切换至 "中华医学电子期刊资源库"

中华损伤与修复杂志(电子版) ›› 2022, Vol. 17 ›› Issue (03) : 260 -264. doi: 10.3877/cma.j.issn.1673-9450.2022.03.015

综述

髓核间充质干细胞在椎间盘退变修复中的研究进展
胡满1, 赵文杰1, 张钰2, 刘鑫2, 石鹏志1, 王俊武2, 张亮2,()   
  1. 1. 116044 大连医科大学研究生院;225001 扬州大学临床医学院
    2. 225001 扬州大学临床医学院
  • 收稿日期:2022-03-15 出版日期:2022-06-01
  • 通信作者: 张亮
  • 基金资助:
    国家自然科学基金面上项目(82172462); 广西省自然科学基金面上项目(2018JJA14775); 江苏省青年医学重点人才项目(QNRC2016342); 江苏省妇幼健康科研重点资助项目(F201801); 江苏省高层次卫生人才"六个一工程"拔尖人才科研项目(LGY2019035)

Research progress on the repair of intervertebral disc degeneration with nucleus pulposus-derived mesenchymal stem cell

Man Hu1, Wenjie Zhao1, Yu Zhang2, Xin Liu2, Pengzhi Shi1, Junwu Wang2, Liang Zhang2,()   

  1. 1. Graduate School of Dalian Medical University, Dalian 116044, China; Yangzhou University School of Clinical Medicine, Yangzhou 225001, China
    2. Yangzhou University School of Clinical Medicine, Yangzhou 225001, China
  • Received:2022-03-15 Published:2022-06-01
  • Corresponding author: Liang Zhang
引用本文:

胡满, 赵文杰, 张钰, 刘鑫, 石鹏志, 王俊武, 张亮. 髓核间充质干细胞在椎间盘退变修复中的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2022, 17(03): 260-264.

Man Hu, Wenjie Zhao, Yu Zhang, Xin Liu, Pengzhi Shi, Junwu Wang, Liang Zhang. Research progress on the repair of intervertebral disc degeneration with nucleus pulposus-derived mesenchymal stem cell[J/OL]. Chinese Journal of Injury Repair and Wound Healing(Electronic Edition), 2022, 17(03): 260-264.

间充质干细胞是一种具有自我更新和多向分化能力的多能干细胞。髓核间充质干细胞(NPMSC)作为椎间盘源性的间充质干细胞,在适应椎间盘退变(IDD)后的酸性、低氧、高渗、异常压应力及营养缺乏恶劣微环境中有着天然优势,其可以通过移植、内源性激活及自身的迁移和募集来修复IDD。分析表明,NPMSC在IDD的内源性修复中有着巨大潜力。本文回顾近年来基于NPMSC的IDD修复策略作一综述,以期进一步明确未来研究方向,为寻求IDD的可靠治疗方法提供思路。

Mesenchymal stem cells are pluripotent stem cells with self-renewal and multi-directional differentiation capabilities. Nucleus pulposus-derived mesenchymal stem cell (NPMSC), as intervertebral disc-derived mesenchymal stem cell, has a natural advantage in adapting to the harsh microenvironment of acidity, hypoxia, hyperosmolar, abnormal compressive stress and nutritional deficiency after intervertebral disc degeneration (IDD) and can repair IDD through transplantation, endogenous activation and its own migration and recruitment. The analysis has shown that NPMSC has great potential in the endogenous repair of IDD. This paper reviews the repair strategies of IDD based on NPMSC in recent years, in order to further clarify the future research direction and provide ideas for seeking reliable treatment methods of IDD.

