切换至 "中华医学电子期刊资源库"

中华损伤与修复杂志(电子版) ›› 2022, Vol. 17 ›› Issue (02) : 154 -158. doi: 10.3877/cma.j.issn.1673-9450.2022.02.012

综述

脂肪间充质干细胞外泌体促进创面血管再生的研究进展
曹涛1, 陶克1,()   
  1. 1. 710032 西安,空军军医大学第一附属医院全军烧伤中心 烧伤与皮肤外科
  • 收稿日期:2022-01-21 出版日期:2022-04-01
  • 通信作者: 陶克
  • 基金资助:
    国家自然科学基金(8187080257)

Research progress of adipose mesenchymal stem cell exosomes promoting wound angiogenesis

Tao Cao1, Ke Tao1,()   

  1. 1. Department of Burns and Cutaneous Surgery, Burn Center of PLA, First Affiliated Hospital of Air Force Medical University, Xi′an 710032, China
  • Received:2022-01-21 Published:2022-04-01
  • Corresponding author: Ke Tao
引用本文:

曹涛, 陶克. 脂肪间充质干细胞外泌体促进创面血管再生的研究进展[J]. 中华损伤与修复杂志(电子版), 2022, 17(02): 154-158.

Tao Cao, Ke Tao. Research progress of adipose mesenchymal stem cell exosomes promoting wound angiogenesis[J]. Chinese Journal of Injury Repair and Wound Healing(Electronic Edition), 2022, 17(02): 154-158.

创面愈合是机体损伤后细胞、组织在血运重建后进行修复的复杂过程,血管再生是创面治疗的关键;促进血管再生可有效加速创面愈合。研究表明脂肪间充质干细胞(ADSC)可以有效促进血管再生,其外泌体(Exo)可以传递各类细胞因子、miRNA,有效促进血管内皮细胞增殖、迁移、成管;本文通过综述国内外ADSC-Exo在促进创面血管再生作用及机制的相关研究,从促进创面愈合作用、机制研究及各类型材料递送ADSC-Exo策略的研究3个方面探讨ADSC-Exo促进血管再生的作用,为各类创面治疗提供新的思路。

Wound healing is a complex process for cells and tissues to repair after revascularization of injury, in which angiogenesis is the key to wound therapy. Promoting angiogenesis can accelerate wound healing effectively. Studies have shown that adipose-derived mesenchymal stem cells (ADSC) can effectively promote angiogenesis, whose exosomes (Exo) can deliver various cytokines and miRNAs. They can effectively promote the progressments of proliferation, migration and tubular formation of vascular endothelial cells. This paper will review the domestic and foreign studies on the role of ADSC-Exo in promoting wound angiogenesisand its mechanism, and discusse the role of ADSC-Exo in promoting vascular regeneration from three aspects: the role of promoting wound healing, the mechanism and the strategy of ADSC-Exo delivery of various biological materials to provide new ideas for wound treatment.

