切换至 "中华医学电子期刊资源库"

中华损伤与修复杂志(电子版) ›› 2022, Vol. 17 ›› Issue (04) : 359 -362. doi: 10.3877/cma.j.issn.1673-9450.2022.04.013

综述

丙戊酸钠抗休克作用及其相关机制的研究进展
刘锐1, 王树明2,()   
  1. 1. 150036 哈尔滨,黑龙江省医院烧伤科
    2. 150040 哈尔滨,黑龙江中医药大学附属第一医院急诊科
  • 收稿日期:2022-06-15 出版日期:2022-08-01
  • 通信作者: 王树明
  • 基金资助:
    黑龙江省省院科技合作项目(YS20C02); 黑龙江省卫生健康委科研课题(20211010000021)

Research progress on the effect and related mechanism of valproic acid in anti shock

Rui Liu1, Shuming Wang2,()   

  1. 1. Department of Burn, Heilongjiang Provincial Hospital, Harbin 150036, China
    2. Department of Emergency Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin 150040, China
  • Received:2022-06-15 Published:2022-08-01
  • Corresponding author: Shuming Wang
引用本文:

刘锐, 王树明. 丙戊酸钠抗休克作用及其相关机制的研究进展[J]. 中华损伤与修复杂志(电子版), 2022, 17(04): 359-362.

Rui Liu, Shuming Wang. Research progress on the effect and related mechanism of valproic acid in anti shock[J]. Chinese Journal of Injury Repair and Wound Healing(Electronic Edition), 2022, 17(04): 359-362.

严重烧、创伤患者大量失液引起失血性休克是患者死亡的重要原因之一。目前,对于严重烧、创伤引起的失血性休克的治疗主要是通过液体复苏来维持机体重要脏器的组织灌注,保护脏器功能,然而这种策略的实施常不能保证其及时性(特别是在战争、严重灾害时)。因此,能否在紧急救治现场早期及时使用抗休克药物进行治疗,在短时间内迅速稳定伤员的病情,为后续治疗争取宝贵的时间,是一项亟待解决的问题。组蛋白去乙酰化酶抑制剂(HDACi)丙戊酸钠是近年来国内外研究的热点之一,近年来研究发现,丙戊酸钠能有效对抗机体因缺血和缺氧继发的组织器官损伤,提高机体对缺血和缺氧以及炎症打击的耐受性,提高生存率。本文就丙戊酸钠的抗休克作用及其通过调节组蛋白乙酰化程度、调节磷脂酰肌醇-3激酶(PI3K)/Akt信号通路、调节红细胞中2, 3-二磷酸甘油酸浓度和抑制炎症反应和炎症因子发挥抗休克作用的相关机制的研究进展进行综述。

Hemorrhagic shock caused by massive fluid loss in patients with severe fever and trauma is one of the most important factors leading to the death of patients. At present, the treatment of hemorrhagic shock caused by severe burns and trauma is mainly based on fluid resuscitation to maintain tissue perfusion of vital organs of the body and protect organ function. However, the implementation of this strategy often can not guarantee timeliness (especially in war and severe disasters). Therefore, the ability to treat early and promptly with anti-shock medication at the scene of an emergency, which would then rapidly stabilise the casualty in a short time, make injury judgements and buy valuable time for subsequent treatment, is an urgent issue that needs to be addressed. Valproic acid, a histone deacetylase inhibitor (HDACi), is one of the research hotspots of domestic and foreign researchers in recent years. Recent studies have found that valproic acid can effectively resist tissue and organ damage secondary to ischemia and hypoxia, improve the body′s tolerance to ischemia and hypoxia and inflammatory attack, and improve the survival rate. In this paper, the research progress of the anti-shock effect of valproic acid and its related mechanisms that regulation of the degree of histone acetylation, regulation of phosphoinositide 3-kinase(PI3K)/Akt signaling pathway, regulation of 2, 3-bisphosphoglycerate concentration in erythrocytes, and inhibition of inflammatory responses and inflammatory factors were discussed.

