切换至 "中华医学电子期刊资源库"

中华损伤与修复杂志(电子版) ›› 2022, Vol. 17 ›› Issue (06) : 524 -530. doi: 10.3877/cma.j.issn.1673-9450.2022.06.011

综述

鲍曼不动杆菌在烧伤患者中的流行性及其耐药机制的研究进展
廖武强1, 刘金晶2, 胡时强3, 张红艳3, 毛远桂3, 涂家金4,()   
  1. 1. 330006 南昌大学江西医学院第一临床医学院;330006 南昌大学第一附属医院烧伤科
    2. 330006 南昌大学江西医学院第一临床医学院;341000 赣州市人民医院创伤急救中心
    3. 330006 南昌大学第一附属医院烧伤科
    4. 341000 赣州市人民医院创伤急救中心
  • 收稿日期:2022-09-16 出版日期:2022-12-01
  • 通信作者: 涂家金

Research progress on the prevalence of Acinetobacter baumannii in burn patients and its drug resistance mechanism

Wuqiang Liao1, Jinjing Liu2, Shiqiang Hu3, Hongyan Zhang3, Yuangui Mao3, Jiajin Tu4,()   

  1. 1. First Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; Department of Burn, First Affiliated Hospital of Nanchang University, Nanchang 330006, China
    2. First Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; Trauma Emergency Center, Ganzhou People′s Hospital, Ganzhou 341000, China
    3. Department of Burn, First Affiliated Hospital of Nanchang University, Nanchang 330006, China
    4. Trauma Emergency Center, Ganzhou People′s Hospital, Ganzhou 341000, China
  • Received:2022-09-16 Published:2022-12-01
  • Corresponding author: Jiajin Tu
引用本文:

廖武强, 刘金晶, 胡时强, 张红艳, 毛远桂, 涂家金. 鲍曼不动杆菌在烧伤患者中的流行性及其耐药机制的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2022, 17(06): 524-530.

Wuqiang Liao, Jinjing Liu, Shiqiang Hu, Hongyan Zhang, Yuangui Mao, Jiajin Tu. Research progress on the prevalence of Acinetobacter baumannii in burn patients and its drug resistance mechanism[J/OL]. Chinese Journal of Injury Repair and Wound Healing(Electronic Edition), 2022, 17(06): 524-530.

近年来随着抗生素在临床上的大量应用,烧伤感染患者中鲍曼不动杆菌(Ab)感染率呈逐渐上升的趋势,且多重耐药情况日趋严重,对Ab耐药机制的研究成为当前的热门课题。但因其机制错综复杂,到目前为止尚未达成共识。本文从Ab的毒力因子、在烧伤患者中的流行性、对临床常用药物的耐药情况及最近国内外学者对常见抗生素包括β-内酰胺类、氨基糖苷类、四环素类等的耐药机制研究成果作一综述。

In recent years, with the extensive application of antibiotics in clinic, the infection rate of Acinetobacter baumannii (Ab) in patients with burn infection is gradually increasing, and the situation of multiple drug resistance is becoming more and more serious. The research on the mechanism of drug resistance of Ab has become a hot topic. However, because of its complex mechanism, no consensus has been reached so far. This article reviews the virulence factors of Ab, its prevalence in burn patients, drug resistance to commonly used clinical drugs, and recent domestic and foreign scholars on the resistance mechanisms of common antibiotics including β-lactam, aminoglycosides, tetracyclines, etc.

