切换至 "中华医学电子期刊资源库"

中华损伤与修复杂志(电子版) ›› 2022, Vol. 17 ›› Issue (04) : 359 -362. doi: 10.3877/cma.j.issn.1673-9450.2022.04.013

综述

丙戊酸钠抗休克作用及其相关机制的研究进展
刘锐1, 王树明2,()   
  1. 1. 150036 哈尔滨,黑龙江省医院烧伤科
    2. 150040 哈尔滨,黑龙江中医药大学附属第一医院急诊科
  • 收稿日期:2022-06-15 出版日期:2022-08-01
  • 通信作者: 王树明
  • 基金资助:
    黑龙江省省院科技合作项目(YS20C02); 黑龙江省卫生健康委科研课题(20211010000021)

Research progress on the effect and related mechanism of valproic acid in anti shock

Rui Liu1, Shuming Wang2,()   

  1. 1. Department of Burn, Heilongjiang Provincial Hospital, Harbin 150036, China
    2. Department of Emergency Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin 150040, China
  • Received:2022-06-15 Published:2022-08-01
  • Corresponding author: Shuming Wang
引用本文:

刘锐, 王树明. 丙戊酸钠抗休克作用及其相关机制的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2022, 17(04): 359-362.

Rui Liu, Shuming Wang. Research progress on the effect and related mechanism of valproic acid in anti shock[J/OL]. Chinese Journal of Injury Repair and Wound Healing(Electronic Edition), 2022, 17(04): 359-362.

严重烧、创伤患者大量失液引起失血性休克是患者死亡的重要原因之一。目前,对于严重烧、创伤引起的失血性休克的治疗主要是通过液体复苏来维持机体重要脏器的组织灌注,保护脏器功能,然而这种策略的实施常不能保证其及时性(特别是在战争、严重灾害时)。因此,能否在紧急救治现场早期及时使用抗休克药物进行治疗,在短时间内迅速稳定伤员的病情,为后续治疗争取宝贵的时间,是一项亟待解决的问题。组蛋白去乙酰化酶抑制剂(HDACi)丙戊酸钠是近年来国内外研究的热点之一,近年来研究发现,丙戊酸钠能有效对抗机体因缺血和缺氧继发的组织器官损伤,提高机体对缺血和缺氧以及炎症打击的耐受性,提高生存率。本文就丙戊酸钠的抗休克作用及其通过调节组蛋白乙酰化程度、调节磷脂酰肌醇-3激酶(PI3K)/Akt信号通路、调节红细胞中2, 3-二磷酸甘油酸浓度和抑制炎症反应和炎症因子发挥抗休克作用的相关机制的研究进展进行综述。

Hemorrhagic shock caused by massive fluid loss in patients with severe fever and trauma is one of the most important factors leading to the death of patients. At present, the treatment of hemorrhagic shock caused by severe burns and trauma is mainly based on fluid resuscitation to maintain tissue perfusion of vital organs of the body and protect organ function. However, the implementation of this strategy often can not guarantee timeliness (especially in war and severe disasters). Therefore, the ability to treat early and promptly with anti-shock medication at the scene of an emergency, which would then rapidly stabilise the casualty in a short time, make injury judgements and buy valuable time for subsequent treatment, is an urgent issue that needs to be addressed. Valproic acid, a histone deacetylase inhibitor (HDACi), is one of the research hotspots of domestic and foreign researchers in recent years. Recent studies have found that valproic acid can effectively resist tissue and organ damage secondary to ischemia and hypoxia, improve the body′s tolerance to ischemia and hypoxia and inflammatory attack, and improve the survival rate. In this paper, the research progress of the anti-shock effect of valproic acid and its related mechanisms that regulation of the degree of histone acetylation, regulation of phosphoinositide 3-kinase(PI3K)/Akt signaling pathway, regulation of 2, 3-bisphosphoglycerate concentration in erythrocytes, and inhibition of inflammatory responses and inflammatory factors were discussed.