[1]
GBD 2015 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015[J]. Lancet, 2016, 388(10053): 1545-1602.
[2]
黄磊,石可松,焦权明,等. G型臂辅助下等离子射频消融术联合臭氧治疗包容型腰椎间盘突出症的临床观察及其复发的影响因素分析[J/CD]. 中华损伤与修复杂志(电子版), 2021, 16(3): 232-238.
[3]
Qi L, Wang R, Shi Q, et al. Umbilical cord mesenchymal stem cell conditioned medium restored the expression of collagen II and aggrecan in nucleus pulposus mesenchymal stem cells exposed to high glucose[J]. J Bone Miner Metab, 2019, 37(3): 455-466.
[4]
Risbud MV, Guttapalli A, Tsai TT, et al. Evidence for skeletal progenitor cells in the degenerate human intervertebral disc[J]. Spine (Phila Pa 1976), 2007, 32(23): 2537-2544.
[5]
Blanco JF, Graciani IF, Sanchez-Guijo FM, et al. Isolation and characterization of mesenchymal stromal cells from human degenerated nucleus pulposus: comparison with bone marrow mesenchymal stromal cells from the same subjects[J]. Spine (Phila Pa 1976), 2010, 35(26): 2259-2265.
[6]
Tao YQ, Liang CZ, Li H, et al. Potential of co-culture of nucleus pulposus mesenchymal stem cells and nucleus pulposus cells in hyperosmotic microenvironment for intervertebral disc regeneration[J]. Cell Biol Int, 2013, 37(8): 826-834.
[7]
Han B, Wang HC, Li H, et al. Nucleus pulposus mesenchymal stem cells in acidic conditions mimicking degenerative intervertebral discs give better performance than adipose tissue-derived mesenchymal stem cells[J]. Cells Tissues Organs, 2014, 199(5/6): 342-352.
[8]
Li H, Tao Y, Liang C, et al. Influence of hypoxia in the intervertebral disc on the biological behaviors of rat adipose- and nucleus pulposus-derived mesenchymal stem cells[J]. Cells Tissues Organs, 2013, 198(4): 266-277.
[9]
Williams RJ, Tryfonidou MA, Snuggs JW, et al. Cell sources proposed for nucleus pulposus regeneration[J]. JOR Spine, 2021, 4(4): e1175.
[10]
Tao Y, Zhou X, Liang C, et al. TGF-β3 and IGF-1 synergy ameliorates nucleus pulposus mesenchymal stem cell differentiation towards the nucleus pulposus cell type through MAPK/ERK signaling[J]. Growth Factors, 2015, 33(5/6): 326-336.
[11]
Cheng S, Li X, Jia Z, et al. The inflammatory cytokine TNF-alpha regulates the biological behavior of rat nucleus pulposus mesenchymal stem cells through the NF-kappaB signaling pathway in vitro[J]. J Cell Biochem, 2019, 120(8): 13664-13679.
[12]
Zhao Y, Jia Z, Huang S, et al. Age-Related Changes in Nucleus Pulposus Mesenchymal Stem Cells: An In Vitro Study in Rats[J]. Stem Cells Int, 2017, 2017: 6761572.
[13]
Jia Z, Yang P, Wu Y, et al. Comparison of biological characteristics of nucleus pulposus mesenchymal stem cells derived from non-degenerative and degenerative human nucleus pulposus[J]. Exp Ther Med, 2017, 13(6): 3574-3580.
[14]
Liu Y, Li Y, Huang ZN, et al. The effect of intervertebral disc degenerative change on biological characteristics of nucleus pulposus mesenchymal stem cell: an in vitro study in rats[J]. Connect Tissue Res, 2019, 60(4): 376-388.
[15]
Liu J, Tao H, Wang H, et al. Biological Behavior of Human Nucleus Pulposus Mesenchymal Stem Cells in Response to Changes in the Acidic Environment During Intervertebral Disc Degeneration[J]. Stem Cells Dev, 2017, 26(12): 901-911.
[16]
