切换至 "中华医学电子期刊资源库"

中华损伤与修复杂志(电子版) ›› 2022, Vol. 17 ›› Issue (06) : 535 -539. doi: 10.3877/cma.j.issn.1673-9450.2022.06.013

综述

用于关节软骨缺损修复的壳聚糖复合支架的研究进展
蒯贤东1, 郑国爽2, 杨佳慧2, 赵德伟2,()   
  1. 1. 116001 大连大学附属中山医院骨科;116001 大连大学中山临床学院
    2. 116001 大连大学附属中山医院骨科;116001 大连大学附属中山医院骨科植入材料开发国家地方联合工程实验室
  • 收稿日期:2022-09-23 出版日期:2022-12-01
  • 通信作者: 赵德伟
  • 基金资助:
    大连市登峰计划医学重点专科建设项目经费资助(大卫发(2021)243号)

Research progress of chitosan composite scaffolds for repair of articular cartilage defect

Xiandong Kuai1, Guoshuang Zheng2, Jiahui Yang2, Dewei Zhao2,()   

  1. 1. Department of Orthopaedics, Zhongshan Hospital of Dalian University, Dalian 116001, China; Medical College of Dalian University, Dalian 116001, China
    2. Department of Orthopaedics, Zhongshan Hospital of Dalian University, Dalian 116001, China; National-Local Joint Engineering Laboratory for the Development of Orthopedic Implant Materials, Zhongshan Hospital of Dalian University, Dalian 116001, China
  • Received:2022-09-23 Published:2022-12-01
  • Corresponding author: Dewei Zhao
引用本文:

蒯贤东, 郑国爽, 杨佳慧, 赵德伟. 用于关节软骨缺损修复的壳聚糖复合支架的研究进展[J]. 中华损伤与修复杂志(电子版), 2022, 17(06): 535-539.

Xiandong Kuai, Guoshuang Zheng, Jiahui Yang, Dewei Zhao. Research progress of chitosan composite scaffolds for repair of articular cartilage defect[J]. Chinese Journal of Injury Repair and Wound Healing(Electronic Edition), 2022, 17(06): 535-539.

关节软骨缺损是一种常见的临床疾病,严重情况下可致骨关节炎发生,给患者带来巨大痛苦。目前常见的临床治疗方法均无法形成耐磨损、能抗压的关节软骨,且无法长期维持新生软骨的正常功能。因此,迫切需要寻找一种新型的关节软骨缺损修复的方法。近年来,组织工程技术在关节软骨缺损修复问题上提供了一种新的、有潜力的思路与手段。其中,用于关节软骨缺损修复的新型生物支架材料的设计与开发成为关键。在众多天然材料中,壳聚糖不仅具有良好的生物相容性、生物活性、可降解性,且来源广泛,价格低廉;更重要的是其结构与关节软骨细胞外基质糖胺聚糖相似,因此成为一种有前景的用于关节软骨缺损修复的组织工程支架材料。此外,壳聚糖还可以和其他生物材料进行复合,因此用于关节软骨缺损修复的壳聚糖复合支架的制备倍受研究的关注。本篇综述对用于关节软骨缺损修复的壳聚糖材料的特性以及壳聚糖复合支架材料在关节软骨缺损修复中的应用进行了总结,并对壳聚糖复合支架未来用于关节软骨组织工程的前景进行了展望。

Articular cartilage defects is a common clinical disease, which can cause osteoarthritis in severe cases and bring great pain to patients. At present, the common clinical treatment methods can not form wear resistant, pressure resistant articular cartilage, and can not maintain the normal function of new cartilage for a long time. Therefore, there is an urgent need to find a novel method for the repair of articular cartilage defects. In recent years, tissue engineering technology provides a new and potential idea and means in the repair of articular cartilage defects. Among them, the design and development of new biological scaffold materials for articular cartilage defect repair has become a key. Among many natural materials, chitosan not only has good biocompatibility, biological activity, degradability, but also has a wide range of sources and low price. More importantly, its structure is similar to that of extracellular matrix glycosaminoglycan of articular cartilage, so it has become a promising tissue engineering scaffold material for the repair of articular cartilage defects. In addition, chitosan can be combined with other biomaterials, so the preparation of chitosan composite scaffolds for articular cartilage defect repair has received much attention. In this review, the properties of chitosan materials used in the repair of articular cartilage defects and the application of chitosan composite scaffold materials in the repair of articular cartilage defects are summarized, and the prospects of chitosan composite scaffolds for articular cartilage tissue engineering in the future are prospected.

