[1] |
郭振荣. 我国烧伤康复的现状与展望[J/CD]. 中华损伤与修复杂志(电子版), 2018, 13(3): 161-164.
|
[2] |
Güldogan CE, Kendirci M, Tikici D, et al. Clinical infection in burn patients and its consequences[J]. Ulus Travma Acil Cerrahi Derg, 2017, 23(6): 466-471.
|
[3] |
田瑞瑞,李娜,魏力. 微环境pH值对创面愈合的作用研究进展[J]. 中华烧伤杂志,2016, 32(4): 240-242.
|
[4] |
Ono S, Imai R, Ida Y, et al. Increased wound pH as an indicator of local wound infection in second degree burns[J]. Burns, 2015, 41(4): 820-824.
|
[5] |
孙业祥. 烧伤感染的诊治进展[J]. 中国烧伤创疡杂志,2019, 31(3): 186-191.
|
[6] |
姚咏明,栾樱译. 严重烧创伤感染及其并发症的免疫新认识[J]. 中华烧伤杂志,2021, 37(6): 519-523.
|
[7] |
Seymour CW, Kennedy JN, Wang S, et al. Derivation, validation, and potential treatment implications of novel clinical phenotypes for sepsis[J]. JAMA, 2019, 321(20): 2003-2017.
|
[8] |
Ducharme J, Self WH, Osborn TM, et al. A multi-mRNA host-response molecular blood test for the diagnosis and prognosis of acute infections and sepsis: proceedings from a clinical advisory panel[J]. J Pers Med, 2020, 10(4): 266.
|
[9] |
张成,彭源,罗小强,等. 3 067例住院烧伤患儿流行病学调查及其感染的病原学特征分析[J]. 中华烧伤杂志,2021, 37(6): 538-545.
|
[10] |
Liu HF, Zhang F, Lineaweaver WC. History and advancement of burn treatments[J]. Ann Plast Surg, 2017, 78(2 Suppl 1): S2-S8.
|
[11] |
Zalgeviciene V, Kulvietis V, Bulotiene D, et al. Quantum dots mediated embryotoxicity via placental damage[J]. Reprod Toxicol, 2017, 73: 222-231.
|
[12] |
Yoisungnern T, Choi YJ, Han JW, et al. Internalization of silver nanoparticles into mouse spermatozoa results in poor fertilization and compromised embryo development[J]. Sci Rep, 2015, 5: 11170.
|
[13] |
Qi Y, Dong Z, Chu H, et al. Denatured acellular dermal matrix seeded with bone marrow mesenchymal stem cells for wound healing in mice[J]. Burns, 2019, 45(7): 1685-1694.
|
[14] |
中国老年医学学会烧创伤分会. 天然真皮基质应用于创面修复的全国专家共识(2020版)[J]. 中华烧伤杂志,2020, 36(10): 895-900.
|
[15] |
王曌华,赵培东,武延朋,等. 切痂植皮与削痂植皮在重度关节烧伤患者中修复效果及对微循环的影响[J]. 中国临床医生杂志,2020, 48(1): 85-88.
|
[16] |
Asai H, Maegawa N, Urisono Y, et al. A case of extensive burn injury with hypercalcemia caused by calcium ion absorption from the wound dressing[J]. Burns Open, 2020, 4(1): 28-30.
|
[17] |
Muthukumar T, Prabu P, Ghosh K, et al. Fish scale collagen sponge incorporated with Macrotyloma uniflorum plant extract as a possible wound/burn dressing material[J]. Colloids Surf B Biointerfaces, 2014, 113: 207-212.
|
[18] |
Singh R, Tripathi D, Jaiswal SP, et al. Use of negative pressure wound therapy as a bolster over skin grafts in patients with severe burn injuries at a tertiary care burn centre in India[J]. Burns Open, 2021, 5(3): 137-140.
|
[19] |
Sogorski A, Lehnhardt M, Goertz O, et al. Improvement of local microcirculation through intermittent Negative Pressure Wound Therapy (NPWT)[J]. J Tissue Viability, 2018, 27(4): 267-273.
|
[20] |
Lessing MC, James RB, Ingram SC. Comparison of the effects of different negative pressure wound therapy modes—continuous, noncontinuous, and with instillation—on porcine excisional wounds[J]. Eplasty, 2013, 13: e51.
|
[21] |
张明良. 微粒皮移植术的回顾及展望[J]. 中华烧伤杂志,2008, 24(5): 343-345.
|
[22] |
葛绳德. Meek皮肤移植技术的创建和发展[J/CD]. 中华损伤与修复杂志(电子版), 2006, 1(1): 10-11.