Ding J, Zhang R, Li H, et al. ASIC1 and ASIC3 mediate cellular senescence of human nucleus pulposus mesenchymal stem cells during intervertebral disc degeneration[J]. Aging (Albany NY), 2021, 13(7): 10703-10723.
[17]
郭长征,李伟,陶晖,等. 氧浓度对人髓核间充质干细胞生物学特性的影响[J]. 中国脊柱脊髓杂志 2017, 27(8): 740-748.
[18]
张亮,刘忠军,王静成,等. 低氧培养促进大鼠髓核间质干细胞增殖[J]. 基础医学与临床 2017, 37(11): 1546-1551.
[19]
Li H, Wang J, Li F, et al. The Influence of Hyperosmolarity in the Intervertebral Disc on the Proliferation and Chondrogenic Differentiation of Nucleus Pulposus-Derived Mesenchymal Stem Cells[J]. Cells Tissues Organs, 2018, 205(3): 178-188.
[20]
Liang H, Chen S, Huang D, et al. Effect of Compression Loading on Human Nucleus Pulposus-Derived Mesenchymal Stem Cells[J]. Stem Cells Int, 2018, 2018: 1481243.
[21]
Li Z, Chen S, Ma K, et al. CsA attenuates compression-induced nucleus pulposus mesenchymal stem cells apoptosis via alleviating mitochondrial dysfunction and oxidative stress[J]. Life Sci, 2018, 205: 26-37.
[22]
Huang D, Peng Y, Ma K, et al. Puerarin Relieved Compression-Induced Apoptosis and Mitochondrial Dysfunction in Human Nucleus Pulposus Mesenchymal Stem Cells via the PI3K/Akt Pathway[J]. Stem Cells Int, 2020, 2020: 7126914.
[23]
Tian D, Liu J, Chen L, et al. The protective effects of PI3K/Akt pathway on human nucleus pulposus mesenchymal stem cells against hypoxia and nutrition deficiency[J]. J Orthop Surg Res, 2020, 15(1): 29.
[24]
Li B, Sun C, Sun J, et al. Autophagy mediates serum starvation-induced quiescence in nucleus pulposus stem cells by the regulation of P27[J]. Stem Cell Res Ther, 2019, 10(1): 118.
[25]
Liu X, Pan F, Ba Z, et al. The potential effect of type 2 diabetes mellitus on lumbar disc degeneration: a retrospective single-center study[J]. J Orthop Surg Res, 2018, 13(1): 52.
[26]
Liu Y, Li Y, Nan Lp, et al. The effect of high glucose on the biological characteristics of nucleus pulposus-derived mesenchymal stem cells[J]. Cell Biochem Func, 2020, 38(2): 130-140.
[27]
Cai F, Wu XT, Xie XH, et al. Evaluation of intervertebral disc regeneration with implantation of bone marrow mesenchymal stem cells (BMSCs) using quantitative T2 mapping: a study in rabbits[J]. Int Orthop, 2015, 39(1): 149-159.
[28]
Noriega DC, Ardura F, Hernández-Ramajo R, et al. Intervertebral disc repair by allogeneic mesenchymal bone marrow cells: a randomized controlled trial[J]. Transplantation, 2017, 101(8): 1945-1951.
[29]
王瑾,陈其昕,陶轶卿,等. 不同胶原支架对髓核间充质干细胞分化的影响[J]. 中国脊柱脊髓杂志 2015, 25(6): 541-548.
[30]
Wang F, Nan LP, Zhou SF, et al. Injectable Hydrogel Combined with Nucleus Pulposus-Derived Mesenchymal Stem Cells for the Treatment of Degenerative Intervertebral Disc in Rats[J]. Stem Cells Int, 2019, 2019: 8496025.
[31]
Yim RL, Lee JT, Bow CH, et al. A Systematic Review of the Safety and Efficacy of Mesenchymal Stem Cells for Disc Degeneration: Insights and Future Directions for Regenerative Therapeutics[J]. Stem Cells Dev, 2014, 23(21): 2553-2567.
[32]
Hu Y, Huang L, Shen M, et al. Pioglitazone protects compression-mediated apoptosis in nucleus pulposus mesenchymal stem cells by suppressing oxidative stress[J]. Oxid Medi Cell Longev, 2019, 2019: 4764071.
[33]
Nan LP, Wang F, Ran D, et al. Naringin alleviates H2O2-induced apoptosis via the PI3K/Akt pathway in rat nucleus pulposus-derived mesenchymal stem cells[J]. Connect Tissue Res, 2020, 61(6): 554-567.
