切换至 "中华医学电子期刊资源库"

中华损伤与修复杂志(电子版) ›› 2022, Vol. 17 ›› Issue (06) : 531 -534. doi: 10.3877/cma.j.issn.1673-9450.2022.06.012

综述

表皮和表皮干细胞衰老的研究进展
孙佳辰1, 宋垚垚1, 申传安1,(), 赵虹晴1, 孙天骏1   
  1. 1. 100048 北京,解放军总医院第四医学中心烧伤整形医学部
  • 收稿日期:2022-08-27 出版日期:2022-12-01
  • 通信作者: 申传安
  • 基金资助:
    军队后勤科研项目保健专项(22BJZ35,21BJZ29); 军队后勤科研重大项目(ALB18J001); 国家自然科学基金面上项目(82072169); 北京市海淀区卫生健康发展科研培育计划(HP2021-04-80502)

Research progress on the senescence of epidermis and epidermal stem cells

Jiachen Sun1, Yaoyao Song1, Chuanan Shen1,(), Hongqing Zhao1, Tianjun Sun1   

  1. 1. Senior Department of Burns and Plastic Surgery, Fourth Medical Center of Chinese People′s Liberation Army General Hospital, Beijing 100048, China
  • Received:2022-08-27 Published:2022-12-01
  • Corresponding author: Chuanan Shen
引用本文:

孙佳辰, 宋垚垚, 申传安, 赵虹晴, 孙天骏. 表皮和表皮干细胞衰老的研究进展[J]. 中华损伤与修复杂志(电子版), 2022, 17(06): 531-534.

Jiachen Sun, Yaoyao Song, Chuanan Shen, Hongqing Zhao, Tianjun Sun. Research progress on the senescence of epidermis and epidermal stem cells[J]. Chinese Journal of Injury Repair and Wound Healing(Electronic Edition), 2022, 17(06): 531-534.

表皮位于机体的最外层,是保护机体免受外界有害物质损伤的首道屏障。表皮干细胞位于表皮基底层,是表皮结构维持的种子细胞,其分裂增殖、分化能力和凋亡水平同表皮稳态维持和损伤修复密切相关。本文介绍了表皮的结构、功能、细胞组成和损伤修复能力随衰老发生的变化,并总结了表皮干细胞分裂增殖、分化和凋亡随衰老发生的变化。分析表明,表皮内细胞成分和细胞功能状态的变化同表皮衰老密切相关,有望成为抑制皮肤衰老的靶点。

Located in the outermost layer of the body, epidermis is the first barrier to protect the body from external harmful substances. Mainly distributed in the basal layer of the epidermis, epidermal stem cells are seed cells whose proliferation, differentiation and apoptosis are closely related to the maintenance of epidermal homeostasis and damage repair. The senescence-related changes of epidermal structure, function, cell composition and damage repair ability have been introduced by reviewing the researches. Also the senescence-related changes of division, proliferation, differentiation and apoptosis of epidermal stem cells have been summarized. The analysis shows that the changes of cell composition and cell functional status in the epidermis are closely related to the senescence of epidermis, and these are expected to become a treatment target for reversing skin aging.

