切换至 "中华医学电子期刊资源库"

中华损伤与修复杂志(电子版) ›› 2022, Vol. 17 ›› Issue (03) : 260 -264. doi: 10.3877/cma.j.issn.1673-9450.2022.03.015

综述

髓核间充质干细胞在椎间盘退变修复中的研究进展
胡满1, 赵文杰1, 张钰2, 刘鑫2, 石鹏志1, 王俊武2, 张亮2,()   
  1. 1. 116044 大连医科大学研究生院;225001 扬州大学临床医学院
    2. 225001 扬州大学临床医学院
  • 收稿日期:2022-03-15 出版日期:2022-06-01
  • 通信作者: 张亮
  • 基金资助:
    国家自然科学基金面上项目(82172462); 广西省自然科学基金面上项目(2018JJA14775); 江苏省青年医学重点人才项目(QNRC2016342); 江苏省妇幼健康科研重点资助项目(F201801); 江苏省高层次卫生人才"六个一工程"拔尖人才科研项目(LGY2019035)

Research progress on the repair of intervertebral disc degeneration with nucleus pulposus-derived mesenchymal stem cell

Man Hu1, Wenjie Zhao1, Yu Zhang2, Xin Liu2, Pengzhi Shi1, Junwu Wang2, Liang Zhang2,()   

  1. 1. Graduate School of Dalian Medical University, Dalian 116044, China; Yangzhou University School of Clinical Medicine, Yangzhou 225001, China
    2. Yangzhou University School of Clinical Medicine, Yangzhou 225001, China
  • Received:2022-03-15 Published:2022-06-01
  • Corresponding author: Liang Zhang
引用本文:

胡满, 赵文杰, 张钰, 刘鑫, 石鹏志, 王俊武, 张亮. 髓核间充质干细胞在椎间盘退变修复中的研究进展[J]. 中华损伤与修复杂志(电子版), 2022, 17(03): 260-264.

Man Hu, Wenjie Zhao, Yu Zhang, Xin Liu, Pengzhi Shi, Junwu Wang, Liang Zhang. Research progress on the repair of intervertebral disc degeneration with nucleus pulposus-derived mesenchymal stem cell[J]. Chinese Journal of Injury Repair and Wound Healing(Electronic Edition), 2022, 17(03): 260-264.

间充质干细胞是一种具有自我更新和多向分化能力的多能干细胞。髓核间充质干细胞(NPMSC)作为椎间盘源性的间充质干细胞,在适应椎间盘退变(IDD)后的酸性、低氧、高渗、异常压应力及营养缺乏恶劣微环境中有着天然优势,其可以通过移植、内源性激活及自身的迁移和募集来修复IDD。分析表明,NPMSC在IDD的内源性修复中有着巨大潜力。本文回顾近年来基于NPMSC的IDD修复策略作一综述,以期进一步明确未来研究方向,为寻求IDD的可靠治疗方法提供思路。

Mesenchymal stem cells are pluripotent stem cells with self-renewal and multi-directional differentiation capabilities. Nucleus pulposus-derived mesenchymal stem cell (NPMSC), as intervertebral disc-derived mesenchymal stem cell, has a natural advantage in adapting to the harsh microenvironment of acidity, hypoxia, hyperosmolar, abnormal compressive stress and nutritional deficiency after intervertebral disc degeneration (IDD) and can repair IDD through transplantation, endogenous activation and its own migration and recruitment. The analysis has shown that NPMSC has great potential in the endogenous repair of IDD. This paper reviews the repair strategies of IDD based on NPMSC in recent years, in order to further clarify the future research direction and provide ideas for seeking reliable treatment methods of IDD.