图1 壳聚糖结构示意图
[1]
Liao J, Shi K, Ding Q, et al. Recent developments in scaffold-guided cartilage tissue regeneration[J]. J Biomed Nanotechnol, 2014, 10(10): 3085-3104.
[2]
Sontjens SH, Nettles DL, Carnahan MA, et al. Biodendrimer-based hydrogel scaffolds for cartilage tissue repair[J]. Biomacromolecules, 2006, 7(1): 310-316.
[3]
Makris EA, Gomoll AH, Malizos KN, et al. Repair and tissue engineering techniques for articular cartilage[J]. Nat Rev Rheumatol, 2015, 11(1): 21-34.
[4]
Saini G, Segaran N, Mayer JL, et al. Applications of 3D Bioprinting in Tissue Engineering and Regenerative Medicine[J]. J Clin Med, 2021, 10(21): 4966.
[5]
Kock L, Van Donkelaar CC, Ito K. Tissue engineering of functional articular cartilage: the current status[J]. Cell Tissue Res, 2012, 347(3): 613-627.
[6]
Ravi Kumar MNV. A review of chitin and chitosan applications[J]. React Funct Polym, 2000, 46(1): 1-27.
[7]
Chen XG, Liu CS, Liu CG, et al. Preparation and biocompatibility of chitosan microcarriers as biomaterial[J]. J Biosci Bioeng, 2006, 27(3): 269-274.
[8]
Zhao M, Chen Z, Liu K, et al. Repair of articular cartilage defects in rabbits through tissue-engineered cartilage constructed with chitosan hydrogel and chondrocytes[J]. J Zhejiang Univ Sci B, 2015, 16(11): 914-923.
[9]
Pella MCG, Lima-Tenorio MK, Tenorio-Neto ET, et al. Chitosan-based hydrogels: From preparation to biomedical applications[J]. Carbohydr Polym, 2018, 196: 233-245.
[10]
Carvalho MS, Cabral JMS, da Silva CL, et al. Bone Matrix Non-Collagenous Proteins in Tissue Engineering: Creating New Bone by Mimicking the Extracellular Matrix[J]. Polymers (Basel), 2021, 13(7): 1095.
[11]
于洪宇,马春雨. 壳聚糖-胶原凝胶复合骨髓间充质干细胞修复兔关节软骨缺损的组织学变化[J]. 中国组织工程研究与临床康复2010, 14(25): 4581-4584.
[12]
Chatelet C, Damour O, Domard A. Influence of the degree of acetylation on some biological properties of chitosan films[J]. Biomaterials, 2001, 22(3): 261-268.
[13]
Malafaya PB, Santos TC, Van Griensven M, et al. Morphology, mechanical characterization and in vivo neo-vascularization of chitosan particle aggregated scaffolds architectures[J]. Biomaterials, 2008, 29(29): 3914-3926.
[14]
Zivanovic S, Li J, Davidson PM, et al. Physical, Mechanical, and Antibacterial Properties of Chitosan/PEO Blend Films[J]. Biomacromolecules, 2007, 8(5): 1505-1510.
[15]
Oprenyeszk F, Sanchez C, Dubuc JE, et al. Chitosan enriched three-dimensional matrix reduces inflammatory and catabolic mediators production by human chondrocytes[J]. PLoS One, 2015, 10(5): e0128362.
[16]
Manchineella S, Thrivikraman G, Khanum KK, et al. Pigmented Silk Nanofibrous Composite for Skeletal Muscle Tissue Engineering[J]. Adv Healthc Mater, 2016, 5(10): 1222-1232.
[17]
Sergi R, Bellucci D, Cannillo V. A Review of Bioactive Glass/Natural Polymer Composites: State of the Art[J]. Materials (Basel), 2020, 13(23): 5560.
[18]
Zhang Q, Bosch-Rué è, Pérez RA, et al. Biofabrication of tissue engineering vascular systems[J]. APL Bioeng, 2021, 5(2): 021507.
[19]
Cipriani F, Ariño Palao B, Gonzalez De Torre I, et al. An elastin-like recombinamer-based bioactive hydrogel embedded with mesenchymal stromal cells as an injectable scaffold for osteochondral repair[J]. Regen Biomater, 2019, 6(6): 335-347.
[20]