[1]
Keyes BE, Liu S, Asare A, et al. Impaired Epidermal to Dendritic T Cell Signaling Slows Wound Repair in Aged Skin[J]. Cell, 2016, 167(5): 1323-1338.e14.
[2]
郭光华,朱峰,闵定宏,等. 糖尿病足合并难愈性创面外科治疗全国专家共识(2020版)[J/CD]. 中华损伤与修复杂志(电子版), 2020, 15(4): 256-263.
[3]
李宗瑜. 老年慢性创面的特点及救治的现状分析[J/CD]. 中华损伤与修复杂志(电子版), 2018, 13(1): 13-16.
[4]
Tsugita T, Nishijima T, Kitahara T, et al. Positional differences and aging changes in Japanese woman epidermal thickness and corneous thickness determined by OCT (optical coherence tomography)[J]. Skin Res Technol, 2013, 19(3): 242-250.
[5]
Bhattacharyya TK, Thomas JR. Histomorphologic changes in aging skin: observations in the CBA mouse model[J]. Arch Facial Plast Surg, 2004, 6(1): 21-25.
[6]
Lavker RM, Zheng PS, Dong G. Aged skin: a study by light, transmission electron, and scanning electron microscopy[J]. J Invest Dermatol, 1987, 88(3 Suppl): 44s-51s.
[7]
Langton AK, Halai P, Griffiths CE, et al. The impact of intrinsic ageing on the protein composition of the dermal-epidermal junction[J]. Mech Ageing Dev, 2016, 156: 14-16.
[8]
Kaliappan S, Simone DA, Banik RK. Nonlinear Inverted-U Shaped Relationship Between Aging and Epidermal Innervation in the Rat Plantar Hind Paw: A Laser Scanning Confocal Microscopy Study[J]. J Pain, 2018, 19(9): 1015-1023.
[9]
Besné I, Descombes C, Breton L. Effect of age and anatomical site on density of sensory innervation in human epidermis[J]. Arch Dermatol, 2002, 138(11): 1445-1450.
[10]
Lopez-Torres M, Shindo Y, Packer L. Effect of age on antioxidants and molecular markers of oxidative damage in murine epidermis and dermis[J]. J Invest Dermatol, 1994, 102(4): 476-480.
[11]
Haustead DJ, Stevenson A, Saxena V, et al. Transcriptome analysis of human ageing in male skin shows mid-life period of variability and central role of NF-κB[J]. Sci Rep, 2016, 6: 26846.
[12]
Matsumura H, Mohri Y, Binh NT, et al. Hair follicle aging is driven by transepidermal elimination of stem cells via COL17A1 proteolysis[J]. Science, 2016, 351(6273): aad4395.
[13]
Vandiver AR, Irizarry RA, Hansen KD, et al. Age and sun exposure-related widespread genomic blocks of hypomethylation in nonmalignant skin[J]. Genome Biol, 2015, 16(1): 80.
[14]
Fuchs E, Chen T. A matter of life and death: self-renewal in stem cells[J]. EMBO Rep, 2013, 14(1): 39-48.
[15]
Kulukian A, Fuchs E. Spindle orientation and epidermal morphogenesis[J]. Philos Trans R Soc Lond B Biol Sci, 2013, 368(1629): 20130016.
[16]
Manzano-López J, Matellán L, álvarez-Llamas A, et al. Asymmetric inheritance of spindle microtubule-organizing centres preserves replicative lifespan[J]. Nat Cell Biol, 2019, 21(8): 952-965.
[17]
Kligman AM. Perspectives and problems in cutaneous gerontology[J]. J Invest Dermatol, 1979, 73(1): 39-46.
[18]
Kwon OS, Yoo HG, Han JH, et al. Photoaging-associated changes in epidermal proliferative cell fractions in vivo[J]. Arch Dermatol Res, 2008, 300(1): 47-52.
[19]
Dainichi T, Hayden MS, Park SG, et al. PDK1 Is a Regulator of Epidermal Differentiation that Activates and Organizes Asymmetric Cell Division[J]. Cell Rep, 2016, 15(8): 1615-1623.
[20]
Sola-Carvajal A, Revêchon G, Helgadottir HT, et al. Accumulation of Progerin Affects the Symmetry of Cell Division and Is Associated with Impaired Wnt Signaling and the Mislocalization of Nuclear Envelope Proteins[J]. J Invest Dermatol, 2019, 139(11): 2272-2280. e12.
[21]
