切换至 "中华医学电子期刊资源库"

中华损伤与修复杂志(电子版) ›› 2021, Vol. 16 ›› Issue (06) : 515 -519. doi: 10.3877/cma.j.issn.1673-9450.2021.06.010

综述

不同来源间充质干细胞外泌体在皮肤损伤修复中的研究进展
李曼1, 朱威1, 张海萍1,()   
  1. 1. 100053 北京,首都医科大学宣武医院皮肤性病科
  • 收稿日期:2021-10-15 出版日期:2021-12-01
  • 通信作者: 张海萍

Research progress of exosomes derived from different mesenchymal stem cells in skin wound repair

Man Li1, Wei Zhu1, Haiping Zhang1,()   

  1. 1. Department of Dermatology and Sexually Transmitted Disease, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
  • Received:2021-10-15 Published:2021-12-01
  • Corresponding author: Haiping Zhang
引用本文:

李曼, 朱威, 张海萍. 不同来源间充质干细胞外泌体在皮肤损伤修复中的研究进展[J]. 中华损伤与修复杂志(电子版), 2021, 16(06): 515-519.

Man Li, Wei Zhu, Haiping Zhang. Research progress of exosomes derived from different mesenchymal stem cells in skin wound repair[J]. Chinese Journal of Injury Repair and Wound Healing(Electronic Edition), 2021, 16(06): 515-519.

外泌体是多种组织细胞分泌的脂质双分子层结构小囊泡,其内含有蛋白质、脂质、mRNA等生物活性成分,具有介导细胞间的物质传递以及信息交流等作用,从而调节细胞的生物学功能。多种不同来源间充质干细胞(MSC)外泌体可通过调节皮肤创面愈合过程中的炎症反应、细胞增殖和迁移、血管生成、胶原沉积等多个阶段,促进伤口愈合并抑制瘢痕形成,在皮肤损伤修复中具有良好的应用前景。本文就不同来源MSC外泌体在皮肤损伤修复中的研究进展作一综述。

Exosomes are lipid bilayer vesicles secreted by a variety of tissues and cells, which contain proteins, lipids, mRNAs and other biological active components. Exosomes have the role of mediating the transfer of substances between cells and the exchange of information to regulate the biologically functions of cells. Studies have shown that exosomes derived from different mesenchymal stem cells can promote wound healing and inhibit scar formation by regulating multiple stages of the inflammatory response, cell proliferation and migration, angiogenesis, collagen deposition and other stages in skin wound healing. In this paper, the research progress of exosomes derived from different mesenchymal stem cells in skin wound is reviewed.