Yadav LR, Chandran SV, Lavanya K, et al. Chitosan-based 3D-printed scaffolds for bone tissue engineering[J]. Int J Biol Macromol, 2021, 183: 1925-1938.
[21]
Younes I, Rinaudo M. Chitin and Chitosan Preparation from Marine Sources. Structure, Properties and Applications[J]. Mar Drugs, 2015, 13(3): 1133-1174.
[22]
Li J, Du Y, Liang H. Influence of molecular parameters on the degradation of chitosan by a commercial enzyme[J]. Polym Degrad Stab, 2007, 92(3): 515-524.
[23]
王红昌,孙晓飞. 不同分子量高脱乙酰度壳聚糖的制备及表征[J]. 中国海洋药物2007, 26(1): 16-19.
[24]
Raftery R, O′brien F, Cryan SA. Chitosan for Gene Delivery and Orthopedic Tissue Engineering Applications[J]. Molecules, 2013, 18(5): 5611-5647.
[25]
Li H, Jiang Z, Han B, et al. Pharmacokinetics and biodegradation of chitosan in rats[J]. J Ocean U China, 2015, 14(5): 897-904.
[26]
Georgopoulou A, Papadogiannis F, Batsali A, et al. Chitosan/gelatin scaffolds support bone regeneration[J]. J Mater Sci Mater Med, 2018, 29(5): 59.
[27]
Islam MM, Shahruzzaman M, Biswas S, et al. Chitosan based bioactive materials in tissue engineering applications-A review[J]. Bioact Mater, 2020, 5(1): 164-183.
[28]
Tangsadthakun C, Kanokpanont S, Sanchavanakit N, et al. The influence of molecular weight of chitosan on the physical and biological properties of collagen/chitosan scaffolds[J]. J Biomater Sci Polym Ed, 2012, 18(2): 147-163.
[29]
Xia W, Liu W, Cui L, et al. Tissue engineering of cartilage with the use of chitosan-gelatin complex scaffolds[J]. J Biomed Mater Res B Appl Biomater, 2004, 71B(2): 373-380.
[30]
Chen P, Xie F, Tang F, et al. Unexpected Plasticization Effects on the Structure and Properties of Polyelectrolyte Complexed Chitosan/Alginate Materials[J]. ACS Appl Polym Mater, 2020, 2(7): 2957-2966.
[31]
Sun R, Zhu J, Wu H, et al. Modulating layer-by-layer assembled sodium alginate-chitosan film properties through incorporation of cellulose nanocrystals with different surface charge densities[J]. Int J Biol Macromol, 2021, 180: 510-522.
[32]
Li Z, Ramay HR, Hauch KD, et al. Chitosan–alginate hybrid scaffolds for bone tissue engineering[J]. Biomaterials, 2005, 26(18): 3919-3928.
[33]
Shanmugasundaram N, Ravichandran P, Reddy PN, et al. Collagen-chitosan polymeric scaffolds for the in vitro culture of human epidermoid carcinoma cells[J]. Biomaterials, 2001, 22(14): 1943-1951.
[34]
Bhardwaj N, Kundu SC. Silk fibroin protein and chitosan polyelectrolyte complex porous scaffolds for tissue engineering applications[J]. Carbohydr Polym, 2011, 85(2): 325-333.
[35]
Bhardwaj N, Kundu SC. Chondrogenic differentiation of rat MSCs on porous scaffolds of silk fibroin/chitosan blends[J]. Biomaterials, 2012, 33(10): 2848-2857.
[36]
Pircher N, Veigel S, Aigner N, et al. Reinforcement of bacterial cellulose aerogels with biocompatible polymers[J]. Carbohydr Polym, 2014, 111(100): 505-513.
[37]
Woodruff MA, Hutmacher DW. The return of a forgotten polymer—Polycaprolactone in the 21st century[J]. Prog Polym Sci, 2010, 35(10): 1217-1256.
[38]
Rasal RM, Janorkar AV, Hirt DE. Poly(lactic acid) modifications[J]. Prog Polym Sci, 2010, 35(3): 338-356.
[39]
Lammi M, Piltti J, Prittinen J, et al. Challenges in Fabrication of Tissue-Engineered Cartilage with Correct Cellular Colonization and Extracellular Matrix Assembly[J]. Int J Mol Sci, 2018, 19(9): 2700.