[1]
Tian H, Wang L, Xie W, et al. Epidemiologic and clinical charac-terist ics of severe burn patients: Results of a retrospective multicenter study in China, 2011-2015[J]. Burns Trauma, 2018, 6: 14.
[2]
Hughes A, Almeland SK, Leclerc T, et al. Recommendations for burns care in mass casualty incidents: WHO Emergency Medical Teams Technical Working Group on Burns (WHO TWGB) 2017-2020[J]. Burns, 2021, 47(2): 349-370.
[3]
Toppi J, Cleland H, Gabbe B. Severe burns in Australian and New Zealand adults: Epidemiology and burn centre care[J]. Burns, 2019, 45(6): 1456-1461.
[4]
Caetano P, Brandão C, Campos I, et al. Aging and burn: A five-year retrospective study in a major burn centre in Portugal[J]. Ann Burns Fire Disasters, 2018, 31(3): 163-167.
[5]
Cheng W, Shen C, Zhao D, et al. The epidemiology and prognosis of patients with massive burns: A multicenter study of 2483 cases[J]. Burns, 2019, 45(3): 705-716.
[6]
Rehou S, Shahrokhi S, Thai J, et al. Acute phase response in critically ill elderly burn patients[J]. Crit Care Med, 2019, 47(2): 201-209.
[7]
Pirii LE, Friedrich AW, Rossen JWA, et al. Extensive colonization with carbapenemase-producing microorganisms in Romanian burn patients: infectious consequences from the Colectiv fire disaster[J]. Eur J Clin Microbiol Infect Dis, 2018, 37(1): 175-183.
[8]
Liu R, Wang SM, Guo SJ, et al. Histone deacetylase inhibitor attenuates intestinal mucosal injury in fatally scalded rats[J]. Ann Transl Med, 2022, 10(2): 54.
[9]
King BT, Peterson WC. The Care of Thermally Injured Patients in Operational, Austere, and Mass Casualty Situations[J]. Wilderness Environ Med, 2017, 28(2S): S103-S108.
[10]
刘锐,郭思佳,井维斌,等. 组蛋白去乙酰化酶抑制剂丙戊酸钠对致死性烫伤大鼠脑损伤保护作用的研究[J/CD]. 中华损伤与修复杂志(电子版), 2022, 17(1): 32-39.
[11]
Legrand M, Barraud D, Constant I, et al. Management of severe thermal burns in the acute phase in adults and children[J]. Anaesth Crit Care Pain Med, 2020, 39(2): 253-267.
[12]
Williams AM, Bhatti UF, Biesterveld BE, et al. Valproic Acid improves survival and decreases resuscitation requirements in a swine model of prolonged damage control resuscitation[J]. J Trauma Acute Care Surg, 2019, 87(2): 393-401.
[13]
Ruess DA, Probst M, Marjanovic G, et al. HDACI Valproic Acid (VPA) and Suberoylanilide Hydroxamic Acid (SAHA) Delay but Fail to Protect against Warm Hepatic Ischemia-Reperfusion Injury[J]. PLoS One, 2016, 11(8): e0161233.
[14]
Hwabejire JO, Lu J, Liu B, et al. Valproic acid for the treatment of hemorrhagic shock: a dose-optimization study[J]. J Surg Res, 2014, 186(1): 363-370.
[15]
Wakam GK, Biesterveld BE, Pai MP, et al. Administration of valproic acid in clinically approved dose improves neurologic recovery and decreases brain lesion size in swine subjected to hemorrhagic shock and traumatic brain injury[J]. J Trauma Acute Care Surg, 2021, 90(2): 346-352.
[16]