[1]
黎鳌,杨宗城. 黎鳌烧伤学[M]. 上海:上海科学技术出版社,2001: 67-80.
[2]
张成,彭源,罗小强,等. 3067例住院烧伤患儿流行病学调查及其感染的病原学特征分析[J]. 中华烧伤杂志2021, 37(6): 538-545.
[3]
Tchakal-Mesbahi A, Abdouni MA, Metref M. Prevalence Of Multidrug-Resistant Bacteria Isolated From Burn Wounds In Algeria[J]. Ann Burns Fire Disasters, 2021, 34(2): 150-156.
[4]
Harding CM, Hennon SW, Feldman MF. Uncovering the mechanisms of Acinetobacter baumannii virulence[J]. Nat Rev Microbiol, 2018, 16(2): 91-102.
[5]
Kaushik V, Tiwari M, Joshi R, et al. Therapeutic strategies against potential antibiofilm targets of multidrug-resistantAcinetobacter baumannii[J]. J Cell Physiol, 2022, 237(4): 2045-2063.
[6]
王丽英,王凌峰. 鲍曼不动杆菌生物膜耐药机制及防治进展[J/CD]. 中华临床医师杂志(电子版), 2014, 8(5): 970-974.
[7]
刘薇,程翔,梁玉龙,等. 不同烧伤面积患者创面感染病原菌分布及其耐药性[J]. 中国感染控制杂志2022, 21(1): 30-36.
[8]
徐优耀,张桂华,刘莹. 烧伤住院患者感染病原菌的分布及耐药性分析[J]. 中国冶金工业医学杂志2022, 39(2): 217-218.
[9]
宋均辉,夏正国,黄庆,等. 烧伤病房内小儿烧伤创面感染病原菌调查及抗生素敏感性分析[J/CD]. 中华损伤与修复杂志(电子版), 2019, 14(1): 46-51.
[10]
丁华荣,胡加平,李德绘,等. 烧伤整形外科1963株细菌及其耐药情况分析[J]. 广西医科大学学报2019, 36(1): 102-106.
[11]
常璠,纪荣祖,朱宏伟,等. 2014-2018年某院烧伤患者感染细菌分布及耐药性分析[J]. 中外医学研究2019, 17(29): 69-72.
[12]
De Oliveira DMP, Forde BM, Kidd TJ, et al. Antimicrobial Resistance in ESKAPE Pathogens[J]. Clin Microbiol Rev, 2020, 33(3): e00181-119.
[13]
Pulingam T, Parumasivam T, Gazzali AM, et al. Antimicrobial resistance: Prevalence, economic burden, mechanisms of resistance and strategies to overcome[J]. Eur J Pharm Sci, 2022, 170: 106103.
[14]
刘秋萍,徐凌. 鲍曼不动杆菌耐药机制的研究进展[J]. 中国抗生素杂志2018, 43(10): 1179-1187.
[15]
Vrancianu CO, Gheorghe I, Czobor IB, et al. Antibiotic Resistance Profiles, Molecular Mechanisms and Innovative Treatment Strategies of Acinetobacter baumannii[J]. Microorganisms, 2020, 8(6):935.
[16]
Sloczynska A, Wand ME, Tyski S, et al. Analysis of blaCHDL Genes and Insertion Sequences Related to Carbapenem Resistance in Acinetobacter baumannii Clinical Strains Isolated in Warsaw, Poland[J]. Int J Mol Sci, 2021, 22(5): 2486.
[17]
Hawkey J, Ascher DB, Judd LM, et al. Evolution of carbapenem resistance in Acinetobacter baumannii during a prolonged infection[J]. Microb Genom, 2018, 4(3): e000165.
[18]
Zhong X, Wu X, Schweppe DK, et al. In Vivo Cross-Linking MS Reveals Conservation in OmpA Linkage to Different Classes of β-Lactamase Enzymes[J]. J Am Soc Mass Spectrom, 2020, 31(2): 190-195.
[19]
Zhu LJ, Chen XY, Hou PF. Mutation of CarO participates in drug resistance in imipenem-resistantAcinetobacter baumannii[J]. J Clin Lab Anal, 2019, 33(8): e22976.
[20]
Yaghi J, Fattouh N, Akkawi C, et al. Unusually High Prevalence of Cosecretion of Ambler Class A and B Carbapenemases and Nonenzymatic Mechanisms in Multidrug-Resistant Clinical Isolates ofPseudomonas aeruginosa in Lebanon[J]. Microb Drug Resist, 2020, 26(2): 150-159.
[21]
Leus IV, Weeks JW, Bonifay V, et al. Substrate Specificities and Efflux Efficiencies of RND Efflux Pumps of Acinetobacter baumannii[J]. J Bacteriol, 2018, 200(13): e00049-18.
[22]
Garneau-Tsodikova S, Labby KJ. Mechanisms of resistance to aminoglycoside antibiotics: overview and perspectives[J]. Medchemcomm, 2016, 7(1): 11-27.
