切换至 "中华医学电子期刊资源库"

中华损伤与修复杂志(电子版) ›› 2022, Vol. 17 ›› Issue (04) : 354 -358. doi: 10.3877/cma.j.issn.1673-9450.2022.04.012

综述

现代敷料促进创面愈合的研究进展
彭毛东智1, 李毅2, 王洪瑾2,(), 杨文静1   
  1. 1. 810016 西宁,青海大学研究生院
    2. 810012 西宁,青海大学附属医院烧伤整形外科
  • 收稿日期:2022-05-01 出版日期:2022-08-01
  • 通信作者: 王洪瑾
  • 基金资助:
    青海省科学技术协会中青年托举工程项目(2019QHSKXRCTJ03); 青海大学附属医院中青年科研基金项目(ASRF-2017-YB-06)

Research progress of modern dressing in promoting wound healing

Maodongzhi Peng1, Yi Li2, Hongjin Wang2,(), Wenjing Yang1   

  1. 1. Graduate School of Qinghai University, Xining 810016, China
    2. Department of Burns and Plastic Surgey, Qinghai University Affiliated Hospital, Xining 810012, China
  • Received:2022-05-01 Published:2022-08-01
  • Corresponding author: Hongjin Wang
引用本文:

彭毛东智, 李毅, 王洪瑾, 杨文静. 现代敷料促进创面愈合的研究进展[J]. 中华损伤与修复杂志(电子版), 2022, 17(04): 354-358.

Maodongzhi Peng, Yi Li, Hongjin Wang, Wenjing Yang. Research progress of modern dressing in promoting wound healing[J]. Chinese Journal of Injury Repair and Wound Healing(Electronic Edition), 2022, 17(04): 354-358.

随着科学技术的发展及生活水平的提高,人们对于创面治疗效率、创面愈合质量、治疗体验以及预后提出了更多、更高的要求,但医用纱布、棉垫等传统敷料因其功能局限性无法达到抗菌、止血、保湿等有利于创面愈合的效果。由此涉及高分子材料、有机化学、无机化学、生物化学等众多科学领域的现代敷料如雨后春笋般出现,是目前国内外发展非常迅速的一个领域。而如何赋予现代敷料有利于创面修复的功能以及使其接近完美是学者们长久以来的追求。故本文对现代敷料的发展、分类和其通过减弱创面炎症反应、加强创面抗菌能力、促进创面血管化、减少创面出血及改进自身理化特性促进创面愈合的机制进行相关总结。

With the development of science and technology and the improvement of living standards, people have put forward more and higher requirements for wound treatment efficiency, wound healing quality, treatment experience and prognosis. However, traditional dressings such as medical gauze and cotton pad cannot achieve the effects of antibacterial, hemostatic and moisturizing for wound healing due to their functional limitations. As a result, modern dressings involving polymer materials, organic chemistry, inorganic chemistry, biochemistry and many other scientific fields have mushroomed and become a rapidly developing field at home and abroad. How to give modern dressings the function of beneficial to wound repair and make them close to perfection is the pursuit of scholars for a long time. Therefore, in this paper, the development and classification of modern dressings and their mechanisms of reducing wound inflammation, strengthening wound antibacterial ability, promoting wound vascularization, reducing wound bleeding and improving their physical and chemical properties to promote wound healing are summarized.