[1]
Rani S, Ritter T. The Exosome- A Naturally Secreted Nanoparticle and its Application to Wound Healing[J]. Adv Mater 2016, 28(27): 5542-5552.
[2]
Lee DE, Ayoub N, Agrawal DK. Mesenchymal stem cells and cutaneous wound healing: novel methods to increase cell delivery and therapeutic efficacy[J]. Stem Cell Res Ther, 2016, 7: 37.
[3]
Trohatou O, Roubelakis MG. Mesenchymal Stem/Stromal Cells in Regenerative Medicine: Past, Present, and Future[J]. Cell Reprogram, 2017, 19(4): 217-224.
[4]
Qiu H, Liu S, Wu K, et al. Prospective application of exosomes derived from adipose-derived stem cells in skin wound healing: A review[J]. J Cosmet Dermatol, 2020, 19(3): 574-581.
[5]
Seo Y, Kim HS, Hong IS. Stem Cell-Derived Extracellular Vesicles as Immunomodulatory Therapeutics[J]. Stem Cells Int, 2019, 2019: 5126156.
[6]
Hu P, Yang Q, Wang Q, et al. Mesenchymal stromal cells-exosomes: a promising cell-free therapeutic tool for wound healing and cutaneous regeneration[J]. Burns Trauma, 2019, 7: 38.
[7]
Phelps J, Sanati-Nezhad A, Ungrin M, et al. Bioprocessing of Mesenchymal Stem Cells and Their Derivatives: Toward Cell-Free Therapeutics[J]. Stem Cells Int, 2018, 2018: 9415367.
[8]
Tricarico C, Clancy J, D'Souza-Schorey C. Biology and biogenesis of shed microvesicles[J]. Small GTPases, 2017, 8(4): 220-232.
[9]
Janis JE, Harrison B. Wound Healing: Part I. Basic Science[J]. Plast Reconstr Surg, 2016, 138(3 Suppl): 9S-17S.
[10]
Reinke JM, Sorg H. Wound repair and regeneration[J]. Eur Surg Res, 2012, 49(1): 35-43.
[11]
Landén NX, Li D, Ståhle M. Transition from inflammation to proliferation: a critical step during wound healing[J]. Cell Mol Life Sci, 2016, 73(20): 3861-3885.
[12]
Niel GV, D′Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles[J]. Nat Rev Mol Cell Biol, 2018, 19(4): 213-228.
[13]
张国威,汪泱,邓志锋. MSCs来源的外泌体修复组织损伤的机制研究进展[J]. 中国修复重建外科杂志2016, 30(4): 499-503.
[14]
Goodarzi P, Larijani B, Alavi-Moghadam S, et al. Mesenchymal Stem Cells-Derived Exosomes for Wound Regeneration[J]. Adv Exp Med Biol, 2018, 1119: 119-131.
[15]
Chu DT, Phuong TNT, Tien NLB, et al. An Update on the Progress of Isolation, Culture, Storage, and Clinical Application of Human Bone Marrow Mesenchymal Stem/Stromal Cells[J]. Int J Mol Sci, 2020, 21(3): 708.
[16]
El-Tookhy OS, Shamaa AA, Shehab GG, et al. Histological Evaluation of Experimentally Induced Critical Size Defect Skin Wounds Using Exosomal Solution of Mesenchymal Stem Cells Derived Microvesicles[J]. Int J Stem Cells, 2017, 10(2): 144-153.
[17]
Shabbir A, Cox A, Rodriguez-Menocal L, et al. Mesenchymal Stem Cell Exosomes Induce Proliferation and Migration of Normal and Chronic Wound Fibroblasts, and Enhance Angiogenesis in Vitro[J]. Stem Cells Dev, 2015, 24(14): 1635-1647.
[18]
Anderson JD, Johansson HJ, Graham CS, et al. Comprehensive Proteomic Analysis of Mesenchymal Stem Cell Exosomes Reveals Modulation of Angiogenesis via Nuclear Factor-KappaB Signaling[J]. Stem Cells, 2016, 34(3): 601-613.
[19]
McBride JD, Rodriguez-Menocal L, Guzman W, et al. Bone Marrow Mesenchymal Stem Cell-Derived CD63 Exosomes Transport Wnt3a Exteriorly and Enhance Dermal Fibroblast Proliferation, Migration, and Angiogenesis in Vitro[J]. Stem Cells Dev, 2017, 26(19): 1384-1398.
[20]
Ding J, Wang X, Chen B, et al. Exosomes Derived from Human Bone Marrow Mesenchymal Stem Cells Stimulated by Deferoxamine Accelerate Cutaneous Wound Healing by Promoting Angiogenesis[J]. Biomed Res Int, 2019, 2019: 9742765.
[21]