[1]
Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes[J]. Science, 2020, 367(6478): eaau6977.
[2]
Li X, Xie X, Lian W, et al. Exosomes from adipose-derived stem cells overexpressing Nrf2 accelerate cutaneous wound healing by promoting vascularization in a diabetic foot ulcer rat model [J]. Exp Mol Med, 2018, 50(4): 1-14.
[3]
Xiao S, Xiao C, Miao Y, et al. Human acellular amniotic membrane incorporating exosomes from adipose-derived mesenchymal stem cells promotes diabetic wound healing[J]. Stem Cell Res Ther, 2021, 12(1): 255.
[4]
Wang C, Wang M, Xu T, et al. Engineering Bioactive Self-Healing Antibacterial Exosomes Hydrogel for Promoting Chronic Diabetic Wound Healing and Complete Skin Regeneration[J]. Theranostics, 2019, 9(1): 65-76.
[5]
Bacakova L, Zarubova J, Travnickova M, et al. Stem cells: their source, potency and use in regenerative therapies with focus on adipose-derived stem cells - a review[J]. Biotechnol Adv, 2018, 36(4): 1111-1126.
[6]
Gadelkarim M, Abushouk AI, Ghanem E, et al. Adipose-derived stem cells: Effectiveness and advances in delivery in diabetic wound healing[J]. Biomed Pharmacother, 2018, 107: 625-633.
[7]
Wu Y, Huang S, Enhe J, et al. Bone marrow-derived mesenchymal stem cell attenuates skin fibrosis development in mice [J]. Int Wound J, 2014, 11(6): 701-710.
[8]
Cai Y, Li J, Jia C, et al. Therapeutic applications of adipose cell-free derivatives: a review [J]. Stem Cell Res Ther, 2020, 11(1): 312.
[9]
Xing X, Han S, Cheng G, et al. Proteomic Analysis of Exosomes from Adipose-Derived Mesenchymal Stem cells: A Novel Therapeutic Strategy for Tissue Injury [J]. Biomed Res Int, 2020, 2020: 6094562.
[10]
Pomatto M, Gai C, Negro F, et al. Differential Therapeutic Effect of Extracellular Vesicles Derived by Bone Marrow and Adipose Mesenchymal Stem cells on Wound Healing of Diabetic Ulcers and Correlation to Their Cargoes [J]. Int J Mol Sci, 2021, 22(8): 3851.
[11]
Phinney DG, Pittenger MF. Concise Review: MSC-Derived Exosomes for Cell-Free Therapy [J]. Stem cell, 2017, 35(4): 851-858.
[12]
Wu P, Zhang B, Shi H, et al. MSC-Exosome: A novel cell-free therapy for cutaneous regeneration [J]. Cytotherapy, 2018, 20(3): 291-301.
[13]
Hu P, Yang Q, Wang Q, et al. Mesenchymal stromal cells-exosomes: a promising cell-free therapeutic tool for wound healing and cutaneous regeneration [J]. Burns & trauma, 2019, 7: 38.
[14]
Karaman S, Leppänen VM, Alitalo K. Vascular endothelial growth factor signaling in development and disease[J]. Development (Cambridge, England), 2018, 145(14): dev151019.
[15]
Si Z, Wang X, Sun C, et al. Adipose-derived stem cells: Sources, potency, and implications for regenerative therapies [J]. Biomed Pharmacother, 2019, 114: 108765.
[16]
Kranendonk ME, Visseren FL, van Balkom BW, et al. Human adipocyte extracellular vesicles in reciprocal signaling between adipocytes and macrophages [J]. Obesity (Silver Spring, Md), 2014, 22(5): 1296-1308.
[17]
Kang T, Jones TM, Naddell C, et al. Adipose-Derived Stem cells Induce Angiogenesis via Microvesicle Transport of miRNA-31 [J]. Stem cell Transl Med, 2016, 5(4): 440-450.