[1]
Tian H, Wang L, Xie W, et al. Epidemiologic and clinical charac-terist ics of severe burn patients: Results of a retrospective multicenter study in China, 2011-2015[J]. Burns Trauma, 2018, 6: 14.
[2]
Hughes A, Almeland SK, Leclerc T, et al. Recommendations for burns care in mass casualty incidents: WHO Emergency Medical Teams Technical Working Group on Burns (WHO TWGB) 2017-2020[J]. Burns, 2021, 47(2): 349-370.
[3]
Toppi J, Cleland H, Gabbe B. Severe burns in Australian and New Zealand adults: Epidemiology and burn centre care[J]. Burns, 2019, 45(6): 1456-1461.
[4]
Caetano P, Brandão C, Campos I, et al. Aging and burn: A five-year retrospective study in a major burn centre in Portugal[J]. Ann Burns Fire Disasters, 2018, 31(3): 163-167.
[5]
Cheng W, Shen C, Zhao D, et al. The epidemiology and prognosis of patients with massive burns: A multicenter study of 2483 cases[J]. Burns, 2019, 45(3): 705-716.
[6]
Rehou S, Shahrokhi S, Thai J, et al. Acute phase response in critically ill elderly burn patients[J]. Crit Care Med, 2019, 47(2): 201-209.
[7]
Pirii LE, Friedrich AW, Rossen JWA, et al. Extensive colonization with carbapenemase-producing microorganisms in Romanian burn patients: infectious consequences from the Colectiv fire disaster[J]. Eur J Clin Microbiol Infect Dis, 2018, 37(1): 175-183.
[8]
Liu R, Wang SM, Guo SJ, et al. Histone deacetylase inhibitor attenuates intestinal mucosal injury in fatally scalded rats[J]. Ann Transl Med, 2022, 10(2): 54.
[9]
King BT, Peterson WC. The Care of Thermally Injured Patients in Operational, Austere, and Mass Casualty Situations[J]. Wilderness Environ Med, 2017, 28(2S): S103-S108.
[10]
刘锐,郭思佳,井维斌,等. 组蛋白去乙酰化酶抑制剂丙戊酸钠对致死性烫伤大鼠脑损伤保护作用的研究[J/CD]. 中华损伤与修复杂志(电子版), 2022, 17(1): 32-39.
[11]
Legrand M, Barraud D, Constant I, et al. Management of severe thermal burns in the acute phase in adults and children[J]. Anaesth Crit Care Pain Med, 2020, 39(2): 253-267.
[12]
Williams AM, Bhatti UF, Biesterveld BE, et al. Valproic Acid improves survival and decreases resuscitation requirements in a swine model of prolonged damage control resuscitation[J]. J Trauma Acute Care Surg, 2019, 87(2): 393-401.
[13]
Ruess DA, Probst M, Marjanovic G, et al. HDACI Valproic Acid (VPA) and Suberoylanilide Hydroxamic Acid (SAHA) Delay but Fail to Protect against Warm Hepatic Ischemia-Reperfusion Injury[J]. PLoS One, 2016, 11(8): e0161233.
[14]
Hwabejire JO, Lu J, Liu B, et al. Valproic acid for the treatment of hemorrhagic shock: a dose-optimization study[J]. J Surg Res, 2014, 186(1): 363-370.
[15]
Wakam GK, Biesterveld BE, Pai MP, et al. Administration of valproic acid in clinically approved dose improves neurologic recovery and decreases brain lesion size in swine subjected to hemorrhagic shock and traumatic brain injury[J]. J Trauma Acute Care Surg, 2021, 90(2): 346-352.
[16]
Shang Y, Jiang YX, Ding ZJ, et al. Valproic acid attenuates the multiple-organ dysfunction in a rat model of septic shock[J]. Chin Med J (Engl), 2010, 123(19): 2682-2687.