[1]
Cheng B, Jiang Y, Fu X, et al. Epidemiological characteristics and clinical analyses of chronic cutaneous wounds of inpatients in China: Prevention and control[J]. Wound Repair Regen, 2020, 28(5): 623-630.
[2]
Armato U, Freddi G. Editorial: Biomaterials for Skin Wound Repair: Tissue Engineering, Guided Regeneration, and Wound Scarring Prevention[J]. Front Bioeng Biotechnol, 2021, 9: 722327.
[3]
Zhang X, Shu W, Yu Q, et al. Functional Biomaterials for Treatment of Chronic Wound[J]. Front Bioeng Biotechnol, 2020, 8: 516.
[4]
Chen G, Yu Y, Wu X, et al. Wound Healing: Bioinspired Multifunctional Hybrid Hydrogel Promotes Wound Healing[J]. Adv Funct Mater, 2018, 28(33): 1870233.
[5]
胡涛涛,常树森,魏在荣. 损伤周围神经的微环境中巨噬细胞极化成M2表型可有效促进其再生[J]. 中国组织工程研究2022, 26(14): 2285-2290.
[6]
龙凤强,邹利添,曾远超,等. 九一丹和生肌散治疗褥疮中的意义[J]. 中医临床研究2015, 7(8): 15-17.
[7]
Czimmerer Z, Daniel B, Horvath A, et al. The Transcription Factor STAT6 Mediates Direct Repression of Inflammatory Enhancers and Limits Activation of Alternatively Polarized Macrophages[J]. Immunity, 2018, 48(1): 75-90. e6.
[8]
Daunton C, Kothari S, Smith L, et al. A history of materials and practices for wound management[J]. Wound Practice & Research: Journal of the Australian Wound Management Association, 2012, 20(4): 174-176, 178-180, 182-186.
[9]
Shah JB. The history of wound care[J]. J Am Col Certif Wound Spec, 2011, 3(3): 65-66.
[10]
Winter GD. Formation of the scab and the rate of epithelization of superficial wounds in the skin of the young domestic pig[J]. Nature, 1962, 193(4812): 293-294.
[11]
王景辉. 多功能水凝胶设计及其在伤口敷料中的应用研究[D]. 太原:太原理工大学,2021.
[12]
Sarabahi S. Recent advances in topical wound care[J]. Indian J Plast Surg, 2012, 45(2): 379-387.
[13]
张劲峰,郝建波,张劲鹏,等. 生物敷料的研究进展[J]. 中国修复重建外科杂志2015, 29(2): 254-259.
[14]
Dhivya S, Padma VV, Santhini E. Wound dressings–a review[J]. Biomedicine (Taipei), 2015, 5(4): 22.
[15]
Field CK, Kerstein MD. Overview of wound healing in a moist environment[J]. Am J Surg, 1994, 167(1A): 2S-6S.
[16]
Lam SJ, O′Brien-Simpson NM, Pantarat N, et al. Combating multidrug-resistant Gram-negative bacteria with structurally nanoengineered antimicrobial peptide polymers[J]. Nat Microbiol, 2016, 1(11): 16162.
[17]
Chistiakov DA, Bobryshev YV, Nikiforov NG, et al. Macrophage phenotypic plasticity in atherosclerosis: The associated features and the peculiarities of the expression of inflammatory genes[J]. Int J Cardiol, 2015, 184: 436-445.
[18]
高弘斐,张潜,陈龙,等. 间充质干细胞与巨噬细胞共培养体系的细胞因子表达模式研究[J]. 免疫学杂志2017, 33(11): 930-936.
[19]
吴燕,张定然,王新慧,等. 巨噬细胞极化及其对炎性疾病作用的研究进展[J]. 中国畜牧杂志2021, 57(7): 22-26.
[20]
Liu S, Zhang Q, Yu J, et al. Absorbable Thioether Grafted Hyaluronic Acid Nanofibrous Hydrogel for Synergistic Modulation of Inflammation Microenvironment to Accelerate Chronic Diabetic Wound Healing[J]. Adv Healthc Mater, 2020, 9(11): e2000198.
[21]
Lu Y, Li H, Wang J, et al. Engineering Bacteria-Activated Multifunctionalized Hydrogel for Promoting Diabetic Wound Healing[J]. Adv Funct Mater, 2021, 31(48): 2105749.
[22]
Aggarwal BB, Harikumar KB. Potential Therapeutic Effects of Curcumin, the Anti-inflammatory Agent, Against Neurodegenerative, Cardiovascular, Pulmonary, Metabolic, Autoimmune and Neoplastic Diseases[J]. Int J Biochem Cell Biol, 2009, 41(1): 40-59.
[23]
Ghosh S, Banerjee S, Sil PC. The beneficial role of curcumin on inflammation, diabetes and neurodegenerative disease: A recent update[J]. Food Chem Toxicol, 2015, 83: 111-124.
[24]
周芳,陈林,蔡佳,等. 姜黄素基于IL-8/MUC5ac信号通路对慢性阻塞性肺疾病大鼠的干预效果[J]. 中国老年学杂志2021, 41(23): 5262-5266.