Shang Y, Jiang YX, Ding ZJ, et al. Valproic acid attenuates the multiple-organ dysfunction in a rat model of septic shock[J]. Chin Med J (Engl), 2010, 123(19): 2682-2687.
[17]
Biesterveld BE, Siddiqui AZ, O′connell RL, et al. Valproic Acid Protects Against Acute Kidney Injury in Hemorrhage and Trauma[J]. J Surg Res, 2021, 266: 222-229.
[18]
Li Y, Liu B, Dillon ST, et al. Identification of a novel potential biomarker in a model of hemorrhagic shock and valproic acid treatment[J]. J Surg Res, 2010, 159(1): 474-481.
[19]
Causey MW, Miller S, Hoffer Z, et al. Beneficial effects of histone deacetylase inhibition with severe hemorrhage and ischemia-reperfusion injury[J]. J Surg Res, 2013, 184(1): 533-540.
[20]
Tang FB, Dai YL, Zhou GY, et al. Valproic Acid Treatment Inhibits Vasopermeability and Improves Survival in Rats With Lethal Scald Injury[J]. J Burn Care Res, 2018, 39(2): 209-217.
[21]
Russo R, Kemp M, Bhatti UF, et al. Life on the battlefield: Valproic acid for combat applications[J]. J Trauma Acute Care Surg, 2020, 89(2S Suppl 2): S69-S76.
[22]
Han W, Yu F, Wang R, et al. Valproic Acid Sensitizes Glioma Cells to Luteolin Through Induction of Apoptosis and Autophagy via Akt Signaling[J]. Cell Mol Neurobiol, 2021, 41(8): 1625-1634.
[23]
Amirzargar MA, Yaghubi F, Hosseinipanah M, et al. Anti-inflammatory Effects of Valproic Acid in a Rat Model of Renal Ischemia /Reperfusion Injury: Alteration in Cytokine Profile[J]. Inflammation, 2017, 40(4): 1310-1318.
[24]
Mardi A, Biglar A, Nejatbakhsh R, et al. Valproic Acid Ameliorates Locomotor Function in the Rat Model of Contusion via Alteration of Mst1, Bcl-2, and Nrf2 Gene Expression[J]. Iran Biomed J, 2021, 25(4): 303-307.
[25]
Li X, Sui Y. Valproate improves middle cerebral artery occlusion-induced ischemic cerebral disorders in mice and oxygen-glucose deprivation-induced injuries in microglia by modulating RMRP/PI3K/Akt axis[J]. Brain Res, 2020, 1747: 147039.
[26]
Ma XH, Gao Q, Jia Z, et al. Neuroprotective capabilities of TSA against cerebral ischemia/reperfusion injury via PI3K/Akt signaling pathway in rats[J]. Int J Neurosci, 2015, 125(2): 140-146.
[27]
Alam HB, Shuja F, Butt MU, et al. Surviving blood loss without blood transfusion in a swine poly-trauma model[J]. Surgery, 2009, 146(2): 325-333.
[28]
Yang X, Liu J, Liang Q, et al. Valproic acid reverses sorafenib resistance through inhibiting activated Notch/Akt signaling pathway in hepatocellular carcinoma[J]. Fundam Clin Pharmacol, 2021, 35(4): 690-699.
[29]
Addison RS, Parker-Scott SL, Eadie MJ, et al. Steady-state dispositions of valproate and diflunisal alone and coadministered to healthy volunteers[J]. Eur J Clin Pharmacol, 2000, 56(9/10): 715-721.
[30]
Stoppe C, Hill A, Day AG, et al. The initial validation of a novel outcome measure in severe burns- the Persistent Organ Dysfunction +Death: Results from a multicenter evaluation[J]. Burns, 2021, 47(4): 765-775.
