[1] |
Tian H, Wang L, Xie W, et al. Epidemiologic and clinical charac-terist ics of severe burn patients: Results of a retrospective multicenter study in China, 2011-2015[J]. Burns Trauma, 2018, 6: 14.
|
[2] |
Hughes A, Almeland SK, Leclerc T, et al. Recommendations for burns care in mass casualty incidents: WHO Emergency Medical Teams Technical Working Group on Burns (WHO TWGB) 2017-2020[J]. Burns, 2021, 47(2): 349-370.
|
[3] |
Toppi J, Cleland H, Gabbe B. Severe burns in Australian and New Zealand adults: Epidemiology and burn centre care[J]. Burns, 2019, 45(6): 1456-1461.
|
[4] |
Caetano P, Brandão C, Campos I, et al. Aging and burn: A five-year retrospective study in a major burn centre in Portugal[J]. Ann Burns Fire Disasters, 2018, 31(3): 163-167.
|
[5] |
Cheng W, Shen C, Zhao D, et al. The epidemiology and prognosis of patients with massive burns: A multicenter study of 2483 cases[J]. Burns, 2019, 45(3): 705-716.
|
[6] |
Rehou S, Shahrokhi S, Thai J, et al. Acute phase response in critically ill elderly burn patients[J]. Crit Care Med, 2019, 47(2): 201-209.
|
[7] |
Pirii LE, Friedrich AW, Rossen JWA, et al. Extensive colonization with carbapenemase-producing microorganisms in Romanian burn patients: infectious consequences from the Colectiv fire disaster[J]. Eur J Clin Microbiol Infect Dis, 2018, 37(1): 175-183.
|
[8] |
Liu R, Wang SM, Guo SJ, et al. Histone deacetylase inhibitor attenuates intestinal mucosal injury in fatally scalded rats[J]. Ann Transl Med, 2022, 10(2): 54.
|
[9] |
King BT, Peterson WC. The Care of Thermally Injured Patients in Operational, Austere, and Mass Casualty Situations[J]. Wilderness Environ Med, 2017, 28(2S): S103-S108.
|
[10] |
刘锐,郭思佳,井维斌,等. 组蛋白去乙酰化酶抑制剂丙戊酸钠对致死性烫伤大鼠脑损伤保护作用的研究[J/CD]. 中华损伤与修复杂志(电子版), 2022, 17(1): 32-39.
|
[11] |
Legrand M, Barraud D, Constant I, et al. Management of severe thermal burns in the acute phase in adults and children[J]. Anaesth Crit Care Pain Med, 2020, 39(2): 253-267.
|
[12] |
Williams AM, Bhatti UF, Biesterveld BE, et al. Valproic Acid improves survival and decreases resuscitation requirements in a swine model of prolonged damage control resuscitation[J]. J Trauma Acute Care Surg, 2019, 87(2): 393-401.
|
[13] |
Ruess DA, Probst M, Marjanovic G, et al. HDACI Valproic Acid (VPA) and Suberoylanilide Hydroxamic Acid (SAHA) Delay but Fail to Protect against Warm Hepatic Ischemia-Reperfusion Injury[J]. PLoS One, 2016, 11(8): e0161233.
|
[14] |
Hwabejire JO, Lu J, Liu B, et al. Valproic acid for the treatment of hemorrhagic shock: a dose-optimization study[J]. J Surg Res, 2014, 186(1): 363-370.
|
[15] |
Wakam GK, Biesterveld BE, Pai MP, et al. Administration of valproic acid in clinically approved dose improves neurologic recovery and decreases brain lesion size in swine subjected to hemorrhagic shock and traumatic brain injury[J]. J Trauma Acute Care Surg, 2021, 90(2): 346-352.
|
[16] |
Shang Y, Jiang YX, Ding ZJ, et al. Valproic acid attenuates the multiple-organ dysfunction in a rat model of septic shock[J]. Chin Med J (Engl), 2010, 123(19): 2682-2687.
|
[17] |
Biesterveld BE, Siddiqui AZ, O′connell RL, et al. Valproic Acid Protects Against Acute Kidney Injury in Hemorrhage and Trauma[J]. J Surg Res, 2021, 266: 222-229.
|
[18] |
Li Y, Liu B, Dillon ST, et al. Identification of a novel potential biomarker in a model of hemorrhagic shock and valproic acid treatment[J]. J Surg Res, 2010, 159(1): 474-481.
|
[19] |
Causey MW, Miller S, Hoffer Z, et al. Beneficial effects of histone deacetylase inhibition with severe hemorrhage and ischemia-reperfusion injury[J]. J Surg Res, 2013, 184(1): 533-540.