[40]
Haaparanta AM, Järvinen E, Cengiz IF, et al. Preparation and characterization of collagen/PLA, chitosan/PLA, and collagen/chitosan/PLA hybrid scaffolds for cartilage tissue engineering[J]. J Mater Sci Mater Med, 2013, 25(4): 1129-1136.
[41]
Lou T, Wang X, Yan X, et al. Fabrication and biocompatibility of poly(l-lactic acid) and chitosan composite scaffolds with hierarchical microstructures[J]. Mater Sci Eng C Mater Biol Appl, 2016, 64: 341-345.
[42]
Zhang K, Zhang Y, Yan S, et al. Repair of an articular cartilage defect using adipose-derived stem cells loaded on a polyelectrolyte complex scaffold based on poly(l-glutamic acid) and chitosan[J]. Acta Biomater, 2013, 9(7): 7276-7288.
[43]
Ching KY, Andriotis O, Sengers B, et al. Genipin crosslinked chitosan/PEO nanofibrous scaffolds exhibiting an improved microenvironment for the regeneration of articular cartilage[J]. J Biomater Appl, 2021, 36(3): 503-516.
[44]
Longley R, Ferreira A, Gentile P. Recent Approaches to the Manufacturing of Biomimetic Multi-Phasic Scaffolds for Osteochondral Regeneration[J]. Int J Mol Sci, 2018, 19(6): 1755.
[45]
Armentano I, Puglia D, Luzi F, et al. Nanocomposites Based on Biodegradable Polymers[J]. Materials (Basel), 2018, 11(5): 795.
[46]
Kandel RA, Grynpas M, Pilliar R, et al. Repair of osteochondral defects with biphasic cartilage-calcium polyphosphate constructs in a sheep model[J]. Biomaterials, 2006, 27(22): 4120-4131.
[47]
Man Z, Hu X, Liu Z, et al. Transplantation of allogenic chondrocytes with chitosan hydrogel-demineralized bone matrix hybrid scaffold to repair rabbit cartilage injury[J]. Biomaterials, 2016, 108: 157-167.
[1] 陈严城, 符培亮. 组织工程技术在骨软骨缺损中应用的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(03): 376-384.
[2] 钱嘉天, 符培亮. 3D打印脱细胞的细胞外基质修复软骨缺损的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(03): 368-375.
[3] 杨晓龙, 张立智, 刘晓东. 非侵入性加压负载模型在膝骨关节炎研究中的应用[J]. 中华关节外科杂志(电子版), 2023, 17(01): 86-92.
[4] 林潮盛, 熊建义, 朱伟民, 陆伟, 邓桢翰. 射频消融用于关节软骨损伤的治疗研究进展[J]. 中华关节外科杂志(电子版), 2022, 16(05): 592-598.
[5] 马明, 贾更新, 刘小龙, 耿彬, 夏亚一. 间充质干细胞来源细胞外囊泡治疗膝骨关节炎的研究进展[J]. 中华关节外科杂志(电子版), 2022, 16(04): 472-476.
[6] 陈曦, 刘畅, 李萍, 李雨航, 陈彦斌, 王昆. 肩峰下滑囊的解剖结构和功能与临床意义[J]. 中华关节外科杂志(电子版), 2022, 16(03): 337-342.
[7] 王雪, 程微, 苏建东. 微针法表皮移植应用的新进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(03): 270-273.
[8] 刘梦柔, 刘沛东, 张城铭, 刘阳, 李鹏翠, 杨自权. 基于文献计量学与可视化分析的骨组织工程支架材料的全球研究现状及发展趋势[J]. 中华损伤与修复杂志(电子版), 2022, 17(05): 411-420.
[9] 朱晓红, 周诗梦, 朱晓霞, 邹美银. 壳聚糖修饰的聚乳酸-羟基乙酸共聚物纳米颗粒在控制释放抗人类免疫缺陷病毒药物传递中的应用[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(02): 125-132.
[10] 王湘滔, 张爱娟, 王万春, 王芳萍, 徐颖婕, 孟洋. 中药白及在口腔疾病中的研究与应用[J]. 中华口腔医学研究杂志(电子版), 2023, 17(05): 371-375.
[11] 孙艺琪, 史宏灿. 纳米技术在气管移植物中的应用[J]. 中华移植杂志(电子版), 2022, 16(05): 309-313.
[12] 钟文文, 李科, 刘碧好, 蔡炳, 脱颖, 叶雷, 马波, 瞿虎, 汪中扬, 王德娟, 邱剑光. 不同比例聚乳酸/丝素蛋白复合支架在兔尿道缺损修复中的疗效[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(05): 516-522.
[13] 林诗雯, 孙慧, 陈娜娜, 朱聪. 共培养促神经化策略在组织工程骨构建中的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(05): 293-299.
[14] 张郭, 慈海, 周牧冉, 孙家明, 郭亮. 仿生聚己内酯支架用于乳房组织工程的可行性研究[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(04): 215-223.
[15] 杜凯玥, 袁博伟, 洪晶. 水凝胶在角膜修复中的应用研究进展[J]. 中华眼科医学杂志(电子版), 2022, 12(05): 298-304.
阅读次数
全文


摘要