[31]
Chen L, Alam A, Pac-Soo A, et al. Pretreatment with valproic acid alleviates pulmonary fibrosis through epithelial-mesenchymal transition inhibition in vitro and in vivo[J]. Lab Invest, 2021, 101(9): 1166-1175.
[32]
Liao R, Yan J, Xu Y. A Mixed-ligand Pb(II)-coordination Polymer: Photocatalytic Performance and Reduction Activity of the Inflammatory Response After Severe Burns by Inhibiting NF-κB Signaling Pathway[J]. J Fluoresc, 2021, 31(1): 229-236.
[33]
Xu L, Fang H, Xu D, et al. HIPK2 sustains inflammatory cytokine production by promoting endoplasmic reticulum stress in macrophages[J]. Exp Ther Med, 2020, 20(6): 171.
[34]
Strudwick XL, Adams DH, Pyne NT, et al. Systemic Delivery of Anti-Integrin αL Antibodies Reduces Early Macrophage Recruitment, Inflammation, and Scar Formation in Murine Burn Wounds[J]. Adv Wound Care (New Rochelle), 2020, 9(12): 637-648.
[35]
Kühne M, Kretzer C, Lindemann H, et al. Biocompatible valproic acid-coupled nanoparticles attenuate lipopolysaccharide-induced inflammation[J]. Int J Pharm, 2021, 601: 120567.
[36]
Ji MH, Li GM, Jia M, et al. Valproic acid attenuates lipopolysaccharide-induced acute lung injury in mice[J]. Inflammation, 2013, 36(6): 1453-1459.
[1] 李康, 耿喜林, 汪玉良, 刘京升. 踝关节Logsplitter损伤诊治的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(04): 566-570.
[2] 赵宇, 赵松, 赵金忠. 前交叉韧带损伤及重建后继发性膝骨关节炎的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(03): 415-423.
[3] 作者. 脓毒症与脓毒性休克[J]. 中华危重症医学杂志(电子版), 2023, 16(03): 0-.
[4] 姚咏明. 如何精准评估烧伤脓毒症患者免疫状态[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 552-552.
[5] 涂家金, 廖武强, 刘金晶, 涂志鹏, 毛远桂. 严重烧伤患者鲍曼不动杆菌血流感染的危险因素及预后分析[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 491-497.
[6] 王成, 张慧君, 覃凤均, 陈辉. 网状植皮与ReCell表皮细胞种植在深Ⅱ度烧伤治疗中的疗效对比[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 498-502.
[7] 米洁, 陈晨, 李佳玲, 裴海娜, 张恒博, 李飞, 李东杰. 儿童头面部外伤特点分析[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 511-515.
[8] 中华医学会烧伤外科学分会小儿烧伤学组. 儿童烧伤早期休克液体复苏专家共识(2023版)[J]. 中华损伤与修复杂志(电子版), 2023, 18(05): 371-376.
[9] 蔡柔妹, 曾洁梅, 黄伟丽, 谢文敏, 刘燕丹, 吴漫君, 蔡楚燕. 利用QC小组干预降低经烧伤创面股静脉置管导管相关性感染发生率的临床观察[J]. 中华损伤与修复杂志(电子版), 2023, 18(05): 399-404.
[10] 茹天峰, 戴浩楠, 袁林, 吴坤平, 谢卫国. 对肌肉超声在严重烧伤患者肌肉性能评估中应用的效果观察[J]. 中华损伤与修复杂志(电子版), 2023, 18(03): 197-203.
[11] 龚茂迪, 李涛, 陈伟, 徐述雄. 一例长期口服糖皮质激素患者在经皮肾镜碎石取石术后反复发热的管理经验[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(03): 284-287.
[12] 方可, 笪欢欢, 汪君, 孙瑞祥, 王涛, 李阳, 江海娇, 鲁卫华. ECMO联合肾上腺切除救治妊娠期嗜铬细胞瘤并儿茶酚胺心肌病一例并文献回顾[J]. 中华重症医学电子杂志, 2023, 09(03): 304-310.
[13] 周洋, 曹学, 赵飞, 郑波, 查惠娟, 蒋娜, 罗俊, 熊伟. 血清miR-22、HSPB1水平与急性Stanford A型主动脉夹层患者预后的关系[J]. 中华临床医师杂志(电子版), 2023, 17(03): 243-248.
[14] 王燕, 郭蕊, 王淑杰. 老年烧伤气管切开患者死亡风险诊断模型构建及对策分析[J]. 中华诊断学电子杂志, 2023, 11(04): 249-253.
[15] 高雷, 李全, 巴雅力嘎, 陈强, 侯智慧, 曹胜军, 巴特. 重度烧伤患者血小板外泌体对凝血功能调节作用的初步研究[J]. 中华卫生应急电子杂志, 2023, 09(03): 149-154.
阅读次数
全文


摘要