[3] |
Challen B,Cramer R.Advances in ionisation techniques for mass spectrometry-based omics research[J].Proteomics,2022,22(15-16): e2100394.
|
[4] |
马建红,高亚婷,马怡彤,等.蛋白质组学筛选差异表达蛋白在子宫内膜癌中的研究进展[J].中国计划生育和妇产科,2023,15(8): 20-24.
|
[5] |
Tan Q,Xu Y.Theories and strategies of chronic wound treatment[J].Zhonghua Shao Shang Za Zhi,2020,36(9): 798-802.
|
[6] |
GBD 2021 diabetes collaborators.Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: a systematic analysis for the global burden of disease study 2021[J].Lancet,2023,402(10397): 203-234.
|
[7] |
Lazzarini PA, Cramb SM, Golledge J, et al.Global trends in the incidence of hospital admissions for diabetes-related foot disease and amputations: a review of national rates in the 21st century[J].Diabetologia,2023,66(2):267-287.
|
[8] |
Wang Y, Pi Y, Hu L, et al.Proteomic analysis of foot ulcer tissue reveals novel potential therapeutic targets of wound healing in diabetic foot ulcers[J].Comput Biol Med,2023,159:106858.
|
[9] |
Yu XT, Wang F, Ding JT, et al.Tandem mass tag-based serum proteomic profiling revealed diabetic foot ulcer pathogenesis and potential therapeutic targets[J].Bioengineered,2022,13(2):3171-3182.
|
[10] |
Zhao F, Xie L, Weng Z, et al.Combined with dynamic serum proteomics and clinical follow-up to screen the serum proteins to promote the healing of diabetic foot ulcer[J].Endocrine,2024,84(2):365-379.
|
[11] |
Sun H, Lai P, Wu W, et al.MALDI-TOF MS based bacterial antibiotics resistance finger print for diabetic pedopathy[J].Front Chem,2022,9:785848.
|
[12] |
Piga I,Magni F,Smith A.The journey towards clinical adoption of MALDI-MS-based imaging proteomics: from current challenges to future expectations[J].FEBS Lett,2024,598(6): 621-634.
|
[13] |
中华医学会糖尿病学分会糖尿病足与周围血管病学组.中国糖尿病足诊治临床路径(2023 版)[J].中华内分泌代谢杂志,2023,39(2): 93-102.
|
[14] |
Nguyen TT, Ding D, Wolter WR, et al.Validation ofmatrix metalloproteinase-9 (MMP-9) as a novel target for treatment of diabetic foot ulcers in humans and discovery of a potent and selective small-molecule mmp-9 inhibitor that accelerates healing[J].J Med Chem,2018,61(19): 8825-8837.
|
[15] |
Nguyen TT, Jones JI, Wolter WR, et al.Hyperbaric oxygen therapy accelerates wound healing in diabetic mice by decreasing active matrix metalloproteinase-9[J].Wound Repair Regen,2020,28(2): 194-201.
|
[16] |
Liu Y, Zhang X, Yang L, et al.Proteomics and transcriptomics explore the effect of mixture of herbal extract on diabetic wound healing process[J].Phytomedicine,2023,116: 154892.
|
[17] |
Ingleby A.The evolution of leg ulcer guidelines and recommendations[J].Br J Community Nurs,2023,28(Sup12): S22-S30.
|
[18] |
孙忠人,杨蕊,郭玉怀,等.压力性损伤动物模型的研究进展[J].中华中医药杂志, 2020, 35(4): 1920-1923.
|
[19] |
Li Z, Lin F, Thalib L,et al.Global prevalence and incidence of pressure injuries in hospitalised adult patients: a systematic review and meta-analysis[J].Int J Nurs Stud,2020,105:103546.
|
[20] |
Liu Z, Cui X, Hu Y, et al.Quantitative iTRAQ LC-MS/MS reveals muscular proteome profiles of deep pressure ulcers[J].Biosci Rep, 2020,40(6): BSR20200563.
|
[21] |
Shuken SR.An introduction to mass spectrometry-based proteomics[J].J Proteome Res,2023,22(7): 2151-2171.
|
[22] |
Baldan-Martin M, Martin-Rojas T, Corbacho-Alonso N, et al.Comprehensive proteomic profiling of pressure ulcers in patients with spinal cord injury identifies a specific protein pattern of pathology[J].Adv Wound Care (New Rochelle),2020,9(5):277-294.
|
[23] |
Taverna D, Pollins AC, Sindona G, et al.Imaging mass spectrometry for assessing cutaneous wound healing: analysis of pressure ulcers[J].J Proteome Res,2015,14(2):986-996.
|
[24] |
Peng Z, Nguyen TT, Wang M, et al.Proteomics identification of targets for intervention in pressure ulcers[J].ACS Chem Biol,2022,17(6): 1357-1363.
|
[25] |
钱玥彤,刘佳玮,刘薇,等.放射治疗相关性皮肤病[J].中华皮肤科杂志, 2019, 52(2) : 145-148.
|
[26] |
Manna B, Cooper JS.Radiation therapy-induced skin ulcer[M].Treasure Island (FL): Stat Pearls Publishing, 2024.