|
[23] |
王鑫,申传安,赵东旭. MEEK微型皮片移植技术的研究进展及应用[J]. 解放军医学杂志,2018, 43(3): 263-267.
|
[24] |
祁研红,刘毅. 微粒化脱细胞真皮基质研究现状[J]. 中国美容整形外科杂志,2019, 30(4): 221-223,后插2页.
|
[25] |
徐圣博,王鑫,申传安,等. 表皮细胞膜片的培养及临床应用研究进展[J/CD]. 中华损伤与修复杂志(电子版), 2019, 14(6): 455-458.
|
[26] |
卫裴,罗鹏飞,夏照帆. 皮肤替代模式的研究现状及发展前景[J/CD]. 中华损伤与修复杂志(电子版), 2019, 14(3): 161-165.
|
[27] |
Holmes Iv JH, Molnar JA, Carter JE, et al. A Comparative Study of the ReCell Device and Autologous Spit-thickness Meshed Skin Graft in the Treatment of Acute Burn Injuries[J]. J Burn Care Res, 2018, 39(5): 694-702.
|
[28] |
姜耀男,王雨翔,郑勇军,等. 含异体角质形成细胞和成纤维细胞的细胞膜片治疗Ⅱ度烧伤创面的临床研究[J]. 中华烧伤杂志,2020, 36(3): 171-178.
|
[29] |
Piejko M, Radziun K, Bobis-Wozowicz S, et al. Adipose-Derived Stromal Cells Seeded on Integra Dermal Regeneration Template Improve Post-Burn Wound Reconstruction[J]. Bioengineering (Basel), 2020, 7(3): 67.
|
[30] |
Riha SM, Maarof M, Fauzi MB. Synergistic Effect of Biomaterial and Stem Cell for Skin Tissue Engineering in Cutaneous Wound Healing: A Concise Review[J]. Polymers (Basel), 2021, 13(10): 1546.
|
[31] |
Walter MNM, Wright KT, Fuller HR, et al. Mesenchymal stem cell-conditioned medium accelerates skin wound healing: an in vitro study of fibroblast and keratinocyte scratch assays[J]. Exp Cell Res, 2010, 316(7): 1271-1281.
|
[32] |
王宏宇,刘玲英,巴特. 间充质干细胞在烧伤创面修复中的研究进展[J/CD]. 中华损伤与修复杂志(电子版), 2020, 15(6): 495-498.
|
[33] |
蔡德南,陈斐,王木盛. 脐带间充质干细胞移植对烧伤患者新生肉芽组织EGF及VEGF表达的影响[J]. 广东医学,2018, 39(5): 740-744.
|
[34] |
Bey E, Prat M, Duhamel P, et al. Emerging therapy for improving wound repair of severe radiation burns using local bone marrow-derived stem cell administrations[J]. Wound Repair Regen, 2010, 18(1): 50-58.
|
[35] |
Zakrzewski W, Dobrzyński M, Szymonowicz M, et al. Stem cells: past, present, and future[J]. Stem Cell Res Ther, 2019, 10(1): 68.
|
[36] |
Han CM, Cheng B, Wu P, et al. Clinical guideline on topical growth factors for skin wounds[J]. Burns Trauma, 2020, 8: tkaa035.
|
[37] |
Wu Y, Liang T, Hu Y, et al. 3D bioprinting of integral ADSCs-NO hydrogel scaffolds to promote severe burn wound healing[J]. Regen Biomater, 2021, 8(3): rbab014.
|
[38] |
Zhang Y, Enhejirigala , Yao B, et al. Using bioprinting and spheroid culture to create a skin model with sweat glands and hair follicles[J]. Burns Trauma, 2021, 9: tkab013.
|
[39] |
Shaarawy E, Hegazy RA, Abdel Hay RM. Intralesional botulinum toxin type A equally effective and better tolerated than intralesional steroid in the treatment of keloids: a randomized controlled trial[J]. J Cosmet Dermatol, 2015, 14(2): 161-166.
|
[40] |
Kirkpatrick LD, Carney BC, Smith RD, et al. 114 Galectin-1 Is Overexpressed in Post-Burn Hypertrophic Scar[J]. J Burn Care Res, 2020, 41(Issue Supplement_1): S76-S77.
|
[41] |
Agrawal A, Ding J, Agrawal B, et al. Stimulation of toll-like receptor pathways by burn eschar tissue as a possible mechanism for hypertrophic scarring[J]. Wound Repair Regen, 2021.
|