[34]
Nan LP, Wang F, Liu Y, et al. 6-gingerol protects nucleus pulposus-derived mesenchymal stem cells from oxidative injury by activating autophagy[J]. World J Stem Cells, 2020, 12(12): 1603-1622.
[35]
黄泽楠,刘忠军,王静成,等. 辛伐他汀对大鼠髓核间充质干细胞增殖及分泌功能的影响[J]. 中国脊柱脊髓杂志 2017, 27(7): 627-633.
[36]
Chen S, Liu S, Zhao L, et al. Heme Oxygenase-1-Mediated Autophagy Protects against Oxidative Damage in Rat Nucleus Pulposus-Derived Mesenchymal Stem Cells[J]. Oxid Med Cell Longev, 2020, 2020: 9349762.
[37]
Zeng X, Lin J, Wu H, et al. Effect of Conditioned Medium from Human Umbilical Cord-Derived Mesenchymal Stromal Cells on Rejuvenation of Nucleus Pulposus Derived Stem/Progenitor Cells from Degenerated Intervertebral Disc[J]. Int J Stem Cells, 2020, 13(2): 257-267.
[38]
Zhang Q, Shen Y, Zhao S, et al. Exosomes miR-15a promotes nucleus pulposus-mesenchymal stem cells chondrogenic differentiation by targeting MMP-3[J]. Cell Signal, 2021, 86: 110083.
[39]
Pereira CL, Gonçalves RM, Peroglio M, et al. The effect of hyaluronan-based delivery of stromal cell-derived factor-1 on the recruitment of MSCs in degenerating intervertebral discs[J]. Biomaterials, 2014, 35(28): 8144-8153.
[40]
Ying JW, Wen TY, Pei SS, et al. Stromal cell-derived factor-1α promotes recruitment and differentiation of nucleus pulposus-derived stem cells[J]. World J Stem Cells, 2019, 11(3): 196-211.
[1] 徐志刚, 曹涛, 何亭, 李博奥, 魏婧韬, 张栋梁, 官浩, 杨薛康. 采用抗生素骨水泥治疗糖尿病患者心脏术后胸骨骨髓炎的临床效果观察[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 498-502.
[2] 林同辉, 杨卫玺. 股前外侧穿支皮瓣在电烧伤治疗中应用的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 526-530.
[3] 戴睿, 张亮, 陈浏阳, 张永博, 吴丕根, 孙华, 杨盛, 孟博. 肠道菌群与椎间盘退行性变相关性的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 546-549.
[4] 王强, 金光哲, 巨积辉, 王凯, 唐晓强, 吕文涛, 程贺云, 杨林, 王海龙. 超声辅助定位下游离臂内侧皮瓣在修复手指创面中的临床应用[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(05): 393-397.
[5] 关丁丁, 李伟, 孔维诗, 包郁露, 孙瑜. 负载干细胞的光交联蛋白基水凝胶在组织工程中应用的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(05): 447-452.
[6] 李争光, 宰爽嘉, 吴火峰, 孙华, 张永博, 陈浏阳, 戴睿, 张亮. 昼夜节律相关因子在椎间盘退行性变发病机制中作用的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(05): 457-461.
[7] 孙勇, 彭曦. 重视烧伤创面愈合中的葡萄糖代谢以优化营养治疗策略[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(04): 277-281.
[8] 狄海萍, 郑军杰, 刘磊, 郭海娜, 邢培朋, 曹大勇, 马超, 黄万新, 张博, 夏成德, 周超. 人工真皮联合富血小板纤维蛋白修复小面积深度创面的临床疗效[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(04): 288-293.
[9] 崔子豪, 阳跃, 赵景峰, 冯光, 庹晓晔. Fournier坏疽创面感染控制策略及创面修复的临床分析[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(04): 319-323.
[10] 唐丹萍, 王萍, 江孟蝶, 杨晓蓉. 自体脂肪移植在乳腺癌术后乳房重建的研究进展[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(05): 582-585.
[11] 严虹霞, 王晓娟, 张毅勋. 2 型糖尿病对结直肠癌患者肿瘤标记物、临床病理及预后的影响[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(06): 483-487.
[12] 李宜璐, 曹永丽, 杨阳, 王思远, 张远耀, 杨维维, 王信琛, 陈俊, 魏东. 腹腔镜盆底修复联合PPH 术治疗直肠内脱垂的手术疗效观察[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(05): 394-401.
[13] 孙明策, 韩世焕. 海藻酸盐水凝胶支架在颅骨缺损修复中的应用进展[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(05): 310-314.
[14] 吴天宇, 刘子璇, 杨浦鑫, 贾思明, 丁凯, 程晓东, 李泳龙, 陈伟, 吕红芝, 张奇. 腰椎间盘突出症保守治疗进展[J/OL]. 中华老年骨科与康复电子杂志, 2024, 10(06): 379-384.
[15] 陈倩倩, 袁晨, 刘基, 尹婷婷. 多层螺旋CT 参数、癌胚抗原、错配修复基因及病理指标对结直肠癌预后的影响[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 507-511.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?