.
[27]
Xiong J, Liu Z, Wu M, et al. Comparison of Proangiogenic Effects of Adipose-Derived Stem Cells and Foreskin Fibroblast Exosomes on Artificial Dermis Prefabricated Flaps [J]. Stem Cells Int, 2020, 2020: 5293850.
[28]
Bai Y, Han YD, Yan XL, et al. Adipose mesenchymal stem cell-derived exosomes stimulated by hydrogen peroxide enhanced skin flap recovery in ischemia-reperfusion injury [J]. Biochem Biophys Res Commun, 2018, 500(2): 310-317.
[29]
Yang Y, Cai Y, Zhang Y, et al. Exosomes Secreted by Adipose-Derived Stem Cells Contribute to Angiogenesis of Brain Microvascular Endothelial Cells Following Oxygen-Glucose Deprivation In Vitro Through MicroRNA-181b/TRPM7 Axis [J]. J Mol Neurosci, 2018, 65(1): 74-83.
[30]
Li D, Li X I, Wang A, et al. MicroRNA-31 Promotes Skin Wound Healing by Enhancing Keratinocyte Proliferation and Migration [J]. J Invest Dermatol, 2015, 135(6): 1676-1685.
[31]
Yang C, Luo L, Bai X, et al. Highly-expressed micoRNA-21 in adipose derived stem cell exosomes can enhance the migration and proliferation of the HaCaT cells by increasing the MMP-9 expression through the PI3K/AKT pathway [J]. Arch Biochem Biophys, 2020, 681: 108259.
[32]
Das A, Ganesh K, Khanna S, et al. Engulfment of apoptotic cells by macrophages: a role of microRNA-21 in the resolution of wound inflammation [J]. J Immunol, 2014, 192(3): 1120-1129.
[33]
Madhyastha R, Madhyastha H, Nakajima Y, et al. MicroRNA signature in diabetic wound healing: promotive role of miR-21 in fibroblast migration [J]. Int Wound J, 2012, 9(4): 355-361.
[34]
Lv Q, Deng J, Chen Y, et al. Engineered Human Adipose Stem-Cell-Derived Exosomes Loaded with miR-21-5p to Promote Diabetic Cutaneous Wound Healing [J]. Mol Pharm, 2020, 17(5): 1723-1733.
[35]
贾文斌,胡大海,王洪涛,等. 小鼠脂肪来源间充质干细胞培养上清液对热损伤引起的角质形成细胞凋亡的影响[J]. 中华烧伤杂志,2014, 30(2): 102-108.
[36]
Ma T, Fu B, Yang X, et al. Adipose mesenchymal stem cell-derived exosomes promote cell proliferation, migration, and inhibit cell apoptosis via Wnt/β-catenin signaling in cutaneous wound healing [J]. J Cell Biochem, 2019, 120(6): 10847-10854.
[37]
Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation [J]. Nat Rev Immunol, 2008, 8(12): 958-969.
[38]
Fantin A, Vieira JM, Gestri G, et al. Tissue macrophages act as cellular chaperones for vascular anastomosis downstream of VEGF-mediated endothelial tip cell induction [J]. Blood, 2010, 116(5): 829-840.
[39]
Hesketh M, Sahin KB, West ZE, et al. Macrophage Phenotypes Regulate Scar Formation and Chronic Wound Healing [J]. Int J Mol Sci, 2017, 18(7):1545.
[40]
Irving S. Managing chronic, nonhealing wounds stalled in the inflammatory phase: a case series using a novel matrix therapy, CACIPLIQ20 [J]. Br J Community Nurs, 2019, 24(Sup9): S33-S37.
[41]
Loots MA, Lamme EN, Zeegelaar J, et al. Differences in cellular infiltrate and extracellular matrix of chronic diabetic and venous ulcers versus acute wounds [J]. J Invest Dermatol, 1998, 111(5): 850-857.
[42]
Barminko JA, Nativ NI, Schloss R, et al. Fractional factorial design to investigate stromal cell regulation of macrophage plasticity [J]. Biotechnol Bioeng, 2014, 111(11): 2239-2251.
[43]
Kruger MJ, Conradie MM, Conradie M, et al. ADSC-conditioned media elicit an ex vivo anti-inflammatory macrophage response [J]. J Mol Endocrinol, 2018, 61(4): 173-184.
[44]
Bai X, Li J, Li L, et al. Extracellular Vesicles From Adipose Tissue-Derived Stem Cells Affect Notch-miR148a-3p Axis to Regulate Polarization of Macrophages and Alleviate Sepsis in Mice [J]. Front Immunol, 2020, 11:1391.
[45]
Shen K, Jia Y, Wang X, et al. Exosomes from adipose-derived stem cells alleviate the inflammation and oxidative stress via regulating Nrf2/HO-1 axis in macrophages[J]. Free Radic Biol Med, 2021, 165: 54-66.
