切换至 "中华医学电子期刊资源库"

中华损伤与修复杂志(电子版) ›› 2021, Vol. 16 ›› Issue (05) : 389 -397. doi: 10.3877/cma.j.issn.1673-9450.2021.05.004

论著

小分子药物Tideglusib通过PI3K/PKB/KIF14通路促进表皮干细胞增殖的机制研究
孙佳辰1, 马景龙1, 申传安1,(), 张文1, 刘馨竹1   
  1. 1. 100089 北京,解放军总医院第四医学中心烧伤整形医学部
  • 收稿日期:2021-07-20 出版日期:2021-10-01
  • 通信作者: 申传安
  • 基金资助:
    北京市自然科学基金重点项目(7171009); 首都临床特色应用研究与成果推广重点课题(Z17110001017146); 国家重点研发计划(2017YFC1103503); "十三五"军队后勤科研项目重大项目(ALB18J001); "十三五"军队重点学科专业建设项目(A350109)

Study on the mechanism of small molecule drug Tideglusib to promote epidermal stem cells proliferation through PI3K/PKB/KIF14 pathway

Jiachen Sun1, Jinglong Ma1, Chuanan Shen1,(), Wen Zhang1, Xinzhu Liu1   

  1. 1. Department of Burns and Plastic Surgery, Fourth Medical Center of PLA General Hospital, Beijing 100089, China
  • Received:2021-07-20 Published:2021-10-01
  • Corresponding author: Chuanan Shen
引用本文:

孙佳辰, 马景龙, 申传安, 张文, 刘馨竹. 小分子药物Tideglusib通过PI3K/PKB/KIF14通路促进表皮干细胞增殖的机制研究[J]. 中华损伤与修复杂志(电子版), 2021, 16(05): 389-397.

Jiachen Sun, Jinglong Ma, Chuanan Shen, Wen Zhang, Xinzhu Liu. Study on the mechanism of small molecule drug Tideglusib to promote epidermal stem cells proliferation through PI3K/PKB/KIF14 pathway[J]. Chinese Journal of Injury Repair and Wound Healing(Electronic Edition), 2021, 16(05): 389-397.

目的

研究小分子药物Tideglusib对表皮干细胞增殖能力和细胞周期的影响及其机制。

方法

将人表皮干细胞采用随机数字表法随机分为对照组,小分子药物Tideglusib 50 nmol/L、100 nmol/L、200 nmol/L组,培养48 h后,通过细胞计数试剂盒8(CCK-8)实验检测细胞增殖能力变化(n=6)。通过RNA测序检测转录组水平变化,以P.adj <0.05为差异表达基因筛选标准,分析差异表达基因,并通过基因本体论(GO)富集分析差异表达基因对表皮干细胞生物过程、细胞组成、分子功能的影响(n=3)。通过实时定量聚合酶链式反应(qRT-PCR)验证差异表达基因驱动蛋白家族成员14(KIF14)的转录水平变化,通过蛋白质印迹法和免疫荧光染色验证KIF14蛋白表达水平的变化(n=3)。通过蛋白质印迹法探究蛋白激酶B(PKB)、磷酸化蛋白激酶B(p-PKB)表达水平的变化(n=3)。数据比较采用独立样本t检验,单因素方差分析和Tukey-post-hoc检验。

