切换至 "中华医学电子期刊资源库"

中华损伤与修复杂志(电子版) ›› 2019, Vol. 14 ›› Issue (06) : 406 -409. doi: 10.3877/cma.j.issn.1673-9450.2019.06.002

所属专题: 文献

学术争鸣

人工智能决策系统在烧伤领域应用的主要瓶颈与解决途径
张勤1,()   
  1. 1. 200025 上海交通大学医学院附属瑞金医院烧伤整形科
  • 收稿日期:2019-10-15 出版日期:2019-12-01
  • 通信作者: 张勤
  • 基金资助:
    国家自然科学基金面上项目(81971832)

Main bottlenecks and solutions of artificial intelligence decision system in burn field

Qin Zhang1,()   

  1. 1. Department of Burns and Plastic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
  • Received:2019-10-15 Published:2019-12-01
  • Corresponding author: Qin Zhang
  • About author:
    Corresponding author: Zhang Qin, Email:
引用本文:

张勤. 人工智能决策系统在烧伤领域应用的主要瓶颈与解决途径[J/OL]. 中华损伤与修复杂志(电子版), 2019, 14(06): 406-409.

Qin Zhang. Main bottlenecks and solutions of artificial intelligence decision system in burn field[J/OL]. Chinese Journal of Injury Repair and Wound Healing(Electronic Edition), 2019, 14(06): 406-409.

人工智能决策进入临床应用面临着3个瓶颈:烧伤医疗大数据、深度学习和医学伦理。如何在较长时间采集过程中保持数据稳定并选取科学方法加以分析与评判;机器人深度学习,学习什么与分析什么、如何克服人工智能机器与医师培养的长期性差异;在大数据与人工智能迅速发展形势下伦理短板日益体现。解决这3个问题的主要途径:应主动与数据科学家共同搭建数据模型平台,并制定数据采纳基本线路图,与此同时,由全国烧伤委员会制定大数据及人工智能的伦理规则刻不容缓。

Artificial intelligence decision-making faces 3 bottlenecks before it goes into burn treatment: big data, deep learning and medical ethics. How to maintain data stabiliy in long-term acquisition and select scientific methods for analysis and judgement. Which kinds of material should be studied and analyzed by deeping learning. How to overcome the long-term difference between artificial intelligence machine and doctor training. Under the situation of rapid development of big data and artificial intelligence, the ethical shortcomings are increasingly reflected. The main way to solve the 3 problems is: the initiative to build a data model platform together with data scientists should be taken, and the basic circuit diagram of data adoption should be developed. Meanwhile, it is urgent for the national committee of burns to formulate the ethical rules of big data and artificial intelligence.