[46]
Zhao J, Li X, Hu J, et al. Mesenchymal stromal cell-derived exosomes attenuate myocardial ischemia-reperfusion injury through miR-182-regulated macrophage polarization [J]. Cardiovasc Res, 2019, 115(7): 1205-1216.
[47]
Aliotta JM, Pereira M, Wen S, et al. Exosomes induce and reverse monocrotaline-induced pulmonary hypertension in mice [J]. Cardiovasc Res, 2016, 110(3): 319-330.
[48]
Jiang M, Wang H, Jin M, et al. Exosomes from MiR-30d-5p-ADSCs Reverse Acute Ischemic Stroke-Induced, Autophagy-Mediated Brain Injury by Promoting M2 Microglial/Macrophage Polarization [J]. Cell Physiol and Biochem, 2018, 47(2): 864-878.
[49]
Flaherty SE 3rd, Grijalva A, Xu X, et al. A lipase-independent pathway of lipid release and immune modulation by adipocytes [J]. Science, 2019, 363(6430): 989-993.
[50]
Zhao H, Shang Q, Pan Z, et al. Exosomes From Adipose-Derived Stem Cells Attenuate Adipose Inflammation and Obesity Through Polarizing M2 Macrophages and Beiging in White Adipose Tissue [J]. Diabetes, 2018, 67(2): 235-247.
[51]
Krzyszczyk P, Schloss R, Palmer A, et al. The Role of Macrophages in Acute and Chronic Wound Healing and Interventions to Promote Pro-wound Healing Phenotypes [J]. Front Physiol, 2018, 9: 419.
[52]
祁放,王达利. 间充质干细胞源性外泌体在促创面愈合中的应用与挑战[J/CD]. 中华损伤与修复杂志(电子版), 2021, 16(1): 1-5.
[1] 王岩, 马剑雄, 郎爽, 董本超, 田爱现, 李岩, 孙磊, 靳洪震, 卢斌, 王颖, 柏豪豪, 马信龙. 外泌体在骨质疏松症诊疗中应用的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(05): 673-678.
[2] 卫杨文祥, 黄浩然, 刘予豪, 陈镇秋, 王海彬, 周驰. 股骨头坏死细胞治疗的前景和挑战[J]. 中华关节外科杂志(电子版), 2023, 17(05): 694-700.
[3] 贺敬龙, 孙炜, 高明宏, 谢伟, 姜骆永, 何琦非, 岳家吉. 外泌体非编码RNA在骨关节炎发病机制中的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(04): 520-527.
[4] 符卓毅, 唐圣成, 卜俏梅, 徐高兵, 吴安平, 蔡巍, 杨明, 谭海涛. 镁在骨关节炎治疗中的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(03): 354-362.
[5] 代雯荣, 赵丽娟, 李智慧. 细胞外囊泡对胚胎着床影响的研究进展[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 616-620.
[6] 周子慧, 李恭驰, 李炳辉, 王知, 刘慧真, 王卉, 邹利军. 细胞自噬在创面愈合中作用的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 542-546.
[7] 陈继秋, 朱世辉. 皮肤牵张装置的临床应用现状[J]. 中华损伤与修复杂志(电子版), 2023, 18(05): 451-453.
[8] 高雷, 李芳, 巴雅力嘎, 李全, 巴特. 干细胞源性外泌体在创伤修复中免疫作用的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(04): 364-367.
[9] 黄瑞娟, 德奇, 巴特, 周彪. 对人脐带间充质干细胞外泌体影响热损伤人皮肤成纤维细胞迁移的分析[J]. 中华损伤与修复杂志(电子版), 2023, 18(03): 229-234.
[10] 甄妙, 李婧婷, 王鹏, 舒斌. 对表皮干细胞外泌体影响增生性瘢痕成纤维细胞作用的观察[J]. 中华损伤与修复杂志(电子版), 2023, 18(02): 134-143.
[11] 纪文鑫, 王茂, 邱春丽, 李尚鹏, 代引海. 血清外泌体circ PVT1与circ 0014606在三阴性乳腺癌中的表达及临床意义[J]. 中华普外科手术学杂志(电子版), 2023, 17(03): 267-271.
[12] 黄承路, 廖飞, 刘显平, 王志强. 血清外泌体Has_circ_0060937过度表达与NSCLC转移和不良预后的关系[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 490-494.
[13] 王楚风, 蒋安. 原发性肝癌的分子诊断[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 499-503.
[14] 陈客宏. 干细胞外泌体防治腹膜透析腹膜纤维化新技术研究[J]. 中华肾病研究电子杂志, 2023, 12(03): 180-180.
[15] 高雷, 李全, 巴雅力嘎, 陈强, 侯智慧, 曹胜军, 巴特. 重度烧伤患者血小板外泌体对凝血功能调节作用的初步研究[J]. 中华卫生应急电子杂志, 2023, 09(03): 149-154.
阅读次数
全文


摘要