Schneider MR, Werner S, Paus R, et al. Beyond wavy hairs: the epidermal growth factor receptor and its ligands in skin biology and pathology[J]. Am J Pathol, 2008, 173(1): 14-24.
[22]
Singh AB, Harris RC. Autocrine, paracrine and juxtacrine signaling by EGFR ligands[J]. Cell Signal, 2005, 17(10): 1183-1193.
[23]
Amberg N, Sotiropoulou PA, Heller G, et al. EGFR Controls Hair Shaft Differentiation in a p53-Independent Manner[J]. iScience, 2019, 15: 243-256.
[24]
Doma E, Rupp C, Baccarini M. EGFR-ras-raf signaling in epidermal stem cells: roles in hair follicle development, regeneration, tissue remodeling and epidermal cancers[J]. Int J Mol Sci, 2013, 14(10): 19361-19384.
[25]
Nanba D, Toki F, Asakawa K, et al. EGFR-mediated epidermal stem cell motility drives skin regeneration through COL17A1 proteolysis[J]. J Cell Biol, 2021, 220(11): e202012073.
[26]
Pansani TN, Basso FG, Turrioni AP, et al. Effects of low-level laser therapy and epidermal growth factor on the activities of gingival fibroblasts obtained from young or elderly individuals[J]. Lasers Med Sci, 2017, 32(1): 45-52.
[27]
Shiraha H, Gupta K, Drabik K, et al. Aging fibroblasts present reduced epidermal growth factor (EGF) responsiveness due to preferential loss of EGF receptors[J]. J Biol Chem, 2000, 275(25): 19343-19351.
[28]
Ashcroft GS, Horan MA, Ferguson MW. The effects of ageing on wound healing: immunolocalisation of growth factors and their receptors in a murine incisional model[J]. J Anat, 1997, 190 (Pt 3): 351-365.
[29]
Lichtenberger BM, Gerber PA, Holcmann M, et al. Epidermal EGFR controls cutaneous host defense and prevents inflammation[J]. Sci Transl Med, 2013, 5(199): 199ra111.
[30]
Tiwari RL, Mishra P, Martin N, et al. A Wnt5a-Cdc42 axis controls aging and rejuvenation of hair-follicle stem cells[J]. Aging (Albany NY), 2021, 13(4): 4778-4793.
[31]
Kim H, Choi N, Kim DY, et al. TGF-beta2 and collagen play pivotal roles in the spheroid formation and anti-aging of human dermal papilla cells[J]. Aging (Albany NY), 2021, 13(16): 19978-19995.
[32]
Sun J, Liu X, Shen C, et al. Adiponectin receptor agonist AdipoRon blocks skin inflamm-ageing by regulating mitochondrial dynamics[J]. Cell Prolif, 2021, 54(12): e13155.
[33]
Jackson NM, Ceresa BP. EGFR-mediated apoptosis via STAT3[J]. Exp Cell Res, 2017, 356(1): 93-103.
[34]
Reiff T, Antonello ZA, Ballesta-Illan E, et al. Notch and EGFR regulate apoptosis in progenitor cells to ensure gut homeostasis in Drosophila[J]. EMBO J, 2019, 38(21): e101346.
[35]
Sano S, Chan KS, DiGiovanni J. Impact of Stat3 activation upon skin biology: a dichotomy of its role between homeostasis and diseases[J]. J Dermatol Sci, 2008, 50(1): 1-14.
[36]
Kammeyer A, Luiten RM. Oxidation events and skin aging[J]. Ageing Res Rev, 2015, 21: 16-29.
[37]
Lephart ED. Skin aging and oxidative stress: Equol′s anti-aging effects via biochemical and molecular mechanisms[J]. Ageing Res Rev, 2016, 31: 36-54.
[38]
朱美抒,程飚,庞梦如,等. n-3多不饱和脂肪酸在预防皮肤光老化中的作用[J/CD]. 中华损伤与修复杂志(电子版), 2019, 14(4): 263-269.
[39]
Einspahr JG, Curiel-Lewandrowski C, Calvert VS, et al. Protein activation mapping of human sun-protected epidermis after an acute dose of erythemic solar simulated light[J]. NPJ Precis Oncol, 2017, 1: 34.
[40]
El-Abaseri TB, Putta S, Hansen LA. Ultraviolet irradiation induces keratinocyte proliferation and epidermal hyperplasia through the activation of the epidermal growth factor receptor[J]. Carcinogenesis, 2006, 27(2): 225-231.
[41]