[1]
GBD 2015 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015[J]. Lancet, 2016, 388(10053): 1545-1602.
[2]
黄磊,石可松,焦权明,等. G型臂辅助下等离子射频消融术联合臭氧治疗包容型腰椎间盘突出症的临床观察及其复发的影响因素分析[J/CD]. 中华损伤与修复杂志(电子版), 2021, 16(3): 232-238.
[3]
Qi L, Wang R, Shi Q, et al. Umbilical cord mesenchymal stem cell conditioned medium restored the expression of collagen II and aggrecan in nucleus pulposus mesenchymal stem cells exposed to high glucose[J]. J Bone Miner Metab, 2019, 37(3): 455-466.
[4]
Risbud MV, Guttapalli A, Tsai TT, et al. Evidence for skeletal progenitor cells in the degenerate human intervertebral disc[J]. Spine (Phila Pa 1976), 2007, 32(23): 2537-2544.
[5]
Blanco JF, Graciani IF, Sanchez-Guijo FM, et al. Isolation and characterization of mesenchymal stromal cells from human degenerated nucleus pulposus: comparison with bone marrow mesenchymal stromal cells from the same subjects[J]. Spine (Phila Pa 1976), 2010, 35(26): 2259-2265.
[6]
Tao YQ, Liang CZ, Li H, et al. Potential of co-culture of nucleus pulposus mesenchymal stem cells and nucleus pulposus cells in hyperosmotic microenvironment for intervertebral disc regeneration[J]. Cell Biol Int, 2013, 37(8): 826-834.
[7]
Han B, Wang HC, Li H, et al. Nucleus pulposus mesenchymal stem cells in acidic conditions mimicking degenerative intervertebral discs give better performance than adipose tissue-derived mesenchymal stem cells[J]. Cells Tissues Organs, 2014, 199(5/6): 342-352.
[8]
Li H, Tao Y, Liang C, et al. Influence of hypoxia in the intervertebral disc on the biological behaviors of rat adipose- and nucleus pulposus-derived mesenchymal stem cells[J]. Cells Tissues Organs, 2013, 198(4): 266-277.
[9]
Williams RJ, Tryfonidou MA, Snuggs JW, et al. Cell sources proposed for nucleus pulposus regeneration[J]. JOR Spine, 2021, 4(4): e1175.
[10]
Tao Y, Zhou X, Liang C, et al. TGF-β3 and IGF-1 synergy ameliorates nucleus pulposus mesenchymal stem cell differentiation towards the nucleus pulposus cell type through MAPK/ERK signaling[J]. Growth Factors, 2015, 33(5/6): 326-336.
[11]
Cheng S, Li X, Jia Z, et al. The inflammatory cytokine TNF-alpha regulates the biological behavior of rat nucleus pulposus mesenchymal stem cells through the NF-kappaB signaling pathway in vitro[J]. J Cell Biochem, 2019, 120(8): 13664-13679.
[12]
Zhao Y, Jia Z, Huang S, et al. Age-Related Changes in Nucleus Pulposus Mesenchymal Stem Cells: An In Vitro Study in Rats[J]. Stem Cells Int, 2017, 2017: 6761572.
[13]
Jia Z, Yang P, Wu Y, et al. Comparison of biological characteristics of nucleus pulposus mesenchymal stem cells derived from non-degenerative and degenerative human nucleus pulposus[J]. Exp Ther Med, 2017, 13(6): 3574-3580.
[14]
Liu Y, Li Y, Huang ZN, et al. The effect of intervertebral disc degenerative change on biological characteristics of nucleus pulposus mesenchymal stem cell: an in vitro study in rats[J]. Connect Tissue Res, 2019, 60(4): 376-388.
[15]
Liu J, Tao H, Wang H, et al. Biological Behavior of Human Nucleus Pulposus Mesenchymal Stem Cells in Response to Changes in the Acidic Environment During Intervertebral Disc Degeneration[J]. Stem Cells Dev, 2017, 26(12): 901-911.
[16]