结果

培养48 h后,CCK-8实验结果表明,同对照组相比,50 nmol/L组的小分子药物Tideglusib对表皮干细胞增殖能力的影响,差异无统计学意义(P>0.05),100 nmol/L组和200 nmol/L组的小分子药物Tideglusib可明显促进表皮干细胞的增殖(P<0.05)。测序数据显示,同对照组相比,小分子药物Tideglusib 200 nmol/L组共有107个差异表达基因,其中106个表达上调,1个表达下调。GO富集分析表明,差异表达基因主要同有丝分裂与细胞周期相关。通过流式细胞仪检测发现,小分子药物Tideglusib可呈浓度依赖性地提升表皮干细胞进入有丝分裂期的比例,50 nmol/L组的小分子药物Tideglusib对表皮干细胞的细胞周期的影响无统计学差异(P>0.05),100 nmol/L和200 nmol/L的小分子药物Tideglusib可明显提高表皮干细胞处于有丝分裂期的比例,差异有统计学意义(P<0.05)。通过qRT-PCR验证细胞周期相关差异表达基因KIF14发现,小分子药物Tideglusib对KIF14转录的促进作用呈浓度依赖性,50 nmol/L组的Tideglusib即可促进KIF14的转录(P<0.05)。蛋白质印迹法检测证明,小分子药物Tideglusib对KIF14蛋白表达水平的影响呈浓度依赖性,50 nmol/L组的小分子药物Tideglusib即可提高KIF14的蛋白表达水平(P<0.05)。免疫荧光染色表明,小分子药物Tideglusib对KIF14相对荧光强度的影响呈浓度依赖性,50 nmol/L组的Tideglusib对KIF14相对荧光强度的影响无统计学差异(P>0.05),100 nmol/L组和200 nmol/L组的小分子药物Tideglusib可明显提高表皮干细胞KIF14的相对荧光强度(P<0.05)。通过蛋白质印迹法检测KIF14上游蛋白PKB与p-PKB表达水平发现,不同浓度的小分子药物Tideglusib对表皮干细胞PKB的总蛋白水平不产生影响,差异无统计学意义(P>0.05),50 nmol/L组的小分子药物Tideglusib对表皮干细胞p-PKB表达的影响差异无统计学意义(P>0.05),100 nmol/L组和200 nmol/L组的小分子药物Tideglusib可明显提高表皮干细胞p-PKB的表达。

结论

小分子药物Tideglusib可提升有丝分裂期细胞比例,促进表皮干细胞的增殖,其机制可能与通过上调PI3K/PKB/KIF14信号通路调控表皮干细胞的细胞周期有关。

Objective

To study the effect of the small molecule drug Tideglusib on the proliferation ability and cell cycle of epidermal stem cells and its mechanism.

Methods

The human epidermal stem cells were randomly divided into the control group, and the small molecule drug Tideglusib 50 nmol/L, 100 nmol/L, and 200 nmol/L groups with the random number table method. After 48 hours of culture, changes in cell proliferation ability were assessed through the cell counting kit-8 (CCK-8) experiment (n=6). Transcriptome level changes were detected by RNA sequencing, with P. adj <0.05 as the screening criteria for differentially expressed genes. Gene ontology enrichment was used to analyze the effect of differentially expressed genes on the biology process, cell composition, molecular function of epidermal stem cells (n=3). The transcription level of the differentially expressed gene KIF14 was verified by qRT-PCR, and the protein expression level of KIF14 was verified by Western blotting and immunofluorescence staining (n=3). The expression levels of PKB and p-PKB were explored by Western blotting (n=3).