[23]
Kishk R, Soliman N, Nemr N, et al. Prevalence of Aminoglycoside Resistance and Aminoglycoside Modifying Enzymes in Acinetobacter baumannii Among Intensive Care Unit Patients, Ismailia, Egypt[J]. Infect Drug Resist, 2021, 14: 143-150.
[24]
Xu C, Bilya SR, Xu W. adeABC efflux gene in Acinetobacter baumannii[J]. New Microbes New Infect, 2019, 30: 100549.
[25]
Lee CR, Lee JH, Park M, et al. Biology of Acinetobacter baumannii: Pathogenesis, Antibiotic Resistance Mechanisms, and Prospective Treatment Options[J]. Front Cell Infect Microbiol, 2017, 7: 55.
[26]
Beabout K, Hammerstrom TG, Perez AM, et al. The ribosomal S10 protein is a general target for decreased tigecycline susceptibility[J]. Antimicrob Agents Chemother, 2015, 59(9): 5561-5566.
[27]
Hua X, He J, Wang J, et al. Novel tigecycline resistance mechanisms in Acinetobacter baumannii mediated by mutations in adeS, rpoB and rrf[J]. Emerg Microbes Infect, 2021, 10(1): 1404-1417.
[28]
Zhang J, Xie J, Li H, et al. Genomic and Phenotypic Evolution of Tigecycline-Resistant Acinetobacter baumannii in Critically Ill Patients[J]. Microbiol Spectr, 2022, 10(1): e159321.
[29]
Lucassen K, Muller C, Wille J, et al. Prevalence of RND efflux pump regulator variants associated with tigecycline resistance in carbapenem-resistant Acinetobacter baumannii from a worldwide survey[J]. J Antimicrob Chemother, 2021, 76(7): 1724-1730.
[30]
Trebosc V, Gartenmann S, Tötzl M, et al. Dissecting Colistin Resistance Mechanisms in Extensively Drug-Resistant Acinetobacter baumannii Clinical Isolates[J]. mBio, 2019, 10(4): e01083-19.
[31]
Sun B, Liu H, Jiang Y, et al. New Mutations Involved in Colistin Resistance in Acinetobacter baumannii[J]. mSphere, 2020, 5(2): e00895-19.
[32]
Hussein NH, Al-Kadmy IMS, Taha BM, et al. Mobilized colistin resistance (mcr) genes from 1 to 10: a comprehensive review[J]. Mol Biol Rep, 2021, 48(3): 2897-2907.
[33]
Thi Khanh Nhu N, Riordan DW, Do Hoang Nhu T, et al. The induction and identification of novel Colistin resistance mutations in Acinetobacter baumannii and their implications[J]. Sci Rep, 2016, 6: 28291.
[34]
Lin MF, Lin YY, Lan CY. Contribution of EmrAB efflux pumps to colistin resistance in Acinetobacter baumannii[J]. J Microbiol, 2017, 55(2): 130-136.
[35]
D′Souza R, Pinto NA, Phuong NL, et al. Phenotypic and Genotypic Characterization of Acinetobacter spp. Panel Strains: A Cornerstone to Facilitate Antimicrobial Development[J]. Front Microbiol, 2019, 10: 559.
[36]
Nogbou ND, Nkawane GM, Ntshane K, et al. Efflux Pump Activity and Mutations Driving Multidrug Resistance in Acinetobacter baumannii at a Tertiary Hospital in Pretoria, South Africa[J]. Int J Microbiol, 2021, 2021: 9923816.
[37]
Zaki MES, Abou EN, Mofreh M. Molecular Study of Quinolone Resistance Determining Regions of gyrA Gene and parC Genes in Clinical Isolates of Acintobacter baumannii Resistant to Fluoroquinolone[J]. Open Microbiol J, 2018, 12: 116-122.
[38]
