切换至 "中华医学电子期刊资源库"

中华损伤与修复杂志(电子版) ›› 2021, Vol. 16 ›› Issue (06) : 515 -519. doi: 10.3877/cma.j.issn.1673-9450.2021.06.010

综述

不同来源间充质干细胞外泌体在皮肤损伤修复中的研究进展
李曼1, 朱威1, 张海萍1,()   
  1. 1. 100053 北京,首都医科大学宣武医院皮肤性病科
  • 收稿日期:2021-10-15 出版日期:2021-12-01
  • 通信作者: 张海萍

Research progress of exosomes derived from different mesenchymal stem cells in skin wound repair

Man Li1, Wei Zhu1, Haiping Zhang1,()   

  1. 1. Department of Dermatology and Sexually Transmitted Disease, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
  • Received:2021-10-15 Published:2021-12-01
  • Corresponding author: Haiping Zhang
引用本文:

李曼, 朱威, 张海萍. 不同来源间充质干细胞外泌体在皮肤损伤修复中的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2021, 16(06): 515-519.

Man Li, Wei Zhu, Haiping Zhang. Research progress of exosomes derived from different mesenchymal stem cells in skin wound repair[J/OL]. Chinese Journal of Injury Repair and Wound Healing(Electronic Edition), 2021, 16(06): 515-519.

外泌体是多种组织细胞分泌的脂质双分子层结构小囊泡,其内含有蛋白质、脂质、mRNA等生物活性成分,具有介导细胞间的物质传递以及信息交流等作用,从而调节细胞的生物学功能。多种不同来源间充质干细胞(MSC)外泌体可通过调节皮肤创面愈合过程中的炎症反应、细胞增殖和迁移、血管生成、胶原沉积等多个阶段,促进伤口愈合并抑制瘢痕形成,在皮肤损伤修复中具有良好的应用前景。本文就不同来源MSC外泌体在皮肤损伤修复中的研究进展作一综述。

Exosomes are lipid bilayer vesicles secreted by a variety of tissues and cells, which contain proteins, lipids, mRNAs and other biological active components. Exosomes have the role of mediating the transfer of substances between cells and the exchange of information to regulate the biologically functions of cells. Studies have shown that exosomes derived from different mesenchymal stem cells can promote wound healing and inhibit scar formation by regulating multiple stages of the inflammatory response, cell proliferation and migration, angiogenesis, collagen deposition and other stages in skin wound healing. In this paper, the research progress of exosomes derived from different mesenchymal stem cells in skin wound is reviewed.