[25]
Naldi A, Pivetta E, Coppo L, et al. Ultrasonography Monitoring of Optic Nerve Sheath Diameter and Retinal Vessels in Patients with Cerebral Hemorrhage[J]. J Neuroimaging, 2019, 29(3): 394-399.
[26]
唐彪,周瑶瑶. 姜黄素通过TLR4-MAPK/NF-κB信号通路对巨噬细胞极化及炎症反应的影响[J]. 心电与循环2019, 38(5): 389-394.
[27]
周善宇. 姜黄素调控分型介导的巨噬细胞对创面愈合的影响[D]. 青岛:青岛大学,2017.
[28]
Selvaraj S, Fathima NN. Fenugreek Incorporated Silk Fibroin Nanofibers - A Potential Antioxidant Scaffold for Enhanced Wound Healing[J]. ACS Appl Mater Interfaces, 2017, 9(7): 5916-5926.
[29]
Wang L, Yang J, Ran B, et al. Small Molecular TGF-β1 Inhibitor Loaded Electrospun Fibrous Scaffolds for Preventing Hypertrophic Scars[J]. ACS Appl Mater Interfaces, 2017, 9(38): 32545-32553.
[30]
Li S, Wang L, Zheng W, et al. Rapid fabrication of self-healing, conductive, and injectable gel as dressings for healing wounds in stretchable parts of the body[J]. Adv Funct Mater, 2020, 30(31): 2002370.
[31]
Yang X, Yang J, Wang L, et al. Pharmaceutical Intermediate-Modified Gold Nanoparticles: Against Multidrug-Resistant Bacteria and Wound-Healing Application via an Electrospun Scaffold[J]. ACS Nano, 2017, 11(6): 5737-5745.
[32]
Zhao X, Jia Y, Dong R, et al. Bimetallic Nanoparticles against Multi-Drug Resistant Bacteria[J]. Chem Commun (Camb), 2020, 56(74): 10918-10921.
[33]
景峰,林本兰,崔升,等. 纳米抗菌复合材料的研究进展[J]. 现代化工2016, 36(8): 29-32.
[34]
Xue X, Wang Y, Yang H. Preparation and characterization of boron-doped titania nano-materials with antibacterial activity[J]. Appl Surf Sci, 2013, 264: 94-99.
[35]
Niu M, Liu X, Dai J, et al. Molecular structure and properties of wool fiber surface-grafted with nano-antibacterial materials[J]. Spectrochim Acta A Mol Biomol Spectrosc, 2012, 86: 289-293.
[36]
Zheng Y, Liu W, Qin Z, et al. Mercaptopyrimidine-conjugated gold nanoclusters as nanoantibiotics for combating multidrug-resistant superbugs[J]. Bioconjug Chem, 2018, 29(9): 3094-3103.
[37]
Zheng Y, Liu W, Chen Y, et al. Conjugating gold nanoclusters and antimicrobial peptides: From aggregation-induced emission to antibacterial synergy[J]. J Colloid Interface Sci, 2019, 546: 1-10.
[38]
Wang S, Wang Y, Peng Y, et al. Exploring the antibacteria performance of multicolor Ag, Au, and Cu nanoclusters[J]. ACS Appl Mater Interfaces, 2019, 11(8): 8461-8469.
[39]
Fan L, Sun J, Zhou M, et al. DRAMP: a comprehensive data repository of antimicrobial peptides[J]. Sci Rep, 2016, 6: 24482.
[40]
Wang S, Yan C, Zhang X, et al. Antimicrobial peptide modification enhances the gene delivery and bactericidal efficiency of gold nanoparticles for accelerating diabetic wound healing[J]. Biomater Sci, 2018, 6(10): 2757-2772.
[41]
袁香楠,谭绍洁,高晶,等. 靶向光热抗菌纳米材料及其在伤口愈合中的应用研究进展[J]. 生物医学工程学杂志2022, 39(1): 207-216.
[42]
Guan G, Win KY, Yao X, et al. Plasmonically modulated gold nanostructures for photothermal ablation of bacteria[J]. Adv Healthc Mater, 2021, 10(3): e2001158.
[43]
Pan WY, Huang CC, Lin TT, et al. Synergistic antibacterial effects of localized heat and oxidative stress caused by hydroxyl radicals mediated by graphene/iron oxide-based nanocomposites[J]. Nanomedicine, 2016, 12(2): 431-438.
[44]
Jannesari M, Akhavan O, Madaah Hosseini HR, et al. Graphene/CuO2 Nanoshuttles with Controllable Release of Oxygen Nanobubbles Promoting Interruption of Bacterial Respiration[J]. ACS Appl Mater Interfaces, 2020, 12(32): 35813-35825.
[45]
Behfar A, Crespo-Diaz R, Terzic A, et al. Cell therapy for cardiac repair--lessons from clinical trials[J]. Nat Rev Cardiol, 2014, 11(4): 232-246.
[46]