Mohammed MA, Salim MTA, Anwer BE, et al. Impact of target site mutations and plasmid associated resistance genes acquisition on resistance of Acinetobacter baumannii to fluoroquinolones[J]. Sci Rep, 2021, 11(1): 20136.
[39]
Roy S, Chatterjee S, Bhattacharjee A, et al. Overexpression of Efflux Pumps, Mutations in the Pumps' Regulators, Chromosomal Mutations, and AAC(6′)-Ib-cr Are Associated With Fluoroquinolone Resistance in Diverse Sequence Types of Neonatal Septicaemic Acinetobacter baumannii: A 7-Year Single Center Study[J]. Front Microbiol, 2021, 12: 602724.
[40]
Okada U, Yamashita E, Neuberger A, et al. Crystal structure of tripartite-type ABC transporter MacB from Acinetobacter baumannii[J]. Nat Commun, 2017, 8(1): 1336.
[41]
Martinez-Trejo A, Ruiz-Ruiz JM, Gonzalez-Avila LU, et al. Evasion of Antimicrobial Activity in Acinetobacter baumannii by Target Site Modifications: An Effective Resistance Mechanism[J]. Int J Mol Sci, 2022, 23(12): 6582.
[42]
Girija ASS, Vijayashree Priyadharsini J, Paramasivam A. Plasmid-encoded resistance to trimethoprim/sulfamethoxazole mediated by dfrA1, dfrA5, sul1 and sul2 among Acinetobacter baumannii isolated from urine samples of patients with severe urinary tract infection[J]. J Glob Antimicrob Resist, 2019, 17: 145-146.
[1] 农云洁, 黄小桂, 黄裕兰, 农恒荣. 超声在多重肺部感染诊断中的临床应用价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(09): 872-876.
[2] 徐志刚, 曹涛, 何亭, 李博奥, 魏婧韬, 张栋梁, 官浩, 杨薛康. 采用抗生素骨水泥治疗糖尿病患者心脏术后胸骨骨髓炎的临床效果观察[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 498-502.
[3] 梁孟杰, 朱欢欢, 王行舟, 江航, 艾世超, 孙锋, 宋鹏, 王萌, 刘颂, 夏雪峰, 杜峻峰, 傅双, 陆晓峰, 沈晓菲, 管文贤. 联合免疫治疗的胃癌转化治疗患者预后及术后并发症分析[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 619-623.
[4] 许月芳, 刘旺, 曾妙甜, 郭宇姝. 多粘菌素B和多粘菌素E治疗外科多重耐药菌感染临床疗效及安全性分析[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 700-703.
[5] 皮尔地瓦斯·麦麦提玉素甫, 李慧灵, 艾克拜尔·艾力, 李赞林, 王志, 克力木·阿不都热依木. 生物补片修补巨大复发性腹壁切口疝临床疗效分析[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(06): 624-628.
[6] 顾熙, 徐子宇, 周澍, 张吴楼, 张业鹏, 林昊, 刘宗航, 嵇振岭, 郑立锋. 腹股沟疝腹膜前间隙无张力修补术后补片感染10 例报道[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(06): 665-669.
[7] 臧宇, 姚胜, 朱新勇, 戎世捧, 田智超. 低温等离子射频消融治疗腹壁疝术后补片感染的临床效果[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(06): 687-692.
[8] 杨闯, 马雪. 腹壁疝术后感染的危险因素分析[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(06): 693-696.
[9] 邢嘉翌, 龚佳晟, 祝佳佳, 陆群. 肺癌化疗患者继发肺部感染的病原菌耐药性及炎症因子变化分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 714-718.
[10] 王石林, 叶继章, 丘向艳, 陈桂青, 邹晓敏. 慢性阻塞性肺疾病真菌感染风险早期预测分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 773-776.
[11] 董大红, 周明虎, 李芝朋, 许正峰. 碳青霉烯类抗生素联合呼吸机治疗肺部感染的临床疗效分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 793-796.
[12] 中华医学会器官移植学分会. 肝移植术后缺血性胆道病变诊断与治疗中国实践指南[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 739-748.
[13] 王涛, 刘静, 高玉伟, 王兴华, 胡秀红, 崔红蕊, 徐保振, 杨洪娟. 抗生素耐药背景下中医药防治腹膜透析相关性腹膜炎研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(06): 340-344.
[14] 贾玲玲, 滕飞, 常键, 黄福, 刘剑萍. 心肺康复在各种疾病中应用的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(09): 859-862.
[15] 颜世锐, 熊辉. 感染性心内膜炎合并急性肾损伤患者的危险因素探索及死亡风险预测[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 618-624.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?