[1]
Rani S, Ritter T. The Exosome- A Naturally Secreted Nanoparticle and its Application to Wound Healing[J]. Adv Mater 2016, 28(27): 5542-5552.
[2]
Lee DE, Ayoub N, Agrawal DK. Mesenchymal stem cells and cutaneous wound healing: novel methods to increase cell delivery and therapeutic efficacy[J]. Stem Cell Res Ther, 2016, 7: 37.
[3]
Trohatou O, Roubelakis MG. Mesenchymal Stem/Stromal Cells in Regenerative Medicine: Past, Present, and Future[J]. Cell Reprogram, 2017, 19(4): 217-224.
[4]
Qiu H, Liu S, Wu K, et al. Prospective application of exosomes derived from adipose-derived stem cells in skin wound healing: A review[J]. J Cosmet Dermatol, 2020, 19(3): 574-581.
[5]
Seo Y, Kim HS, Hong IS. Stem Cell-Derived Extracellular Vesicles as Immunomodulatory Therapeutics[J]. Stem Cells Int, 2019, 2019: 5126156.
[6]
Hu P, Yang Q, Wang Q, et al. Mesenchymal stromal cells-exosomes: a promising cell-free therapeutic tool for wound healing and cutaneous regeneration[J]. Burns Trauma, 2019, 7: 38.
[7]
Phelps J, Sanati-Nezhad A, Ungrin M, et al. Bioprocessing of Mesenchymal Stem Cells and Their Derivatives: Toward Cell-Free Therapeutics[J]. Stem Cells Int, 2018, 2018: 9415367.
[8]
Tricarico C, Clancy J, D'Souza-Schorey C. Biology and biogenesis of shed microvesicles[J]. Small GTPases, 2017, 8(4): 220-232.
[9]
Janis JE, Harrison B. Wound Healing: Part I. Basic Science[J]. Plast Reconstr Surg, 2016, 138(3 Suppl): 9S-17S.
[10]
Reinke JM, Sorg H. Wound repair and regeneration[J]. Eur Surg Res, 2012, 49(1): 35-43.
[11]
Landén NX, Li D, Ståhle M. Transition from inflammation to proliferation: a critical step during wound healing[J]. Cell Mol Life Sci, 2016, 73(20): 3861-3885.
[12]
Niel GV, D′Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles[J]. Nat Rev Mol Cell Biol, 2018, 19(4): 213-228.
[13]
张国威,汪泱,邓志锋. MSCs来源的外泌体修复组织损伤的机制研究进展[J]. 中国修复重建外科杂志2016, 30(4): 499-503.
[14]
Goodarzi P, Larijani B, Alavi-Moghadam S, et al. Mesenchymal Stem Cells-Derived Exosomes for Wound Regeneration[J]. Adv Exp Med Biol, 2018, 1119: 119-131.
[15]
Chu DT, Phuong TNT, Tien NLB, et al. An Update on the Progress of Isolation, Culture, Storage, and Clinical Application of Human Bone Marrow Mesenchymal Stem/Stromal Cells[J]. Int J Mol Sci, 2020, 21(3): 708.
[16]
El-Tookhy OS, Shamaa AA, Shehab GG, et al. Histological Evaluation of Experimentally Induced Critical Size Defect Skin Wounds Using Exosomal Solution of Mesenchymal Stem Cells Derived Microvesicles[J]. Int J Stem Cells, 2017, 10(2): 144-153.
[17]
Shabbir A, Cox A, Rodriguez-Menocal L, et al. Mesenchymal Stem Cell Exosomes Induce Proliferation and Migration of Normal and Chronic Wound Fibroblasts, and Enhance Angiogenesis in Vitro[J]. Stem Cells Dev, 2015, 24(14): 1635-1647.
[18]
Anderson JD, Johansson HJ, Graham CS, et al. Comprehensive Proteomic Analysis of Mesenchymal Stem Cell Exosomes Reveals Modulation of Angiogenesis via Nuclear Factor-KappaB Signaling[J]. Stem Cells, 2016, 34(3): 601-613.
[19]
McBride JD, Rodriguez-Menocal L, Guzman W, et al. Bone Marrow Mesenchymal Stem Cell-Derived CD63 Exosomes Transport Wnt3a Exteriorly and Enhance Dermal Fibroblast Proliferation, Migration, and Angiogenesis in Vitro[J]. Stem Cells Dev, 2017, 26(19): 1384-1398.
[20]
Ding J, Wang X, Chen B, et al. Exosomes Derived from Human Bone Marrow Mesenchymal Stem Cells Stimulated by Deferoxamine Accelerate Cutaneous Wound Healing by Promoting Angiogenesis[J]. Biomed Res Int, 2019, 2019: 9742765.
[21]
