[1] |
Liao J, Shi K, Ding Q, et al. Recent developments in scaffold-guided cartilage tissue regeneration[J]. J Biomed Nanotechnol, 2014, 10(10): 3085-3104.
|
[2] |
Sontjens SH, Nettles DL, Carnahan MA, et al. Biodendrimer-based hydrogel scaffolds for cartilage tissue repair[J]. Biomacromolecules, 2006, 7(1): 310-316.
|
[3] |
Makris EA, Gomoll AH, Malizos KN, et al. Repair and tissue engineering techniques for articular cartilage[J]. Nat Rev Rheumatol, 2015, 11(1): 21-34.
|
[4] |
Saini G, Segaran N, Mayer JL, et al. Applications of 3D Bioprinting in Tissue Engineering and Regenerative Medicine[J]. J Clin Med, 2021, 10(21): 4966.
|
[5] |
Kock L, Van Donkelaar CC, Ito K. Tissue engineering of functional articular cartilage: the current status[J]. Cell Tissue Res, 2012, 347(3): 613-627.
|
[6] |
Ravi Kumar MNV. A review of chitin and chitosan applications[J]. React Funct Polym, 2000, 46(1): 1-27.
|
[7] |
Chen XG, Liu CS, Liu CG, et al. Preparation and biocompatibility of chitosan microcarriers as biomaterial[J]. J Biosci Bioeng, 2006, 27(3): 269-274.
|
[8] |
Zhao M, Chen Z, Liu K, et al. Repair of articular cartilage defects in rabbits through tissue-engineered cartilage constructed with chitosan hydrogel and chondrocytes[J]. J Zhejiang Univ Sci B, 2015, 16(11): 914-923.
|
[9] |
Pella MCG, Lima-Tenorio MK, Tenorio-Neto ET, et al. Chitosan-based hydrogels: From preparation to biomedical applications[J]. Carbohydr Polym, 2018, 196: 233-245.
|
[10] |
Carvalho MS, Cabral JMS, da Silva CL, et al. Bone Matrix Non-Collagenous Proteins in Tissue Engineering: Creating New Bone by Mimicking the Extracellular Matrix[J]. Polymers (Basel), 2021, 13(7): 1095.
|
[11] |
于洪宇,马春雨. 壳聚糖-胶原凝胶复合骨髓间充质干细胞修复兔关节软骨缺损的组织学变化[J]. 中国组织工程研究与临床康复,2010, 14(25): 4581-4584.
|
[12] |
Chatelet C, Damour O, Domard A. Influence of the degree of acetylation on some biological properties of chitosan films[J]. Biomaterials, 2001, 22(3): 261-268.
|
[13] |
Malafaya PB, Santos TC, Van Griensven M, et al. Morphology, mechanical characterization and in vivo neo-vascularization of chitosan particle aggregated scaffolds architectures[J]. Biomaterials, 2008, 29(29): 3914-3926.
|
[14] |
Zivanovic S, Li J, Davidson PM, et al. Physical, Mechanical, and Antibacterial Properties of Chitosan/PEO Blend Films[J]. Biomacromolecules, 2007, 8(5): 1505-1510.
|
[15] |
Oprenyeszk F, Sanchez C, Dubuc JE, et al. Chitosan enriched three-dimensional matrix reduces inflammatory and catabolic mediators production by human chondrocytes[J]. PLoS One, 2015, 10(5): e0128362.
|
[16] |
Manchineella S, Thrivikraman G, Khanum KK, et al. Pigmented Silk Nanofibrous Composite for Skeletal Muscle Tissue Engineering[J]. Adv Healthc Mater, 2016, 5(10): 1222-1232.
|
[17] |
Sergi R, Bellucci D, Cannillo V. A Review of Bioactive Glass/Natural Polymer Composites: State of the Art[J]. Materials (Basel), 2020, 13(23): 5560.
|
[18] |
Zhang Q, Bosch-Rué è, Pérez RA, et al. Biofabrication of tissue engineering vascular systems[J]. APL Bioeng, 2021, 5(2): 021507.
|
[19] |
Cipriani F, Ariño Palao B, Gonzalez De Torre I, et al. An elastin-like recombinamer-based bioactive hydrogel embedded with mesenchymal stromal cells as an injectable scaffold for osteochondral repair[J]. Regen Biomater, 2019, 6(6): 335-347.
|
[20] |
Yadav LR, Chandran SV, Lavanya K, et al. Chitosan-based 3D-printed scaffolds for bone tissue engineering[J]. Int J Biol Macromol, 2021, 183: 1925-1938.
|
[21] |
Younes I, Rinaudo M. Chitin and Chitosan Preparation from Marine Sources. Structure, Properties and Applications[J]. Mar Drugs, 2015, 13(3): 1133-1174.
|
[22] |
Li J, Du Y, Liang H. Influence of molecular parameters on the degradation of chitosan by a commercial enzyme[J]. Polym Degrad Stab, 2007, 92(3): 515-524.
|
[23] |
王红昌,孙晓飞. 不同分子量高脱乙酰度壳聚糖的制备及表征[J]. 中国海洋药物,2007, 26(1): 16-19.
|
[24] |
Raftery R, O′brien F, Cryan SA. Chitosan for Gene Delivery and Orthopedic Tissue Engineering Applications[J]. Molecules, 2013, 18(5): 5611-5647.
|
[25] |
Li H, Jiang Z, Han B, et al. Pharmacokinetics and biodegradation of chitosan in rats[J]. J Ocean U China, 2015, 14(5): 897-904.