Ding J, Zhang R, Li H, et al. ASIC1 and ASIC3 mediate cellular senescence of human nucleus pulposus mesenchymal stem cells during intervertebral disc degeneration[J]. Aging (Albany NY), 2021, 13(7): 10703-10723.
[17]
郭长征,李伟,陶晖,等. 氧浓度对人髓核间充质干细胞生物学特性的影响[J]. 中国脊柱脊髓杂志 2017, 27(8): 740-748.
[18]
张亮,刘忠军,王静成,等. 低氧培养促进大鼠髓核间质干细胞增殖[J]. 基础医学与临床 2017, 37(11): 1546-1551.
[19]
Li H, Wang J, Li F, et al. The Influence of Hyperosmolarity in the Intervertebral Disc on the Proliferation and Chondrogenic Differentiation of Nucleus Pulposus-Derived Mesenchymal Stem Cells[J]. Cells Tissues Organs, 2018, 205(3): 178-188.
[20]
Liang H, Chen S, Huang D, et al. Effect of Compression Loading on Human Nucleus Pulposus-Derived Mesenchymal Stem Cells[J]. Stem Cells Int, 2018, 2018: 1481243.
[21]
Li Z, Chen S, Ma K, et al. CsA attenuates compression-induced nucleus pulposus mesenchymal stem cells apoptosis via alleviating mitochondrial dysfunction and oxidative stress[J]. Life Sci, 2018, 205: 26-37.
[22]
Huang D, Peng Y, Ma K, et al. Puerarin Relieved Compression-Induced Apoptosis and Mitochondrial Dysfunction in Human Nucleus Pulposus Mesenchymal Stem Cells via the PI3K/Akt Pathway[J]. Stem Cells Int, 2020, 2020: 7126914.
[23]
Tian D, Liu J, Chen L, et al. The protective effects of PI3K/Akt pathway on human nucleus pulposus mesenchymal stem cells against hypoxia and nutrition deficiency[J]. J Orthop Surg Res, 2020, 15(1): 29.
[24]
Li B, Sun C, Sun J, et al. Autophagy mediates serum starvation-induced quiescence in nucleus pulposus stem cells by the regulation of P27[J]. Stem Cell Res Ther, 2019, 10(1): 118.
[25]
Liu X, Pan F, Ba Z, et al. The potential effect of type 2 diabetes mellitus on lumbar disc degeneration: a retrospective single-center study[J]. J Orthop Surg Res, 2018, 13(1): 52.
[26]
Liu Y, Li Y, Nan Lp, et al. The effect of high glucose on the biological characteristics of nucleus pulposus-derived mesenchymal stem cells[J]. Cell Biochem Func, 2020, 38(2): 130-140.
[27]
Cai F, Wu XT, Xie XH, et al. Evaluation of intervertebral disc regeneration with implantation of bone marrow mesenchymal stem cells (BMSCs) using quantitative T2 mapping: a study in rabbits[J]. Int Orthop, 2015, 39(1): 149-159.
[28]
Noriega DC, Ardura F, Hernández-Ramajo R, et al. Intervertebral disc repair by allogeneic mesenchymal bone marrow cells: a randomized controlled trial[J]. Transplantation, 2017, 101(8): 1945-1951.
[29]
王瑾,陈其昕,陶轶卿,等. 不同胶原支架对髓核间充质干细胞分化的影响[J]. 中国脊柱脊髓杂志 2015, 25(6): 541-548.
[30]
Wang F, Nan LP, Zhou SF, et al. Injectable Hydrogel Combined with Nucleus Pulposus-Derived Mesenchymal Stem Cells for the Treatment of Degenerative Intervertebral Disc in Rats[J]. Stem Cells Int, 2019, 2019: 8496025.
[31]
Yim RL, Lee JT, Bow CH, et al. A Systematic Review of the Safety and Efficacy of Mesenchymal Stem Cells for Disc Degeneration: Insights and Future Directions for Regenerative Therapeutics[J]. Stem Cells Dev, 2014, 23(21): 2553-2567.
[32]
Hu Y, Huang L, Shen M, et al. Pioglitazone protects compression-mediated apoptosis in nucleus pulposus mesenchymal stem cells by suppressing oxidative stress[J]. Oxid Medi Cell Longev, 2019, 2019: 4764071.