Pelizzo G, Avanzini MA, Icaro CA, et al. Extracellular vesicles derived from mesenchymal cells: perspective treatment for cutaneous wound healing in pediatrics[J]. Regen Med, 2018, 13(4): 385-394.
[22]
Zhang W, Bai X, Zhao B, et al. Cell-free therapy based on adipose tissue stem cell-derived exosomes promotes wound healing via the PI3K/Akt signaling pathway[J]. Exp Cell Res, 2018, 370(2): 333-342.
[23]
Ren S, Chen J, Duscher D, et al. Microvesicles from human adipose stem cells promote wound healing by optimizing cellular functions via AKT and ERK signaling pathways[J]. Stem Cell Res Ther, 2019, 10(1): 47.
[24]
张静,易阳艳,羊水发,等. 脂肪干细胞来源外泌体对人脐静脉血管内皮细胞增殖、迁移及管样分化的影响[J]. 中国修复重建外科杂志2018, 32(10): 1351-1357.
[25]
Liang X, Zhang L, Wang S, et al. Exosomes secreted by mesenchymal stem cells promote endothelial cell angiogenesis by transferring miR-125a[J]. J Cell Sci, 2016, 129(11): 2182-2189.
[26]
Kang T, Jones TM, Naddell C, et al. Adipose-Derived Stem Cells Induce Angiogenesis via Microvesicle Transport of miRNA-31[J]. Stem Cells Transl Med, 2016, 5(4): 440-450.
[27]
Hu L, Wang J, Zhou X, et al. Exosomes derived from human adipose mensenchymal stem cells accelerates cutaneous wound healing via optimizing the characteristics of fibroblasts[J]. Sci Rep, 2016, 6: 32993.
[28]
Wang L, Hu L, Zhou X, et al. Exosomes secreted by human adipose mesenchymal stem cells promote scarless cutaneous repair by regulating extracellular matrix remodelling[J]. Sci Rep, 2017, 7(1): 13321.
[29]
Bai Y, Han Y, Yan X, et al. Adipose mesenchymal stem cell-derived exosomes stimulated by hydrogen peroxide enhanced skin flap recovery in ischemia-reperfusion injury[J]. Biochem Biophys Res Commun, 2018, 500(2): 310-317.
[30]
Pu CM, Liu CW, Liang CJ, et al. Adipose-Derived Stem Cells Protect Skin Flaps against Ischemia/Reperfusion Injury via IL-6 Expression[J]. J Invest Dermatol, 2017, 137(6): 1353-1362.
[31]
Lopatina T, Bruno S, Tetta C, et al. Platelet-derived growth factor regulates the secretion of extracellular vesicles by adipose mesenchymal stem cells and enhances their angiogenic potential[J]. Cell Commun Signal, 2014, 12: 26.
[32]
Li X, Xie X, Lian W, et al. Exosomes from adipose-derived stem cells overexpressing Nrf2 accelerate cutaneous wound healing by promoting vascularization in a diabetic foot ulcer rat model[J]. Exp Mol Med, 2018, 50(4): 1-14.
[33]
詹小舒,罗冬章,王丙云,等. 犬脐带间充质干细胞来源外泌体修复皮肤创伤[J]. 中国组织工程研究2018, 22(25): 4021-4027.
[34]
赵彬,吴高峰,张熠杰,等. 人羊膜上皮干细胞来源外泌体对大鼠全层皮肤缺损创面愈合的影响[J]. 中华烧伤杂志2017, 33(1): 18-23.
[35]
Zhang B, Wang M, Gong A, et al. HucMSC-Exosome Mediated-Wnt4 Signaling Is Required for Cutaneous Wound Healing[J]. Stem Cells, 2015, 33(7): 2158-2168.
[36]
Zhang B, Wu X, Zhang X, et al. Human umbilical cord mesenchymal stem cell exosomes enhance angiogenesis through the Wnt4/β-catenin pathway[J]. Stem Cells Transl Med, 2015, 4(5): 513-522.
[37]
Li X, Liu L, Yang J, et al. Exosome Derived from Human Umbilical Cord Mesenchymal Stem Cell Mediates MiR-181c Attenuating Burn-induced Excessive Inflammation[J]. EBioMedicine, 2016, 8: 72-82.
[38]
Ti D, Hao H, Tong C, et al. LPS-preconditioned mesenchymal stromal cells modify macrophage polarization for resolution of chronic inflammation via exosome-shuttled let-7b[J]. J Transl Med, 2015, 13: 308.
[39]
Fang S, Xu C, Zhang Y, et al. Umbilical Cord-Derived Mesenchymal Stem Cell-Derived Exosomal MicroRNAs Suppress Myofibroblast Differentiation by Inhibiting the Transforming Growth Factor-β/SMAD2 Pathway During Wound Healing[J]. Stem Cells Transl Med, 2016, 5(10): 1425-1439.
[40]