路青青,吕国忠,吕强. 具有促血管化能力的酸化丝蛋白海绵敷料的细胞相容性及该敷料对大鼠全层皮肤缺损创面愈合的影响[J]. 中华烧伤杂志2021, 37(1): 25-33.
[47]
毛珺,周应山,吴庭. 高吸型壳聚糖敷料的创面止血及促愈合效果[J]. 中国组织工程研究2016, 20(16): 2391-2396.
[48]
Teng L, Shao Z, Bai Q, et al. Biomimetic glycopolypeptide hydrogels with tunable adhesion and microporous structure for fast hemostasis and highly efficient wound healing[J]. Adv Funct Mater, 2021, 31(43): 2105628.
[49]
Qin H, Wang J, Wang T, et al. Preparation and Characterization of Chitosan/β-Glycerophosphate Thermal-Sensitive Hydrogel Reinforced by Graphene Oxide[J]. Front Chem, 2018, 6: 565.
[50]
Xie Y, Liao X, Zhang J, et al. Novel chitosan hydrogels reinforced by silver nanoparticles with ultrahigh mechanical and high antibacterial properties for accelerating wound healing[J]. Int J Biol Macromol, 2018, 119: 402-412.
[51]
Chen Y, Zheng K, Niu L, et al. Highly mechanical properties nanocomposite hydrogels with biorenewable lignin nanoparticles[J]. Int J Biol Macromol, 2019, 128: 414-420.
[52]
Richmond NA, Vivas AC, Kirsner RS. Topical and biologic therapies for diabetic foot ulcers[J]. Med Clin North Am, 2013, 97(5): 883-898.
[53]
Madl CM, Katz LM, Heilshorn SC. Tuning bulk hydrogel degradation by simultaneous control of proteolytic cleavage kinetics and hydrogel network architecture[J]. ACS Macro Lett, 2018, 7(11): 1302-1307.
[54]
Ninan N, Forget A, Shastri VP, et al. Antibacterial and anti-inflammatory pH-responsive tannic acid-carboxylated agarose composite hydrogels for wound healing[J]. ACS Appl Mater Interfaces, 2016, 8(42): 28511-28521.
[55]
Leonhardt EE, Kang N, Hamad MA, et al. Absorbable hemostatic hydrogels comprising composites of sacrificial templates and honeycomb-like nanofibrous mats of chitosan[J]. Nat Commun, 2019, 10(1): 2307.
[56]
Song X, Zhu C, Fan D, et al. A novel human-like collagen hydrogel scaffold with porous structure and sponge-like properties[J]. Polymers (Basel), 2017, 9(12): 638.
[1] 王鹏, 商广前, 王英振, 龙云泽, 徐浩. 静电纺丝药物释放系统防治植入物感染的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(02): 243-247.
[2] 魏徐, 张鸽, 伍金林. 新生儿脓毒症相关性凝血病的监测和治疗[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(04): 379-386.
[3] 周子慧, 李恭驰, 李炳辉, 王知, 刘慧真, 王卉, 邹利军. 细胞自噬在创面愈合中作用的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 542-546.
[4] 陈继秋, 朱世辉. 皮肤牵张装置的临床应用现状[J]. 中华损伤与修复杂志(电子版), 2023, 18(05): 451-453.
[5] 史孟杰, 贺仕才, 刘斐, 闫燕, 代毅, 王辉. 对miR-206在大鼠下肢缺血再灌注损伤过程中炎症反应的影响分析[J]. 中华损伤与修复杂志(电子版), 2023, 18(03): 249-255.
[6] 李维, 莫俊俏. 儿童呼吸道耐药流感嗜血杆菌基因型鉴定及耐药分析对抗菌药物治疗选择的意义[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(05): 315-323.
[7] 李懿雪, 潘婷, 林焕彩, 周燕. 植物源性天然产物在口腔细菌感染性疾病中的研究进展[J]. 中华口腔医学研究杂志(电子版), 2023, 17(03): 188-196.
[8] 罗皓天, 陈丹莹, 王伟财, 周晨. 基质细胞衍生因子1/CXC趋化因子受体4轴在骨免疫相关疾病中的研究进展[J]. 中华口腔医学研究杂志(电子版), 2023, 17(03): 218-227.
[9] 刘红艳, 韦曦, 凌均棨. 根管封药的应用现状及研究进展[J]. 中华口腔医学研究杂志(电子版), 2023, 17(02): 69-74.
[10] 王可, 范彬, 李多富, 刘奎. 两种疝囊残端处理方法在经腹腹膜前腹股沟疝修补术中的疗效比较[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 692-696.
[11] 徐金林, 陈征. 抗菌药物临床应用监测对腹股沟疝修补术预防用药及感染的影响[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 720-723.
[12] 邓春文, 陈嵩, 钟裴, 闵师强, 万健. LncRNA CRNDE通过miR-181a-5p/SOX6轴调节脂多糖诱导人肺泡上皮细胞的炎症反应和细胞凋亡[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(03): 129-136.
[13] 许磊, 孙杰, 陈先志, 张家泉, 李旺勇, 冯其柱, 王琦. 血液净化治疗在高血脂性重症胰腺炎中的应用[J]. 中华肝脏外科手术学电子杂志, 2023, 12(04): 464-468.
[14] 邹勇, 顾应江, 丁昊, 杨呈浩, 陈岷辉, 蔡昱. 基于Nrf2/HO-1及NF-κB信号通路探讨葛根素对大鼠脑出血后早期炎症反应及氧化应激反应的影响[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 271-277.
[15] 张赟辉, 罗军, 刘栗丽, 汪宏, 耿克明. 腹膜透析与血液透析对老年终末期肾病患者营养状况及炎症反应的影响[J]. 中华临床医师杂志(电子版), 2023, 17(04): 419-423.
阅读次数
全文


摘要