Pelizzo G, Avanzini MA, Icaro CA, et al. Extracellular vesicles derived from mesenchymal cells: perspective treatment for cutaneous wound healing in pediatrics[J]. Regen Med, 2018, 13(4): 385-394.
[22]
Zhang W, Bai X, Zhao B, et al. Cell-free therapy based on adipose tissue stem cell-derived exosomes promotes wound healing via the PI3K/Akt signaling pathway[J]. Exp Cell Res, 2018, 370(2): 333-342.
[23]
Ren S, Chen J, Duscher D, et al. Microvesicles from human adipose stem cells promote wound healing by optimizing cellular functions via AKT and ERK signaling pathways[J]. Stem Cell Res Ther, 2019, 10(1): 47.
[24]
张静,易阳艳,羊水发,等. 脂肪干细胞来源外泌体对人脐静脉血管内皮细胞增殖、迁移及管样分化的影响[J]. 中国修复重建外科杂志2018, 32(10): 1351-1357.
[25]
Liang X, Zhang L, Wang S, et al. Exosomes secreted by mesenchymal stem cells promote endothelial cell angiogenesis by transferring miR-125a[J]. J Cell Sci, 2016, 129(11): 2182-2189.
[26]
Kang T, Jones TM, Naddell C, et al. Adipose-Derived Stem Cells Induce Angiogenesis via Microvesicle Transport of miRNA-31[J]. Stem Cells Transl Med, 2016, 5(4): 440-450.
[27]
Hu L, Wang J, Zhou X, et al. Exosomes derived from human adipose mensenchymal stem cells accelerates cutaneous wound healing via optimizing the characteristics of fibroblasts[J]. Sci Rep, 2016, 6: 32993.
[28]
Wang L, Hu L, Zhou X, et al. Exosomes secreted by human adipose mesenchymal stem cells promote scarless cutaneous repair by regulating extracellular matrix remodelling[J]. Sci Rep, 2017, 7(1): 13321.
[29]
Bai Y, Han Y, Yan X, et al. Adipose mesenchymal stem cell-derived exosomes stimulated by hydrogen peroxide enhanced skin flap recovery in ischemia-reperfusion injury[J]. Biochem Biophys Res Commun, 2018, 500(2): 310-317.
[30]
Pu CM, Liu CW, Liang CJ, et al. Adipose-Derived Stem Cells Protect Skin Flaps against Ischemia/Reperfusion Injury via IL-6 Expression[J]. J Invest Dermatol, 2017, 137(6): 1353-1362.
[31]
Lopatina T, Bruno S, Tetta C, et al. Platelet-derived growth factor regulates the secretion of extracellular vesicles by adipose mesenchymal stem cells and enhances their angiogenic potential[J]. Cell Commun Signal, 2014, 12: 26.
[32]
Li X, Xie X, Lian W, et al. Exosomes from adipose-derived stem cells overexpressing Nrf2 accelerate cutaneous wound healing by promoting vascularization in a diabetic foot ulcer rat model[J]. Exp Mol Med, 2018, 50(4): 1-14.
[33]
詹小舒,罗冬章,王丙云,等. 犬脐带间充质干细胞来源外泌体修复皮肤创伤[J]. 中国组织工程研究2018, 22(25): 4021-4027.
[34]
赵彬,吴高峰,张熠杰,等. 人羊膜上皮干细胞来源外泌体对大鼠全层皮肤缺损创面愈合的影响[J]. 中华烧伤杂志2017, 33(1): 18-23.
[35]
Zhang B, Wang M, Gong A, et al. HucMSC-Exosome Mediated-Wnt4 Signaling Is Required for Cutaneous Wound Healing[J]. Stem Cells, 2015, 33(7): 2158-2168.
[36]
Zhang B, Wu X, Zhang X, et al. Human umbilical cord mesenchymal stem cell exosomes enhance angiogenesis through the Wnt4/β-catenin pathway[J]. Stem Cells Transl Med, 2015, 4(5): 513-522.
[37]
Li X, Liu L, Yang J, et al. Exosome Derived from Human Umbilical Cord Mesenchymal Stem Cell Mediates MiR-181c Attenuating Burn-induced Excessive Inflammation[J]. EBioMedicine, 2016, 8: 72-82.
[38]
Ti D, Hao H, Tong C, et al. LPS-preconditioned mesenchymal stromal cells modify macrophage polarization for resolution of chronic inflammation via exosome-shuttled let-7b[J]. J Transl Med, 2015, 13: 308.
[39]
Fang S, Xu C, Zhang Y, et al. Umbilical Cord-Derived Mesenchymal Stem Cell-Derived Exosomal MicroRNAs Suppress Myofibroblast Differentiation by Inhibiting the Transforming Growth Factor-β/SMAD2 Pathway During Wound Healing[J]. Stem Cells Transl Med, 2016, 5(10): 1425-1439.