[33]
Nan LP, Wang F, Ran D, et al. Naringin alleviates H2O2-induced apoptosis via the PI3K/Akt pathway in rat nucleus pulposus-derived mesenchymal stem cells[J]. Connect Tissue Res, 2020, 61(6): 554-567.
[34]
Nan LP, Wang F, Liu Y, et al. 6-gingerol protects nucleus pulposus-derived mesenchymal stem cells from oxidative injury by activating autophagy[J]. World J Stem Cells, 2020, 12(12): 1603-1622.
[35]
黄泽楠,刘忠军,王静成,等. 辛伐他汀对大鼠髓核间充质干细胞增殖及分泌功能的影响[J]. 中国脊柱脊髓杂志 2017, 27(7): 627-633.
[36]
Chen S, Liu S, Zhao L, et al. Heme Oxygenase-1-Mediated Autophagy Protects against Oxidative Damage in Rat Nucleus Pulposus-Derived Mesenchymal Stem Cells[J]. Oxid Med Cell Longev, 2020, 2020: 9349762.
[37]
Zeng X, Lin J, Wu H, et al. Effect of Conditioned Medium from Human Umbilical Cord-Derived Mesenchymal Stromal Cells on Rejuvenation of Nucleus Pulposus Derived Stem/Progenitor Cells from Degenerated Intervertebral Disc[J]. Int J Stem Cells, 2020, 13(2): 257-267.
[38]
Zhang Q, Shen Y, Zhao S, et al. Exosomes miR-15a promotes nucleus pulposus-mesenchymal stem cells chondrogenic differentiation by targeting MMP-3[J]. Cell Signal, 2021, 86: 110083.
[39]
Pereira CL, Gonçalves RM, Peroglio M, et al. The effect of hyaluronan-based delivery of stromal cell-derived factor-1 on the recruitment of MSCs in degenerating intervertebral discs[J]. Biomaterials, 2014, 35(28): 8144-8153.
[40]
Ying JW, Wen TY, Pei SS, et al. Stromal cell-derived factor-1α promotes recruitment and differentiation of nucleus pulposus-derived stem cells[J]. World J Stem Cells, 2019, 11(3): 196-211.
[1] 陈山林, 魏绮珮, 刘畅. 腕关节假体:路在何方?[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 469-475.
[2] 仇申强, 王增涛, 郝丽文, 陈超, 刘林峰, 张迪. 拇手指全形再造二期整形的效果观察[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 485-490.
[3] 张健, 刘小龙, 查天建, 姚俊杰, 王傑. 富含血小板血浆联合异种脱细胞真皮基质修复糖尿病足缺血性创面的临床效果[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 503-506.
[4] 朴广昊, 李屹洲, 刘瑞, 赵建民, 王凌峰. 皮肤撕脱伤撕脱皮瓣活力早期评估与修复的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 528-532.
[5] 张熙浩, 陈作观, 李拥军. 钝性主动脉损伤诊治的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(05): 438-441.
[6] 李芸, 乔栒柏, 邓华颉, 游云华. 增材制造Ti-6Al-4V钛合金种植体在牙缺失种植修复中的临床应用[J]. 中华口腔医学研究杂志(电子版), 2023, 17(05): 359-364.
[7] 叶长缨, 谢静, 丁桂聪. 乳牙龋病的过渡性治疗研究进展[J]. 中华口腔医学研究杂志(电子版), 2023, 17(05): 365-370.
[8] 李秋兰, 李希庭, 王晓东. 数字化技术引导下的美学修复一例[J]. 中华口腔医学研究杂志(电子版), 2023, 17(04): 260-264.
[9] 蓝凯文, 孙玥, 江柳霖, 阎英. 口腔修复临床诊疗中口颌系统功能评估的数字化实现[J]. 中华口腔医学研究杂志(电子版), 2023, 17(04): 265-271.
[10] 李翊甄, 卢嘉蕊, 张晓磊. 椅旁计算机辅助设计与制作技术应用于根管治疗后牙体修复的研究进展[J]. 中华口腔医学研究杂志(电子版), 2023, 17(04): 272-278.
[11] 王得晨, 杨康, 杨自杰, 归明彬, 屈莲平, 张小凤, 高峰. 结直肠癌微卫星稳定状态和程序性死亡、吲哚胺2,3-双加氧酶关系的研究进展[J]. 中华普通外科学文献(电子版), 2023, 17(06): 462-465.
[12] 王博, 郭利君, 李二强, 张贺林, 徐鹏, 杨晓春. 消化道与口腔黏膜组织在输尿管重建中的研究进展[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(05): 434-439.
[13] 钟文文, 李科, 刘碧好, 蔡炳, 脱颖, 叶雷, 马波, 瞿虎, 汪中扬, 王德娟, 邱剑光. 不同比例聚乳酸/丝素蛋白复合支架在兔尿道缺损修复中的疗效[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(05): 516-522.
[14] 刘卓, 段虎斌. 生物电相关疗法在神经损伤修复中的应用进展[J]. 中华神经创伤外科电子杂志, 2023, 09(05): 257-260.
[15] 王延召, 牛鹏飞, 丁长民, 高庆坤, 高兆亚, 安柯, 翟志超, 曾庆敏, 黄文生, 雷福明, 顾晋. 结直肠癌致腹壁巨大缺损的一期修补经验(附13例报告)[J]. 中华临床医师杂志(电子版), 2023, 17(05): 557-561.
阅读次数
全文


摘要