|
[20] |
Tang FB, Dai YL, Zhou GY, et al. Valproic Acid Treatment Inhibits Vasopermeability and Improves Survival in Rats With Lethal Scald Injury[J]. J Burn Care Res, 2018, 39(2): 209-217.
|
[21] |
Russo R, Kemp M, Bhatti UF, et al. Life on the battlefield: Valproic acid for combat applications[J]. J Trauma Acute Care Surg, 2020, 89(2S Suppl 2): S69-S76.
|
[22] |
Han W, Yu F, Wang R, et al. Valproic Acid Sensitizes Glioma Cells to Luteolin Through Induction of Apoptosis and Autophagy via Akt Signaling[J]. Cell Mol Neurobiol, 2021, 41(8): 1625-1634.
|
[23] |
Amirzargar MA, Yaghubi F, Hosseinipanah M, et al. Anti-inflammatory Effects of Valproic Acid in a Rat Model of Renal Ischemia /Reperfusion Injury: Alteration in Cytokine Profile[J]. Inflammation, 2017, 40(4): 1310-1318.
|
[24] |
Mardi A, Biglar A, Nejatbakhsh R, et al. Valproic Acid Ameliorates Locomotor Function in the Rat Model of Contusion via Alteration of Mst1, Bcl-2, and Nrf2 Gene Expression[J]. Iran Biomed J, 2021, 25(4): 303-307.
|
[25] |
Li X, Sui Y. Valproate improves middle cerebral artery occlusion-induced ischemic cerebral disorders in mice and oxygen-glucose deprivation-induced injuries in microglia by modulating RMRP/PI3K/Akt axis[J]. Brain Res, 2020, 1747: 147039.
|
[26] |
Ma XH, Gao Q, Jia Z, et al. Neuroprotective capabilities of TSA against cerebral ischemia/reperfusion injury via PI3K/Akt signaling pathway in rats[J]. Int J Neurosci, 2015, 125(2): 140-146.
|
[27] |
Alam HB, Shuja F, Butt MU, et al. Surviving blood loss without blood transfusion in a swine poly-trauma model[J]. Surgery, 2009, 146(2): 325-333.
|
[28] |
Yang X, Liu J, Liang Q, et al. Valproic acid reverses sorafenib resistance through inhibiting activated Notch/Akt signaling pathway in hepatocellular carcinoma[J]. Fundam Clin Pharmacol, 2021, 35(4): 690-699.
|
[29] |
Addison RS, Parker-Scott SL, Eadie MJ, et al. Steady-state dispositions of valproate and diflunisal alone and coadministered to healthy volunteers[J]. Eur J Clin Pharmacol, 2000, 56(9/10): 715-721.
|
[30] |
Stoppe C, Hill A, Day AG, et al. The initial validation of a novel outcome measure in severe burns- the Persistent Organ Dysfunction +Death: Results from a multicenter evaluation[J]. Burns, 2021, 47(4): 765-775.
|
[31] |
Chen L, Alam A, Pac-Soo A, et al. Pretreatment with valproic acid alleviates pulmonary fibrosis through epithelial-mesenchymal transition inhibition in vitro and in vivo[J]. Lab Invest, 2021, 101(9): 1166-1175.
|
[32] |
Liao R, Yan J, Xu Y. A Mixed-ligand Pb(II)-coordination Polymer: Photocatalytic Performance and Reduction Activity of the Inflammatory Response After Severe Burns by Inhibiting NF-κB Signaling Pathway[J]. J Fluoresc, 2021, 31(1): 229-236.
|
[33] |
Xu L, Fang H, Xu D, et al. HIPK2 sustains inflammatory cytokine production by promoting endoplasmic reticulum stress in macrophages[J]. Exp Ther Med, 2020, 20(6): 171.
|
[34] |
Strudwick XL, Adams DH, Pyne NT, et al. Systemic Delivery of Anti-Integrin αL Antibodies Reduces Early Macrophage Recruitment, Inflammation, and Scar Formation in Murine Burn Wounds[J]. Adv Wound Care (New Rochelle), 2020, 9(12): 637-648.
|
[35] |
Kühne M, Kretzer C, Lindemann H, et al. Biocompatible valproic acid-coupled nanoparticles attenuate lipopolysaccharide-induced inflammation[J]. Int J Pharm, 2021, 601: 120567.
|
[36] |
Ji MH, Li GM, Jia M, et al. Valproic acid attenuates lipopolysaccharide-induced acute lung injury in mice[J]. Inflammation, 2013, 36(6): 1453-1459.
|