|
[26] |
Georgopoulou A, Papadogiannis F, Batsali A, et al. Chitosan/gelatin scaffolds support bone regeneration[J]. J Mater Sci Mater Med, 2018, 29(5): 59.
|
[27] |
Islam MM, Shahruzzaman M, Biswas S, et al. Chitosan based bioactive materials in tissue engineering applications-A review[J]. Bioact Mater, 2020, 5(1): 164-183.
|
[28] |
Tangsadthakun C, Kanokpanont S, Sanchavanakit N, et al. The influence of molecular weight of chitosan on the physical and biological properties of collagen/chitosan scaffolds[J]. J Biomater Sci Polym Ed, 2012, 18(2): 147-163.
|
[29] |
Xia W, Liu W, Cui L, et al. Tissue engineering of cartilage with the use of chitosan-gelatin complex scaffolds[J]. J Biomed Mater Res B Appl Biomater, 2004, 71B(2): 373-380.
|
[30] |
Chen P, Xie F, Tang F, et al. Unexpected Plasticization Effects on the Structure and Properties of Polyelectrolyte Complexed Chitosan/Alginate Materials[J]. ACS Appl Polym Mater, 2020, 2(7): 2957-2966.
|
[31] |
Sun R, Zhu J, Wu H, et al. Modulating layer-by-layer assembled sodium alginate-chitosan film properties through incorporation of cellulose nanocrystals with different surface charge densities[J]. Int J Biol Macromol, 2021, 180: 510-522.
|
[32] |
Li Z, Ramay HR, Hauch KD, et al. Chitosan–alginate hybrid scaffolds for bone tissue engineering[J]. Biomaterials, 2005, 26(18): 3919-3928.
|
[33] |
Shanmugasundaram N, Ravichandran P, Reddy PN, et al. Collagen-chitosan polymeric scaffolds for the in vitro culture of human epidermoid carcinoma cells[J]. Biomaterials, 2001, 22(14): 1943-1951.
|
[34] |
Bhardwaj N, Kundu SC. Silk fibroin protein and chitosan polyelectrolyte complex porous scaffolds for tissue engineering applications[J]. Carbohydr Polym, 2011, 85(2): 325-333.
|
[35] |
Bhardwaj N, Kundu SC. Chondrogenic differentiation of rat MSCs on porous scaffolds of silk fibroin/chitosan blends[J]. Biomaterials, 2012, 33(10): 2848-2857.
|
[36] |
Pircher N, Veigel S, Aigner N, et al. Reinforcement of bacterial cellulose aerogels with biocompatible polymers[J]. Carbohydr Polym, 2014, 111(100): 505-513.
|
[37] |
Woodruff MA, Hutmacher DW. The return of a forgotten polymer—Polycaprolactone in the 21st century[J]. Prog Polym Sci, 2010, 35(10): 1217-1256.
|
[38] |
Rasal RM, Janorkar AV, Hirt DE. Poly(lactic acid) modifications[J]. Prog Polym Sci, 2010, 35(3): 338-356.
|
[39] |
Lammi M, Piltti J, Prittinen J, et al. Challenges in Fabrication of Tissue-Engineered Cartilage with Correct Cellular Colonization and Extracellular Matrix Assembly[J]. Int J Mol Sci, 2018, 19(9): 2700.
|
[40] |
Haaparanta AM, Järvinen E, Cengiz IF, et al. Preparation and characterization of collagen/PLA, chitosan/PLA, and collagen/chitosan/PLA hybrid scaffolds for cartilage tissue engineering[J]. J Mater Sci Mater Med, 2013, 25(4): 1129-1136.
|
[41] |
Lou T, Wang X, Yan X, et al. Fabrication and biocompatibility of poly(l-lactic acid) and chitosan composite scaffolds with hierarchical microstructures[J]. Mater Sci Eng C Mater Biol Appl, 2016, 64: 341-345.
|
[42] |
Zhang K, Zhang Y, Yan S, et al. Repair of an articular cartilage defect using adipose-derived stem cells loaded on a polyelectrolyte complex scaffold based on poly(l-glutamic acid) and chitosan[J]. Acta Biomater, 2013, 9(7): 7276-7288.
|
[43] |
Ching KY, Andriotis O, Sengers B, et al. Genipin crosslinked chitosan/PEO nanofibrous scaffolds exhibiting an improved microenvironment for the regeneration of articular cartilage[J]. J Biomater Appl, 2021, 36(3): 503-516.
|
[44] |
Longley R, Ferreira A, Gentile P. Recent Approaches to the Manufacturing of Biomimetic Multi-Phasic Scaffolds for Osteochondral Regeneration[J]. Int J Mol Sci, 2018, 19(6): 1755.
|
[45] |
Armentano I, Puglia D, Luzi F, et al. Nanocomposites Based on Biodegradable Polymers[J]. Materials (Basel), 2018, 11(5): 795.
|
[46] |
Kandel RA, Grynpas M, Pilliar R, et al. Repair of osteochondral defects with biphasic cartilage-calcium polyphosphate constructs in a sheep model[J]. Biomaterials, 2006, 27(22): 4120-4131.
|
[47] |
Man Z, Hu X, Liu Z, et al. Transplantation of allogenic chondrocytes with chitosan hydrogel-demineralized bone matrix hybrid scaffold to repair rabbit cartilage injury[J]. Biomaterials, 2016, 108: 157-167.
|