Mahmoudi S, Mancini E, Xu L, et al. Heterogeneity in old fibroblasts is linked to variability in reprogramming and wound healing[J]. Nature, 2019, 574(7779): 553-558.
[42]
Victorelli S, Lagnado A, Halim J, et al. Senescent human melanocytes drive skin ageing via paracrine telomere dysfunction[J]. EMBO J, 2019, 38(23): e101982.
[43]
Eming SA, Krieg T, Davidson JM. Inflammation in wound repair: molecular and cellular mechanisms[J]. J Invest Dermatol, 2007, 127(3): 514-525.
[44]
Mirza R, DiPietro LA, Koh TJ. Selective and specific macrophage ablation is detrimental to wound healing in mice[J]. Am J Pathol, 2009, 175(6): 2454-2462.
[45]
Lucas T, Waisman A, Ranjan R, et al. Differential roles of macrophages in diverse phases of skin repair[J]. J Immunol, 2010, 184(7): 3964-3977.
[46]
Shipman WD, Chyou S, Ramanathan A, et al. A protective Langerhans cell-keratinocyte axis that is dysfunctional in photosensitivity[J]. Sci Transl Med, 2018, 10(454): eaap9527.
[47]
Minutti CM, Modak RV, Macdonald F, et al. A Macrophage-Pericyte Axis Directs Tissue Restoration via Amphiregulin-Induced Transforming Growth Factor Beta Activation[J]. Immunity, 2019, 50(3): 645-654. e6.
[48]
Rodrigues M, Kosaric N, Bonham CA, et al. Wound Healing: A Cellular Perspective[J]. Physiol Rev, 2019, 99(1): 665-706.
[49]
Jones RE, Foster DS, Longaker MT. Management of Chronic Wounds-2018[J]. JAMA, 2018, 320(14): 1481-1482.
[50]
杨义,郝岱峰,褚万立,等. 2017年度北京市某三甲医院创面修复专科住院病例回顾分析[J/CD]. 中华损伤与修复杂志(电子版), 2019, 14(5): 344-349.
[51]
Eming SA, Wynn TA, Martin P. Inflammation and metabolism in tissue repair and regeneration[J]. Science, 2017, 356(6342): 1026-1030.
[52]
Farinas AF, Bamba R, Pollins AC, et al. Burn wounds in the young versus the aged patient display differential immunological responses[J]. Burns, 2018, 44(6): 1475-1481.
[1] 李康, 冀亮, 赵维, 林乐岷. 自噬在乳腺癌生物学进展中的双重作用[J]. 中华乳腺病杂志(电子版), 2023, 17(04): 195-202.
[2] 孔莹莹, 谢璐涛, 卢晓驰, 徐杰丰, 周光居, 张茂. 丁酸钠对猪心脏骤停复苏后心脑损伤的保护作用及机制研究[J]. 中华危重症医学杂志(电子版), 2023, 16(05): 355-362.
[3] 张晓燕, 肖东琼, 高沪, 陈琳, 唐发娟, 李熙鸿. 转录因子12过表达对脓毒症相关性脑病大鼠大脑皮质的保护作用及其机制[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 540-549.
[4] 王成, 张慧君, 覃凤均, 陈辉. 网状植皮与ReCell表皮细胞种植在深Ⅱ度烧伤治疗中的疗效对比[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 498-502.
[5] 韩李念, 王君. 放射性皮肤损伤治疗的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 533-537.
[6] 曹长青, 郭新艳, 高源, 张存, 唐海利, 樊东, 杨小军, 张松, 赵华栋. 肿瘤微环境参与介导HER2阳性乳腺癌曲妥珠单抗耐药的研究进展[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 90-95.
[7] 冯冰, 邹秋果, 梁振波, 卢艳明, 曾奕, 吴淑苗. 老年非特殊型浸润性乳腺癌超声征象与分子生物学指标的临床研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 48-51.
[8] 江振剑, 蒋明, 黄大莉. TK1、Ki67蛋白在分化型甲状腺癌组织中的表达及预后价值研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 623-626.
[9] 李晔, 何洁, 胡锦秀, 王金祥, 田川, 潘杭, 陈梦蝶, 赵晓娟, 叶丽, 张敏, 潘兴华. 高活性间充质干细胞干预猕猴卵巢衰老的研究[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 210-219.
[10] 吴寅, 陈智琴, 高勇, 权明. Her-2阳性结直肠癌的诊治进展[J]. 中华结直肠疾病电子杂志, 2023, 12(05): 420-425.
[11] 于迪, 于海波, 吴焕成, 李玉明, 苏彬, 陈馨. 发状分裂相关增强子1差异表达对胆固醇刺激下血管内皮细胞的影响[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 264-270.
[12] 岳瑞雪, 孔令欣, 郝鑫, 杨进强, 韩猛, 崔国忠, 王建军, 张志生, 孔凡庭, 张维, 何文博, 李现桥, 周新平, 徐东宏, 胡崇珠. 乳腺癌HER2蛋白表达水平预测新辅助治疗疗效的真实世界研究[J]. 中华临床医师杂志(电子版), 2023, 17(07): 765-770.
[13] 邓世栋, 刘凌志, 郭大勇, 王超, 黄忠欣, 张晖辉. 沉默SNHG1基因对膀胱癌细胞增殖、凋亡、迁移和铁死亡的影响[J]. 中华临床医师杂志(电子版), 2023, 17(07): 804-811.
[14] 张敏洁, 张小杉, 段莎莎, 施依璐, 赵捷, 白天昊, 王雅晳. 氢气治疗心肌缺血再灌注损伤的作用机制及展望[J]. 中华临床医师杂志(电子版), 2023, 17(06): 744-748.
[15] 邱甜, 杨苗娟, 胡波, 郭毅, 何奕涛. 亚低温治疗脑梗死机制的研究进展[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 518-521.
阅读次数
全文


摘要