|
[27] |
Riedel F, Philipp K, Sadick H, et al.Immunohistochemical analysis of radiation-induced non-healing dermal wounds of the head andneck[J].In Vivo,2005,19(2):343-350.
|
[28] |
Song J,Zhang H,Wang Z,et al.The role of FABP5 in radiationinduced human skin fibrosis[J].Radiat Res,2018,189(2):177-186.
|
[29] |
Liu Z, Yu D, Xu J, et al.Human umbilical cord mesenchymal stem cells improve irradiation-induced skin ulcers healing of rat models[J].Biomed Pharmacother,2018,101: 729-736.
|
[30] |
周龙泽,刘国强,邹佳伟.同种异体间充质干细胞在慢性创面修复中的疗效研究[J].系统医学,2023,8(16): 42-44,48.
|
[1] |
Mendes ML, Dittmar G.Targeted proteomics on its way to discovery[J].Proteomics,2022,22(15-16): e2100330.
|
[2] |
Duong VA,Lee H.Bottom-up proteomics:advancements in sample preparation[J].Int J Mol Sci,2023,24(6): 5350.
|
[31] |
Fang Z,Lv Y,Zhang H,et al.A multifunctional hydrogel loaded with two nanoagents improves the pathological microenvironment associated with radiation combined with skin wounds[J].Acta Biomater,2023,159: 111-127.
|
[32] |
Expert panels on interventional radiology and vascular imaging,Rochon PJ,Reghunathan A,et al.ACR appropriateness criteria®lower extremity chronic venous disease[J].J Am Coll Radiol,2023,20(11S): S481-S500.
|
[33] |
Probst S, Saini C, Gschwind G, et al.Prevalence and incidence of venous leg ulcers-a systematic review and meta-analysis[J].Int Wound J,2023,20(9):3906-3921.
|
[34] |
Cavassan NRV, Camargo CC, de Pontes LG, et al.Correlation between chronic venous ulcer exudate proteins and clinical profile:a cross-sectional study[J].J Proteomics,2019,192: 280-290.
|
[35] |
Mikosiński J,Kalogeropoulos K,Bundgaard L,et al.Longitudinal evaluation of biomarkers in wound fluids from venous leg ulcers and split-thickness skin graft donor site wounds treated with a protease-modulating wound dressing[J].Acta Derm Venereol,2022,102: adv00834.
|
[36] |
Juanes-Velasco P,Arias-Hidalgo C,Landeira-Viñuela A,et al.Functional proteomics based on protein microarray technology for biomedical research[J].Adv Protein Chem Struct Biol,2024,138: 49-65.
|
[37] |
McQuilling JP,Carter MJ,Fulton JA,et al.A prospective clinical trial evaluating changes in the wound microenvironment in patients with chronic venous leg ulcers treated with a hypothermically stored amniotic membrane[J].Int Wound J,2022,19(1):144-155.
|
[38] |
Obed D,Schroeter A,Gruber L,et al.Epidemiology and outcome analysis of 1359 intensive care burn patients:a 14-year retrospective study in a major burn center[J].Burns,2023,49(5):1209-1217.
|
[39] |
Liu Z, Yu D, Xu J, et al.Human umbilical cord mesenchymal stem cells improve irradiation-induced skin ulcers healing of rat models[J].Biomed Pharmacother,2018,101: 729-736.
|
[40] |
Zang T, Cuttle L,Broszczak DA, et al.Characterization of the blister fluid proteome for pediatric burn classification [J].J Proteome Res,2019,18(1): 69-85.
|
[41] |
Frear CC, Zang T, Griffin BR, et al.The modulation of the burn wound environment by negative pressure wound therapy:insights from the proteome[J].Wound Repair Regen,2021,29(2):288-297.
|
[42] |
马文杰,田野,白超,等.下肢动脉硬化闭塞症血管腔内治疗的进展[J].国际外科学杂志, 2023, 50(11) : 777-782.
|
[43] |
Song P, Rudan D, Wang M, et al.National and subnational estimation of the prevalence of peripheral artery disease (PAD)in China: a systematic review and meta-analysis[J].J Glob Health,2019,9(1):010601.
|
[44] |
韩伟,汤敬东.动脉缺血性和静脉性溃疡创面的治疗及预后研究进展[J].血管与腔内血管外科杂志,2019,5(6): 549-552.
|
[45] |
Beltrán-Camacho L, Jiménez-Palomares M, Sanchez-Gomar I,et al.Long term response to circulating angiogenic cells,unstimulated or atherosclerotic pre-conditioned, in critical limb ischemic mice[J].Biomedicines,2021,9(9): 1147.
|
[46] |
Bayaraa O, Dashnyam K, Singh RK, et al.Nanoceria-GOintercalated multicellular spheroids revascularize and salvage critical ischemic limbs through anti-apoptotic and pro-angiogenic functions[J].Biomaterials,2023,292: 121914.
|
[47] |
Neagu AN,Jayathirtha M,Baxter E,et al.Applications oftandem mass spectrometry (MS/MS) in protein analysis for biomedical research[J].Molecules, 2022,27(8):2411.
|
[48] |
Gqamana Putuma P,Young Brandy L,Zhang Victoria Y.质谱蛋白质组学在临床应用中的机遇和挑战[J].中华检验医学杂志, 2023,46(8): 775-779.
|