[18]
Zhao L, Johnson T, Liu D. Therapeutic angiogenesis of adipose-derived stem cells for ischemic diseases [J]. Stem Cell Res Ther, 2017, 8(1): 125.
[19]
Chen B, Cai J, Wei Y, et al. Exosomes Are Comparable to Source Adipose Stem Cells in Fat Graft Retention with Up-Regulating Early Inflammation and Angiogenesis [J]. Plast Reconstr Surg, 2019, 144(5): 816e-827e.
[20]
Liang X, Zhang L, Wang S, et al. Exosomes secreted by mesenchymal stem cells promote endothelial cell angiogenesis by transferring miR-125a [J]. J Cell Sci, 2016, 129(11): 2182-2189.
[21]
Zhu D, Johnson TK, Wang Y, et al. Macrophage M2 polarization induced by exosomes from adipose-derived stem cells contributes to the exosomal proangiogenic effect on mouse ischemic hindlimb [J]. Stem Cell Res Ther, 2020, 11(1): 162.
[22]
Wang L, Hu L, Zhou X, et al. Exosomes secreted by human adipose mesenchymal stem cells promote scarless cutaneous repair by regulating extracellular matrix remodelling [J]. Sci Rep, 2017, 7(1): 13321.
[23]
Choi EW, Seo MK, Woo EY, et al. Exosomes from human adipose-derived stem cells promote proliferation and migration of skin fibroblasts [J]. Exp Dermatol, 2018, 27(10): 1170-1172.
[24]
Zhang W, Bai X, Zhao B, et al. Cell-free therapy based on adipose tissue stem cell-derived exosomes promotes wound healing via the PI3K/Akt signaling pathway [J]. Exp Cell Res, 2018, 370(2): 333-342.
[25]
王江文,易阳艳,朱元正,等. 脂肪干细胞来源外泌体促进糖尿病小鼠创面愈合的实验研究[J]. 中国修复重建外科杂志2020, 34(1): 124-131.
[26]
Xu H, Wang Z, Liu L, et al. Exosomes derived from adipose tissue, bone marrow, and umbilical cord blood for cardioprotection after myocardial infarction[J]. J Cell Biochem, 2020, 121(3): 2089-2102.
[27]
胡玄,易阳艳,朱元正,等. 脂肪干细胞来源外泌体促进大鼠皮瓣移植后血管新生的研究[J]. 中国修复重建外科杂志2019, 33(12): 1560-1565.
[28]
Han YD, Bai Y, Yan XL, et al. Co-transplantation of exosomes derived from hypoxia-preconditioned adipose mesenchymal stem cells promotes neovascularization and graft survival in fat grafting [J]. Biochem Biophys Res Commun, 2018, 497(1): 305-312.
[29]
Han Y, Ren J, Bai Y, et al. Exosomes from hypoxia-treated human adipose-derived mesenchymal stem cells enhance angiogenesis through VEGF/VEGF-R [J]. Int J Biochem Cell Biol, 2019, 109: 59-68.
[30]
张静,易阳艳,阳水发,等. 脂肪干细胞来源外泌体对人脐静脉血管内皮细胞增殖、迁移及管样分化的影响[J]. 中国修复重建外科杂志2018, 32(10): 1351-1357.
[31]
Ren S, Chen J, Duscher D, et al. Microvesicles from human adipose stem cells promote wound healing by optimizing cellular functions via AKT and ERK signaling pathways [J]. Stem Cell Res Ther, 2019, 10(1): 47.
[32]
Xiong Y, Chen L, Yan C, et al. Circulating Exosomal miR-20b-5p Inhibition Restores Wnt9b Signaling and Reverses Diabetes-Associated Impaired Wound Healing [J]. Small, 2020, 16(3): e1904044.
[33]
Shi R, Jin Y, Hu W, et al. Exosomes derived from mmu_circ_0000250-modified adipose-derived mesenchymal stem cells promote wound healing in diabetic mice by inducing miR-128-3p/SIRT1-mediated autophagy [J]. Am J Physiol Cell Physiol, 2020, 318(5): C848-c856.
[34]