Results

After 48 hours of culture, the CCK-8 experiment showed that the difference of the effect on the proliferation of epidermal stem cells between 50 nmol/L group of small molecule drug Tideglusib and the control group was not statistically significant (P>0.05), while 100 nmol/L group and 200 nmol/L group Tideglusib could significantly promote the proliferation of epidermal stem cells (P<0.05). RNA sequencing data showed that compared with the control group, the small molecule drug Tideglusib 200 nmol/L group had a total of 107 differentially expressed genes, 106 of which were up-regulated and 1 down-regulated. GO enrichment analysis showed that differentially expressed genes were mainly related to mitosis and cell cycle. Through flow cytometry, small molecule drug Tideglusib could increase the proportion of epidermal stem cells entering mitosis in a concentration-dependent manner. There was no statistical difference in the effect of 50 nmol/L group of small molecule drug Tideglusib on the cell cycle of epidermal stem cells (P>0.05), 100 nmol/L and 200 nmol/L Tideglusib could significantly increase the proportion of epidermal stem cells in mitosis (P<0.05). Validation of the cell cycle-related differentially expressed gene KIF14 by qRT-PCR found that small molecule drug Tideglusib could promote KIF14 transcription in a concentration-dependent manner, and 50 nmol/L group of small molecule drug Tideglusib could promote KIF14 transcription (P<0.05). Western blotting proved that small molecule drug Tideglusib had a concentration-dependent effect on the expression level of KIF14 protein, and 50 nmol/L group of small molecule drug Tideglusib could increase the protein expression level of KIF14 (P<0.05). Immunofluorescence staining showed that Tideglusib had a concentration-dependent effect on the relative fluorescence intensity of KIF14. There was no statistical difference in the effect of 50 nmol/L group of small molecule drug Tideglusib on the relative fluorescence intensity of KIF14 (P>0.05). Small molecule drug Tideglusib at 100 nmol/L group and 200 nmol/L group could significantly increase the relative fluorescence intensity of KIF14 (P<0.05). The expression levels of PKB and p-PKB, the upstream protein of KIF14 were detected by Western blotting. It was found that small molecule drug Tideglusib at different concentrations did not affect the total protein level of PKB (P>0.05). The 50 nmol/L group of small molecule drug Tideglusib had little effect on the expression of p-PKB in epidermal stem cells (P>0.05). Small molecule drug Tideglusib at 100 nmol/L group and 200 nmol/L group could significantly increase the expression of p-PKB in epidermal stem cells (P<0.05).

Conclusions

The small molecule drug Tideglusib can increase the proportion of mitotic cells and promote the proliferation of epidermal stem cells. The mechanism may be related to the regulation of the cell cycle of epidermal stem cells by up-regulating the PI3K/PKB/KIF14 signaling pathway.