Zhang B, Shi Y, Gong A, et al. HucMSC Exosome-Delivered 14-3-3ζ Orchestrates Self-Control of the Wnt Response via Modulation of YAP During Cutaneous Regeneration[J]. Stem Cells, 2016, 34(10): 2485-2500.
[41]
Erices A, Conget P, Minguell JJ. Mesenchymal progenitor cells in human umbilical cord blood[J]. Br J Haematol, 2000, 109(1): 235-242.
[42]
Kim YJ, Yoo SM, Park HH, et al. Exosomes derived from human umbilical cord blood mesenchymal stem cells stimulates rejuvenation of human skin[J]. Biochem Biophys Res Commun, 2017, 493(2): 1102-1108.
[43]
Dalirfardouei R, Jamialahmadi K, Jafarian AH, et al. Promising effects of exosomes isolated from menstrual blood-derived mesenchymal stem cell on wound-healing process in diabetic mouse model[J]. J Tissue Eng Regen Med, 2019, 13(4): 555-568.
[44]
Kou X, Xu X, Chen C, et al. The Fas/Fap-1/Cav-1 complex regulates IL-1RA secretion in mesenchymal stem cells to accelerate wound healing[J]. Sci Transl Med, 2018, 10(432): eaai8524.
[45]
Jesus AA, Goldbach-Mansky R. IL-1 blockade in autoinflammatory syndromes[J]. Annu Rev Med, 2014, 65: 223-244.
[46]
Shi Q, Qian ZY, Liu DH, et al. GMSC-Derived Exosomes Combined with a Chitosan/Silk Hydrogel Sponge Accelerates Wound Healing in a Diabetic Rat Skin Defect Model[J]. Front Physiol, 2017, 8: 904.
[47]
Tao SC, Guo SC, Li M, et al. Chitosan Wound Dressings Incorporating Exosomes Derived from MicroRNA-126-Overexpressing Synovium Mesenchymal Stem Cells Provide Sustained Release of Exosomes and Heal Full-Thickness Skin Defects in a Diabetic Rat Model[J]. Stem Cells Transl Med, 2017, 6(3): 736-747.
[48]
Zhang J, Guan J, Niu X, et al. Exosomes released from human induced pluripotent stem cells-derived MSCs facilitate cutaneous wound healing by promoting collagen synthesis and angiogenesis[J]. J Transl Med, 2015, 13: 49.
[1] 刘政宏, 袁春銮. 乳腺癌患者血清外泌体中长链非编码RNA BC200的表达及临床意义[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(04): 212-216.
[2] 费扬, 赵晗希, 孙丽琴, 楼琴华, 胡骏程. 银杏叶提取物对糖尿病肾病患者的疗效及其对尿液外泌体miR-342-3p的干预研究[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(03): 219-224.
[3] 林琳, 田思萌, 于永华, 徐飞飞, 黄明莉. 干细胞及其外泌体治疗宫腔黏连的研究现状[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(03): 271-275.
[4] 宋勤琴, 李双汝, 李林, 杜鹃, 刘继松. 间充质干细胞源性外泌体在改善病理性瘢痕中作用的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 550-553.
[5] 刘昌玲, 张金丽, 张志, 李孝建, 汤文彬, 胡逸萍, 陈宾, 谢晓娜. 负载人脂肪干细胞外泌体的甲基丙烯酰化明胶水凝胶对人皮肤成纤维细胞增殖和迁移的影响[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 517-525.
[6] 蔡定钦, 孙建国, 陈旭. 外泌体非编码RNAs与肺癌放射治疗的研究进展[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(04): 655-658.
[7] 陈俊秋, 邬绿莹, 马予洁, 林娜, 刘飞, 陈津. 基于lncRNA微阵列芯片技术探索间充质干细胞外泌体增强小鼠胰岛β细胞抗低氧损伤的潜在机制[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(03): 129-136.
[8] 孙海燕, 周士燕, 张杉杉, 张研, 张茜. 间充质干细胞及其外泌体在高原肺水肿中的潜在治疗机制研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(03): 186-190.
[9] 袁雨涵, 杨盛力. 体液和组织蛋白质组学分析在肝癌早期分子诊断中的研究进展[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 883-888.
[10] 仝心语, 谭凯, 白亮亮, 杜锡林. 外泌体在肝细胞癌诊疗中的应用[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(03): 384-388.
[11] 季鹏程, 鄂一民, 陆晨, 喻春钊. 循环外泌体相关生物标志物在结直肠癌诊断中的研究进展[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(04): 265-273.
[12] 辛强, 朱文豪, 何川, 李文臣, 陈勃, 王海峰. 神经胶质细胞来源的外泌体miRNAs对创伤性颅脑损伤后神经炎症的影响[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(03): 169-173.
[13] 临床多学科协作专家组. 腹盆部创伤急诊CT 专家推荐指南(2024)[J/OL]. 中华诊断学电子杂志, 2024, 12(04): 222-229.
[14] 田峰瑞, 蒋锦源, 李阳, 张连阳. Morel-Lavallée 损伤继发血清肿一例[J/OL]. 中华诊断学电子杂志, 2024, 12(04): 245-248.
[15] 陈念, 张连阳. 严重创伤救治中全血输注进展[J/OL]. 中华诊断学电子杂志, 2024, 12(03): 145-148.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?