[40]
Zhang B, Shi Y, Gong A, et al. HucMSC Exosome-Delivered 14-3-3ζ Orchestrates Self-Control of the Wnt Response via Modulation of YAP During Cutaneous Regeneration[J]. Stem Cells, 2016, 34(10): 2485-2500.
[41]
Erices A, Conget P, Minguell JJ. Mesenchymal progenitor cells in human umbilical cord blood[J]. Br J Haematol, 2000, 109(1): 235-242.
[42]
Kim YJ, Yoo SM, Park HH, et al. Exosomes derived from human umbilical cord blood mesenchymal stem cells stimulates rejuvenation of human skin[J]. Biochem Biophys Res Commun, 2017, 493(2): 1102-1108.
[43]
Dalirfardouei R, Jamialahmadi K, Jafarian AH, et al. Promising effects of exosomes isolated from menstrual blood-derived mesenchymal stem cell on wound-healing process in diabetic mouse model[J]. J Tissue Eng Regen Med, 2019, 13(4): 555-568.
[44]
Kou X, Xu X, Chen C, et al. The Fas/Fap-1/Cav-1 complex regulates IL-1RA secretion in mesenchymal stem cells to accelerate wound healing[J]. Sci Transl Med, 2018, 10(432): eaai8524.
[45]
Jesus AA, Goldbach-Mansky R. IL-1 blockade in autoinflammatory syndromes[J]. Annu Rev Med, 2014, 65: 223-244.
[46]
Shi Q, Qian ZY, Liu DH, et al. GMSC-Derived Exosomes Combined with a Chitosan/Silk Hydrogel Sponge Accelerates Wound Healing in a Diabetic Rat Skin Defect Model[J]. Front Physiol, 2017, 8: 904.
[47]
Tao SC, Guo SC, Li M, et al. Chitosan Wound Dressings Incorporating Exosomes Derived from MicroRNA-126-Overexpressing Synovium Mesenchymal Stem Cells Provide Sustained Release of Exosomes and Heal Full-Thickness Skin Defects in a Diabetic Rat Model[J]. Stem Cells Transl Med, 2017, 6(3): 736-747.
[48]
Zhang J, Guan J, Niu X, et al. Exosomes released from human induced pluripotent stem cells-derived MSCs facilitate cutaneous wound healing by promoting collagen synthesis and angiogenesis[J]. J Transl Med, 2015, 13: 49.
[1] 王岩, 马剑雄, 郎爽, 董本超, 田爱现, 李岩, 孙磊, 靳洪震, 卢斌, 王颖, 柏豪豪, 马信龙. 外泌体在骨质疏松症诊疗中应用的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(05): 673-678.
[2] 卫杨文祥, 黄浩然, 刘予豪, 陈镇秋, 王海彬, 周驰. 股骨头坏死细胞治疗的前景和挑战[J]. 中华关节外科杂志(电子版), 2023, 17(05): 694-700.
[3] 贺敬龙, 孙炜, 高明宏, 谢伟, 姜骆永, 何琦非, 岳家吉. 外泌体非编码RNA在骨关节炎发病机制中的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(04): 520-527.
[4] 李康, 耿喜林, 汪玉良, 刘京升. 踝关节Logsplitter损伤诊治的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(04): 566-570.
[5] 符卓毅, 唐圣成, 卜俏梅, 徐高兵, 吴安平, 蔡巍, 杨明, 谭海涛. 镁在骨关节炎治疗中的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(03): 354-362.
[6] 赵宇, 赵松, 赵金忠. 前交叉韧带损伤及重建后继发性膝骨关节炎的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(03): 415-423.
[7] 代雯荣, 赵丽娟, 李智慧. 细胞外囊泡对胚胎着床影响的研究进展[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 616-620.
[8] 米洁, 陈晨, 李佳玲, 裴海娜, 张恒博, 李飞, 李东杰. 儿童头面部外伤特点分析[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 511-515.
[9] 周子慧, 李恭驰, 李炳辉, 王知, 刘慧真, 王卉, 邹利军. 细胞自噬在创面愈合中作用的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 542-546.
[10] 陈继秋, 朱世辉. 皮肤牵张装置的临床应用现状[J]. 中华损伤与修复杂志(电子版), 2023, 18(05): 451-453.
[11] 高雷, 李芳, 巴雅力嘎, 李全, 巴特. 干细胞源性外泌体在创伤修复中免疫作用的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(04): 364-367.
[12] 黄瑞娟, 德奇, 巴特, 周彪. 对人脐带间充质干细胞外泌体影响热损伤人皮肤成纤维细胞迁移的分析[J]. 中华损伤与修复杂志(电子版), 2023, 18(03): 229-234.
[13] 黄承路, 廖飞, 刘显平, 王志强. 血清外泌体Has_circ_0060937过度表达与NSCLC转移和不良预后的关系[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 490-494.
[14] 王楚风, 蒋安. 原发性肝癌的分子诊断[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 499-503.
[15] 陈客宏. 干细胞外泌体防治腹膜透析腹膜纤维化新技术研究[J]. 中华肾病研究电子杂志, 2023, 12(03): 180-180.
阅读次数
全文


摘要