[17]
Biesterveld BE, Siddiqui AZ, O′connell RL, et al. Valproic Acid Protects Against Acute Kidney Injury in Hemorrhage and Trauma[J]. J Surg Res, 2021, 266: 222-229.
[18]
Li Y, Liu B, Dillon ST, et al. Identification of a novel potential biomarker in a model of hemorrhagic shock and valproic acid treatment[J]. J Surg Res, 2010, 159(1): 474-481.
[19]
Causey MW, Miller S, Hoffer Z, et al. Beneficial effects of histone deacetylase inhibition with severe hemorrhage and ischemia-reperfusion injury[J]. J Surg Res, 2013, 184(1): 533-540.
[20]
Tang FB, Dai YL, Zhou GY, et al. Valproic Acid Treatment Inhibits Vasopermeability and Improves Survival in Rats With Lethal Scald Injury[J]. J Burn Care Res, 2018, 39(2): 209-217.
[21]
Russo R, Kemp M, Bhatti UF, et al. Life on the battlefield: Valproic acid for combat applications[J]. J Trauma Acute Care Surg, 2020, 89(2S Suppl 2): S69-S76.
[22]
Han W, Yu F, Wang R, et al. Valproic Acid Sensitizes Glioma Cells to Luteolin Through Induction of Apoptosis and Autophagy via Akt Signaling[J]. Cell Mol Neurobiol, 2021, 41(8): 1625-1634.
[23]
Amirzargar MA, Yaghubi F, Hosseinipanah M, et al. Anti-inflammatory Effects of Valproic Acid in a Rat Model of Renal Ischemia /Reperfusion Injury: Alteration in Cytokine Profile[J]. Inflammation, 2017, 40(4): 1310-1318.
[24]
Mardi A, Biglar A, Nejatbakhsh R, et al. Valproic Acid Ameliorates Locomotor Function in the Rat Model of Contusion via Alteration of Mst1, Bcl-2, and Nrf2 Gene Expression[J]. Iran Biomed J, 2021, 25(4): 303-307.
[25]
Li X, Sui Y. Valproate improves middle cerebral artery occlusion-induced ischemic cerebral disorders in mice and oxygen-glucose deprivation-induced injuries in microglia by modulating RMRP/PI3K/Akt axis[J]. Brain Res, 2020, 1747: 147039.
[26]
Ma XH, Gao Q, Jia Z, et al. Neuroprotective capabilities of TSA against cerebral ischemia/reperfusion injury via PI3K/Akt signaling pathway in rats[J]. Int J Neurosci, 2015, 125(2): 140-146.
[27]
Alam HB, Shuja F, Butt MU, et al. Surviving blood loss without blood transfusion in a swine poly-trauma model[J]. Surgery, 2009, 146(2): 325-333.
[28]
Yang X, Liu J, Liang Q, et al. Valproic acid reverses sorafenib resistance through inhibiting activated Notch/Akt signaling pathway in hepatocellular carcinoma[J]. Fundam Clin Pharmacol, 2021, 35(4): 690-699.
[29]
Addison RS, Parker-Scott SL, Eadie MJ, et al. Steady-state dispositions of valproate and diflunisal alone and coadministered to healthy volunteers[J]. Eur J Clin Pharmacol, 2000, 56(9/10): 715-721.
[30]
Stoppe C, Hill A, Day AG, et al. The initial validation of a novel outcome measure in severe burns- the Persistent Organ Dysfunction +Death: Results from a multicenter evaluation[J]. Burns, 2021, 47(4): 765-775.
[31]