图1 通过CCK-8实验检测培养48 h后不同浓度小分子药物Tideglusib对表皮干细胞增殖能力的影响
图2 培养48 h后对照组和小分子药物Tideglusib 200 nmol/L组差异表达基因的热图展示
图3 培养48 h后对照组和小分子药物Tideglusib 200 nmol/L组差异表达基因的GO分析,取前10位进行展示。A为经GO分析富集生物过程相关差异表达基因;B为经GO分析富集细胞组成相关差异表达基因;C为经GO分析富集分子功能相关差异表达基因
图4 培养48 h后对照组和小分子药物Tideglusib 200 nmol/L组细胞周期相关24个差异表达基因的热图展示
图5 通过流式细胞仪检测小分子药物Tideglusib培养48 h对表皮干细胞细胞周期的影响,通过(1-G1)/G1计算处于有丝分裂期细胞的比例。A、B、C、D为流式图;E为条图
图6 通过qRT-PCR检测小分子药物Tideglusib培养48 h对表皮干细胞KIF14转录的影响
图7 通过蛋白质印迹法检测小分子药物Tideglusib培养48 h对表皮干细胞KIF14蛋白表达水平的影响。A为条带图;B为KIF14蛋白表达条图
图8 通过免疫荧光染色检测小分子药物Tideglusib培养48 h对表皮干细胞KIF14相对荧光强度的影响。A为免疫荧光染色图;B为条图
图9 通过蛋白质印迹法检测小分子药物Tideglusib培养48 h对表皮干细胞PKB与p-PKB蛋白表达水平的影响。A为条带图;B为PKB与p-PKB蛋白表达条图
[1]
Cai Y, Zhou H, Zhu Y, et al. Elimination of senescent cells by beta-galactosidase-targeted prodrug attenuates inflammation and restores physical function in aged mice[J]. Cell Res, 2020, 30(7): 574-589.
[2]
Xiang C, Du Y, Meng G, et al. Long-term functional maintenance of primary human hepatocytes in vitro[J]. Science, 2019, 364(6438): 399-402.
[3]
Qu M, Xiong L, Lyu Y, et al. Establishment of intestinal organoid cultures modeling injury-associated epithelial regeneration[J]. Cell Res, 2021, 31(3): 259-271.
[4]
Horrigan J, Gomes TB, Snape M, et al. A Phase 2 Study of AMO-02 (Tideglusib) in Congenital and Childhood-Onset Myotonic Dystrophy Type 1 (DM1)[J]. Pediatr Neurol, 2020, 112: 84-93.
[5]
Comeau-Gauthier M, Tarchala M, Luna JLR, et al. Unleashing beta-catenin with a new anti-Alzheimer drug for bone tissue regeneration[J]. Injury, 2020, 51(11): 2449-2459.
[6]
Li J, Ma S, Chen J, et al. GSK-3beta Contributes to Parkinsonian Dopaminergic Neuron Death: Evidence From Conditional Knockout Mice and Tideglusib[J]. Front Mol Neurosci, 2020, 13: 81.
[7]
Zaugg LK, Banu A, Walther AR, et al. Translation Approach for Dentine Regeneration Using GSK-3 Antagonists[J]. J Dent Res, 2020, 99(5): 544-551.
[8]
Armagan G, Sevgili E, Gürkan FT, et al. Regulation of the Nrf2 Pathway by Glycogen Synthase Kinase-3beta in MPP(+)-Induced Cell Damage[J]. Molecules, 2019, 24(7): 1377.
[9]
Wang X, Shen C, Li Z, et al. Efficient isolation and high yield of epidermal cells from foreskin biopsies by dynamic trypsinization[J]. Burns, 2018, 44(5): 1240-1250.
[10]
Zhu Q, Ren H, Li X, et al. Silencing KIF14 reverses acquired resistance to sorafenib in hepatocellular carcinoma[J]. Aging (Albany NY), 2020, 12(22): 22975-23003.
[11]
Liu N, Matsumura H, Kato T, et al. Stem cell competition orchestrates skin homeostasis and ageing[J]. Nature, 2019, 568(7752): 344-350.
[12]
Zhernov I, Diez S, Braun M, et al. Intrinsically Disordered Domain of Kinesin-3 Kif14 Enables Unique Functional Diversity[J]. Curr Biol, 2020, 30(17): 3342-3351, e3345.
[13]
Nitzsche B, Dudek E, Hajdo L, et al. Working stroke of the kinesin-14, ncd, comprises two substeps of different direction[J]. Proc Natl Acad Sci U S A, 2016, 113(43): E6582-E6589.
[14]
Kevenaar JT, Bianchi S, van Spronsen M, et al. Kinesin-Binding Protein Controls Microtubule Dynamics and Cargo Trafficking by Regulating Kinesin Motor Activity[J]. Curr Biol, 2016, 26(7): 849-861.
[15]