Xu F, Xiang Q, Huang J, et al. Exosomal miR-423-5p mediates the proangiogenic activity of human adipose-derived stem cells by targeting Sufu [J]. Stem Cell Res Ther, 2019, 10(1): 106.
[35]
Yang Y, Cai Y, Zhang Y, et al. Exosomes Secreted by Adipose-Derived Stem cells Contribute to Angiogenesis of Brain Microvascular Endothelial cell Following Oxygen-Glucose Deprivation In Vitro Through MicroRNA-181b/TRPM7 Axis [J]. J Mol Neurosci, 2018, 65(1): 74-83.
[36]
Xue C, Shen Y, Li X, et al. Exosomes Derived from Hypoxia-Treated Human Adipose Mesenchymal Stem cells Enhance Angiogenesis Through the PKA Signaling Pathway [J]. Stem cell Dev, 2018, 27(7): 456-465.
[37]
Du L, Li G, Yang Y, et al. Exosomes from microRNA-199-3p-modified adipose-derived stem cells promote proliferation and migration of endothelial tip cells by downregulation of semaphorin 3A [J]. Int J Clin Exp Pathol, 2018, 11(10): 4879-4888.
[38]
Shiekh PA, Singh A, Kumar A. Exosomes laden oxygen releasing antioxidant and antibacterial cryogel wound dressing OxOBand alleviate diabetic and infectious wound healing [J]. Biomaterials, 2020, 249: 120020.
[39]
Shafei S, Khanmohammadi M, Heidari R, et al. Exosome loaded alginate hydrogel promotes tissue regeneration in full-thickness skin wounds: An in vivo study [J]. J Biomed Mater Res A, 2020, 108(3): 545-556.
[40]
Xiong J, Liu Z, Wu M, et al. Comparison of Proangiogenic Effects of Adipose-Derived Stem cells and Foreskin Fibroblast Exosomes on Artificial Dermis Prefabricated Flaps [J]. Stem cell Int, 2020, 2020: 5293850.
[1] 王岩, 马剑雄, 郎爽, 董本超, 田爱现, 李岩, 孙磊, 靳洪震, 卢斌, 王颖, 柏豪豪, 马信龙. 外泌体在骨质疏松症诊疗中应用的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(05): 673-678.
[2] 卫杨文祥, 黄浩然, 刘予豪, 陈镇秋, 王海彬, 周驰. 股骨头坏死细胞治疗的前景和挑战[J]. 中华关节外科杂志(电子版), 2023, 17(05): 694-700.
[3] 贺敬龙, 孙炜, 高明宏, 谢伟, 姜骆永, 何琦非, 岳家吉. 外泌体非编码RNA在骨关节炎发病机制中的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(04): 520-527.
[4] 符卓毅, 唐圣成, 卜俏梅, 徐高兵, 吴安平, 蔡巍, 杨明, 谭海涛. 镁在骨关节炎治疗中的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(03): 354-362.
[5] 代雯荣, 赵丽娟, 李智慧. 细胞外囊泡对胚胎着床影响的研究进展[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 616-620.
[6] 周子慧, 李恭驰, 李炳辉, 王知, 刘慧真, 王卉, 邹利军. 细胞自噬在创面愈合中作用的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 542-546.
[7] 陈继秋, 朱世辉. 皮肤牵张装置的临床应用现状[J]. 中华损伤与修复杂志(电子版), 2023, 18(05): 451-453.
[8] 高雷, 李芳, 巴雅力嘎, 李全, 巴特. 干细胞源性外泌体在创伤修复中免疫作用的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(04): 364-367.
[9] 黄瑞娟, 德奇, 巴特, 周彪. 对人脐带间充质干细胞外泌体影响热损伤人皮肤成纤维细胞迁移的分析[J]. 中华损伤与修复杂志(电子版), 2023, 18(03): 229-234.
[10] 纪文鑫, 王茂, 邱春丽, 李尚鹏, 代引海. 血清外泌体circ PVT1与circ 0014606在三阴性乳腺癌中的表达及临床意义[J]. 中华普外科手术学杂志(电子版), 2023, 17(03): 267-271.
[11] 黄承路, 廖飞, 刘显平, 王志强. 血清外泌体Has_circ_0060937过度表达与NSCLC转移和不良预后的关系[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 490-494.
[12] 王楚风, 蒋安. 原发性肝癌的分子诊断[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 499-503.
[13] 陈客宏. 干细胞外泌体防治腹膜透析腹膜纤维化新技术研究[J]. 中华肾病研究电子杂志, 2023, 12(03): 180-180.
[14] 刘晗, 李惠, 朱宇新, 于淼, 李莞盈, 王爽, 狄育竹, 宁丹丹, 曲波. 新型生物材料在内镜黏膜下剥离术中的应用[J]. 中华消化病与影像杂志(电子版), 2023, 13(03): 167-171.
[15] 高雷, 李全, 巴雅力嘎, 陈强, 侯智慧, 曹胜军, 巴特. 重度烧伤患者血小板外泌体对凝血功能调节作用的初步研究[J]. 中华卫生应急电子杂志, 2023, 09(03): 149-154.
阅读次数
全文


摘要