Chen L, Alam A, Pac-Soo A, et al. Pretreatment with valproic acid alleviates pulmonary fibrosis through epithelial-mesenchymal transition inhibition in vitro and in vivo[J]. Lab Invest, 2021, 101(9): 1166-1175.
[32]
Liao R, Yan J, Xu Y. A Mixed-ligand Pb(II)-coordination Polymer: Photocatalytic Performance and Reduction Activity of the Inflammatory Response After Severe Burns by Inhibiting NF-κB Signaling Pathway[J]. J Fluoresc, 2021, 31(1): 229-236.
[33]
Xu L, Fang H, Xu D, et al. HIPK2 sustains inflammatory cytokine production by promoting endoplasmic reticulum stress in macrophages[J]. Exp Ther Med, 2020, 20(6): 171.
[34]
Strudwick XL, Adams DH, Pyne NT, et al. Systemic Delivery of Anti-Integrin αL Antibodies Reduces Early Macrophage Recruitment, Inflammation, and Scar Formation in Murine Burn Wounds[J]. Adv Wound Care (New Rochelle), 2020, 9(12): 637-648.
[35]
Kühne M, Kretzer C, Lindemann H, et al. Biocompatible valproic acid-coupled nanoparticles attenuate lipopolysaccharide-induced inflammation[J]. Int J Pharm, 2021, 601: 120567.
[36]
Ji MH, Li GM, Jia M, et al. Valproic acid attenuates lipopolysaccharide-induced acute lung injury in mice[J]. Inflammation, 2013, 36(6): 1453-1459.
[1] 王宏宇, 巴特, 黄瑞娟, 陈强, 闫增强. 亲属头皮加自体头皮混合移植接力在大面积深度烧伤创面修复中的应用[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 554-554.
[2] 李煜, 王鹏, 陆翮, 冯蓉琴, 韩军涛. 采用低频脉冲电刺激治疗深Ⅱ度烧伤创面的临床观察[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 474-478.
[3] 彭玲, 吴红, 宛仕勇, 陈斓, 叶子青, 周静. 胶原酶软膏联合水胶体敷料应用于深Ⅱ度烧伤创面治疗的效果观察[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 511-516.
[4] 林同辉, 杨卫玺. 股前外侧穿支皮瓣在电烧伤治疗中应用的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 526-530.
[5] 张嘉炜, 王瑞, 张克诚, 易磊, 周增丁. 烧烫伤创面深度智能检测模型P-YOLO的建立及测试效果[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(05): 379-385.
[6] 毛书雷, 张元海, 王杰, 倪良方, 王新刚, 邹雁, 王荣娟, 吴军梅, 张建芬. 区域性静脉灌注葡萄糖酸钙治疗手指氢氟酸烧伤的临床疗效和安全性分析[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(05): 386-392.
[7] 孙俊锋, 涂家金, 付丹, 蒋满香, 刘金晶, 崔乃硕. 手部烧伤瘢痕挛缩畸形整形术后综合康复联合点阵二氧化碳激光治疗的临床效果[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(05): 411-415.
[8] 杨新园, 王淑君, 何成, 宋喜鹤, 刘丽芸. 预防与处理危重烧伤患者经外周静脉穿刺置入中心静脉导管堵塞的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(05): 443-446.
[9] 孙勇, 彭曦. 重视烧伤创面愈合中的葡萄糖代谢以优化营养治疗策略[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(04): 277-281.
[10] 张锦丽, 席毛毛, 褚志刚, 栾夏刚, 陈诺, 王德运, 谢卫国. 大面积烧伤患者发生早期急性肾损伤的危险因素分析[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(04): 282-287.
[11] 温春泉, 陈欣, 尹凯, 赵筱卓, 张琮, 程琳, 陈辉. 旋肩胛动脉穿支皮瓣在烧伤后重度腋窝瘢痕挛缩畸形整形修复治疗中的应用[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(04): 294-298.
[12] 陈宏泽, 刘晟, 陈旭林. 水动力清创系统在大面积深Ⅱ度烧伤创面清创中的应用效果[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(04): 314-318.
[13] 董晟, 郎胜坤, 葛新, 孙少君, 薛明宇. 反向休克指数乘以格拉斯哥昏迷评分对老年严重创伤患者发生急性创伤性凝血功能障碍的预测价值[J/OL]. 中华临床医师杂志(电子版), 2024, 18(06): 541-547.
[14] 傅新露, 李之岳, 卢丹. 妊娠合并结肠癌穿孔致脓毒症休克一例并文献复习[J/OL]. 中华产科急救电子杂志, 2024, 13(04): 227-231.
[15] 詹维强, 李梦蝶, 涂玉玲, 郭艳, 芦乙滨, 史新格, 许明. 早期CRRT联合VA-ECMO治疗难治性心源性休克的临床效果[J/OL]. 中华卫生应急电子杂志, 2024, 10(05): 260-268.
阅读次数
全文


摘要