Gerashchenko TS, Zolotaryova SY, Kiselev AM, et al. The Activity of KIF14, Mieap, and EZR in a New Type of the Invasive Component, Torpedo-Like Structures, Predetermines the Metastatic Potential of Breast Cancer[J]. Cancers (Basel), 2020, 12(7): 1909.
[16]
Cheng C, Wu X, Shen Y, et al. KIF14 and KIF23 Promote Cell Proliferation and Chemoresistance in HCC Cells, and Predict Worse Prognosis of Patients with HCC[J]. Cancer Manag Res, 2020, 12: 13241-13257.
[17]
Pejskova P, Reilly ML, Bino L, et al. KIF14 controls ciliogenesis via regulation of Aurora A and is important for Hedgehog signaling[J]. J Cell Biol, 2020, 219(6): e201904107.
[18]
Xu H, Zhao G, Zhang Y, et al. Long non-coding RNA PAXIP1-AS1 facilitates cell invasion and angiogenesis of glioma by recruiting transcription factor ETS1 to upregulate KIF14 expression[J]. J Exp Clin Cancer Res, 2019, 38(1): 486.
[19]
Liu H, Paddock MN, Wang H, et al. The INPP4B Tumor Suppressor Modulates EGFR Trafficking and Promotes Triple-Negative Breast Cancer[J]. Cancer Discov, 2020, 10(8): 1226-1239.
[20]
DiToro D, Harbour SN, Bando JK, et al. Insulin-Like Growth Factors Are Key Regulators of T Helper 17 Regulatory T Cell Balance in Autoimmunity[J]. Immunity, 2020, 52(4): 650-667, e610.
[21]
Utley S, James D, Mavila N, et al. Fibroblast growth factor signaling regulates the expansion of A6-expressing hepatocytes in association with AKT-dependent beta-catenin activation[J]. J Hepatol, 2014, 60(5): 1002-1009.
[22]
姜笃银,潘伊,邱道静. 组织工程技术在创面修复中的应用[J/CD]. 中华损伤与修复杂志(电子版), 2019, 14(4): 241-244.
[23]
贾赤宇,鲍武,程夏霖. 创面愈合的机遇和挑战:组织工程皮肤[J/CD]. 中华损伤与修复杂志(电子版), 2019, 14(6): 401-405.
[1] 卫杨文祥, 黄浩然, 刘予豪, 陈镇秋, 王海彬, 周驰. 股骨头坏死细胞治疗的前景和挑战[J]. 中华关节外科杂志(电子版), 2023, 17(05): 694-700.
[2] 韩李念, 王君. 放射性皮肤损伤治疗的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 533-537.
[3] 全勇, 冉新泽, 胡梦佳, 陈芳, 陈乃成, 廖伟年, 陈默, 申明强, 陈石磊, 王崧, 王军平. 低氧习服在小鼠造血干细胞急性放射损伤修复中的作用观察[J]. 中华损伤与修复杂志(电子版), 2023, 18(04): 293-298.
[4] 贾蔓箐, 卞婧, 周业平. 对小剂量胰岛素局部注射促进脂肪干细胞移植成活及改善糖尿病创面愈合临床观察[J]. 中华损伤与修复杂志(电子版), 2023, 18(04): 312-316.
[5] 贺林凤, 曹雨, 张宁, 冉新泽, 王锋超. 肠干细胞调控与肠道放射损伤修复的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(04): 358-363.
[6] 高雷, 李芳, 巴雅力嘎, 李全, 巴特. 干细胞源性外泌体在创伤修复中免疫作用的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(04): 364-367.
[7] 江振剑, 蒋明, 黄大莉. TK1、Ki67蛋白在分化型甲状腺癌组织中的表达及预后价值研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 623-626.
[8] 李晔, 何洁, 胡锦秀, 王金祥, 田川, 潘杭, 陈梦蝶, 赵晓娟, 叶丽, 张敏, 潘兴华. 高活性间充质干细胞干预猕猴卵巢衰老的研究[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 210-219.
[9] 龙慧玲, 林蜜, 邵婷. 三维球体间充质干细胞培养技术的研究进展及其应用[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 229-234.
[10] 刘文慧, 吴涛, 张曦. 间充质干细胞联合血小板生成素受体激动剂在异基因造血干细胞移植后血小板恢复中的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 242-246.
[11] 王红敏, 谢云波, 王彦虎, 王福生. 间充质干细胞治疗新冠病毒感染的临床研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 247-256.
[12] 杨蕴钊, 周诚, 石美涵, 赵静, 白雪源. 人羊水间充质干细胞对膜性肾病大鼠的治疗作用[J]. 中华肾病研究电子杂志, 2023, 12(04): 181-186.
[13] 宋艳琪, 任雪景, 王文娟, 韩秋霞, 续玥, 庄凯婷, 肖拓, 蔡广研. 间充质干细胞对顺铂诱导的小鼠急性肾损伤中细胞铁死亡的作用[J]. 中华肾病研究电子杂志, 2023, 12(04): 187-193.
[14] 陈婷婷, 江学良, 余佳丽, 柯剑林. 干细胞治疗炎症性肠病的安全性[J]. 中华消化病与影像杂志(电子版), 2023, 13(04): 193-198.
[15] 梁宇同, 丁旭, 马国慧, 黄艳红. 间充质干细胞在宫腔粘连治疗中的研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(05): 596-599.
阅读次数
全文


摘要