[1]
李海航,包振兴,刘晓彬,等. 人工智能在烧伤领域的应用研究进展[J]. 中华烧伤杂志,2018, 34 (4): 246-248.
[2]
Celi LA, Hinske LC, Alterovitz G, et al. An artificial intelligence tool to predict fluid requirement in the intensive care unit: a proof-of-concept study[J]. Crit Care, 2008, 12 (6): R151.
[3]
Golas SB, Shibahara T, Agboola S, et al. A machine learning model to predict the risk of 30-day readmissions in patients with heart failure: a retrospective analysis of electronic medical records data[J]. BMC Med Inform Decis Mak, 2018, 18(1): 44.
[4]
Yoshioka A. Use of randomisation in the Medical Research Council's clinical trial of streptomycin in pulmonary tuberculosis in the 1940s[J]. BMJ, 1998, 317(7167): 1220-1223.
[5]
Jones DS, Podolsky SH. The history and fate of the gold standard[J]. Lancet, 2015, 385(9977): 1502-1503.
[6]
Feinstein AR, Horwitz RI. Double standards, scientific methods, and epidemiologic research[J].N Engl J Med, 1982, 307(26): 1611-1617.
[7]
Howard R, Lovestone S, Levy R. Ernest Saunders: diagnostic dilemma[J]. BMJ, 1992, 304(6841): 1568-1569.
[8]
Bhagat S, Kapatkar V, Katare S, et al. Potential Risks and Mitigation Strategies During the Conduct of a Clinical Trial: An Industry Perspective[J]. Rev Recent Clin Trials, 2018, 13(1): 52-60.
[9]
Celi LA, Lokhandwala S, Montgomery R, et al. Datathons and Software to Promote Reproducible Research[J]. J Med Internet Res, 2016, 18(8): e230.
[10]
张政波,薛万国,曹德森,等. 急救大数据与Datathon活动[J]. 中华危重病急救医学,2018, 30(6): 603-605.
[11]
Adama M, Ng EYK, Tan JH, et al. Computer aided diagnosis of diabetic foot using infrared thermograhpy: A review[J]. Comput Biol Med, 2017, 91: 326-336.
[12]
Shortliffe EH, Sepúlveda MJ. Clinical Decision Support in the Era of Artificial Intelligence[J]. JAMA, 2018, 320(21): 2199-2200.
[13]
Salerno J, Knoppers BM, Lee LM, et al. Ethics, big data and computing in epidemiology and public health[J]. Ann Epidemiol, 2017, 27(5): 297-301.
[14]
Gordijn B, Have HT. Technology and dementia[J]. Med Health Care Philos, 2016, 19(3): 339-340
[15]
Van den Hoven J, Lokhorst GJ, Van de Poel I. Engineering and the problem of moral overload[J]. Sci Eng Ethics, 2012, 18(1): 143-155.
[1] 李洋, 蔡金玉, 党晓智, 常婉英, 巨艳, 高毅, 宋宏萍. 基于深度学习的乳腺超声应变弹性图像生成模型的应用研究[J/OL]. 中华医学超声杂志(电子版), 2024, 21(06): 563-570.
[2] 杨敬武, 周美君, 陈雨凡, 李素淑, 何燕妮, 崔楠, 刘红梅. 人工智能超声结合品管圈活动对低年资超声医师甲状腺结节风险评估能力的作用[J/OL]. 中华医学超声杂志(电子版), 2024, 21(05): 522-526.
[3] 李煜, 王鹏, 陆翮, 冯蓉琴, 韩军涛. 采用低频脉冲电刺激治疗深Ⅱ度烧伤创面的临床观察[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 474-478.
[4] 彭玲, 吴红, 宛仕勇, 陈斓, 叶子青, 周静. 胶原酶软膏联合水胶体敷料应用于深Ⅱ度烧伤创面治疗的效果观察[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 511-516.
[5] 林同辉, 杨卫玺. 股前外侧穿支皮瓣在电烧伤治疗中应用的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 526-530.
[6] 王宏宇, 巴特, 黄瑞娟, 陈强, 闫增强. 亲属头皮加自体头皮混合移植接力在大面积深度烧伤创面修复中的应用[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 554-554.
[7] 张嘉炜, 王瑞, 张克诚, 易磊, 周增丁. 烧烫伤创面深度智能检测模型P-YOLO的建立及测试效果[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(05): 379-385.
[8] 毛书雷, 张元海, 王杰, 倪良方, 王新刚, 邹雁, 王荣娟, 吴军梅, 张建芬. 区域性静脉灌注葡萄糖酸钙治疗手指氢氟酸烧伤的临床疗效和安全性分析[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(05): 386-392.
[9] 孙俊锋, 涂家金, 付丹, 蒋满香, 刘金晶, 崔乃硕. 手部烧伤瘢痕挛缩畸形整形术后综合康复联合点阵二氧化碳激光治疗的临床效果[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(05): 411-415.
[10] 杨新园, 王淑君, 何成, 宋喜鹤, 刘丽芸. 预防与处理危重烧伤患者经外周静脉穿刺置入中心静脉导管堵塞的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(05): 443-446.
[11] 叶莉, 杜宇. 深度学习在牙髓根尖周病临床诊疗中的应用[J/OL]. 中华口腔医学研究杂志(电子版), 2024, 18(06): 351-356.
[12] 熊鹰, 林敬莱, 白奇, 郭剑明, 王烁. 肾癌自动化病理诊断:AI离临床还有多远?[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 535-540.
[13] 李伟, 宋子健, 赖衍成, 周睿, 吴涵, 邓龙昕, 陈锐. 人工智能应用于前列腺癌患者预后预测的研究现状及展望[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 541-546.
[14] 黄俊龙, 李文双, 李晓阳, 刘柏隆, 陈逸龙, 丘惠平, 周祥福. 基于盆底彩超的人工智能模型在女性压力性尿失禁分度诊断中的应用[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 597-605.
[15] 孙铭远, 褚恒, 徐海滨, 张哲. 人工智能应用于多发性肺结节诊断的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 785-790.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?