切换至 "中华医学电子期刊资源库"

中华损伤与修复杂志(电子版) ›› 2019, Vol. 14 ›› Issue (06) : 401 -405. doi: 10.3877/cma.j.issn.1673-9450.2019.06.001

所属专题: 文献

专家述评

创面愈合的机遇和挑战:组织工程皮肤
贾赤宇1,(), 鲍武1, 程夏霖1   
  1. 1. 361102 厦门大学附属翔安医院烧伤整形科
  • 收稿日期:2019-10-16 出版日期:2019-12-01
  • 通信作者: 贾赤宇
  • 基金资助:
    福建省自然科学基金(2019J01011)

Opportunities and challenges in wound healing: tissue engineered skin

Chiyu Jia1,(), Wu Bao1, Xialin Cheng1   

  1. 1. Department of Burns and Plastic Surgery, Xiang′an Hospital of Xiamen University, Xiamen 361102, China
  • Received:2019-10-16 Published:2019-12-01
  • Corresponding author: Chiyu Jia
  • About author:
    Corresponding author: Jia Chiyu, Email:
引用本文:

贾赤宇, 鲍武, 程夏霖. 创面愈合的机遇和挑战:组织工程皮肤[J]. 中华损伤与修复杂志(电子版), 2019, 14(06): 401-405.

Chiyu Jia, Wu Bao, Xialin Cheng. Opportunities and challenges in wound healing: tissue engineered skin[J]. Chinese Journal of Injury Repair and Wound Healing(Electronic Edition), 2019, 14(06): 401-405.

近些年来,虽然创面愈合的基础研究和临床治疗有了较大的进步,但未能取得突破性进展。皮肤的完美修复重建依然是损伤和烧伤医学面临的难题和挑战。组织工程皮肤的问世,可能是解决这些问题的突破口。本文对组织工程皮肤的历史、发展现状、存在问题及发展前景作了系统性分析。

In recent years, although the basic research and clinical treatment of wound healing have made great progress, no breakthrough has been made. The perfect repair and reconstruction of the skin is still a challenge for injuries and burns medicine. The advent of tissue engineered skin may be a breakthrough in solving these problems. This paper systematically analyzes the history, development status, problems and prospects of tissue engineering skin.

[1]
Rezaie F, Momeni-Moghaddam M, Naderi-Meshkin H. Regeneration and Repair of Skin Wounds: Various Strategies for Treatment[J]. Int J Low Extrem Wounds, 2019, 18(3): 247-261.
[2]
韩焱福. 组织工程技术应用于创面修复的现状与未来[J/CD].中华损伤与修复杂志(电子版), 2019, 14(4): 245-248.
[3]
Yannas IV, Burke JF, Gordon PL, et al. Design of an artificial skin.II.Control of chemical composition[J]. J Biomed Mater Res, 1980, 14(2): 107-132.
[4]
Vacanti JP, Morse MA, Saltzman WM, et al. Selective cell transplantation using bioabsorbable artificial polymers as matrices[J]. J Pediatr Surg, 1988, 23(1 Pt 2): 3-9.
[5]
Eaglstein WH. Dermagraft treatment of diabetic ulcers[J]. J Dermatol, 1998, 25(12): 803-804.
[6]
Towler MA, Rush EW, Richardson MK, et al. Randomized, Prospective, Blinded-Enrollment, Head-To-Head Venous Leg Ulcer Healing Trial Comparing Living, Bioengineered Skin Graft Substitute (Apligraf) with Living, Cryopreserved, Human Skin Allograft (TheraSkin) [J]. Clin Podiatr Med Surg, 2018, 35(3): 357-365.
[7]
Keck M, Gugerell A, Kober J. Engineering a Multilayered Skin Substitute with Keratinocytes, Fibroblasts, Adipose-Derived Stem Cells, and Adipocytes[J]. Methods Mol Biol, 2019, 1993: 149-157.
[8]
Millán-Rivero JE, Martínez CM, Romecín PA, et al. Silk fibroin scaffolds seeded with Wharton's jelly mesenchymal stem cells enhance re-epithelialization and reduce formation of scar tissue after cutaneous wound healing[J]. Stem Cell Res Ther, 2019, 10(1): 126.
[9]
Abbasi S, Biernaskie J. Injury modifies the fate of hair follicle dermal stem cell progeny in a hair cycle-dependent manner[J]. Exp Dermatol, 2019, 28(4): 419-424.
[10]
Li B, Hu W, Ma K, et al. Are hair follicle stem cells promising candidates for wound healing[J]. Expert Opin Biol Ther, 2019, 19(2): 119-128.
[11]
Hoffman RM, Amoh Y. Hair Follicle-Associated Pluripotent(HAP) Stem Cells[J]. Prog Mol Biol Transl Sci, 2018, 160: 23-28.
[12]
Martin-Piedra MA, Alfonso-Rodriguez CA, Zapater A, et al. Effective use of mesenchymal stem cells in human skin substitutes generated by tissue engineering[J]. Eur Cell Mater, 2019, 37: 233-249.
[13]
Han Y, Sun T, Han Y, et al. Human umbilical cord mesenchymal stem cells implantation accelerates cutaneous wound healing in diabetic rats via the Wnt signaling pathway[J]. Eur J Med Res, 2019, 24(1): 10.
[14]
Maged A, Abdelkhalek AA, Mahmoud AA, et al. Mesenchymal stem cells associated with chitosan scaffolds loaded with rosuvastatin to improve wound healing[J]. Eur J Pharm Sci, 2019, 127: 185-198.
[15]
Mirzaei-Parsa MJ, Ghanbari H, Alipoor B, et al. Nanofiber-acellular dermal matrix as a bilayer scaffold containing mesenchymal stem cell for healing of full-thickness skin wounds[J]. Cell Tissue Res, 2019, 375(3): 709-721.
[16]
祁永军,王晓,焦亚,等. 富含小鼠骨髓间充质干细胞的生物活性小鼠烧伤变性脱细胞真皮基质的制备[J]. 中华烧伤杂志,2018, 34(12): 895-900.
[17]
Alapure BV, Lu Y, He M, et al. Accelerate Healing of Severe Burn Wounds by Mouse Bone Marrow Mesenchymal Stem Cell-Seeded Biodegradable Hydrogel Scaffold Synthesized from Arginine-Based Poly(ester amide) and Chitosan[J]. Stem Cells Dev, 2018, 27(23): 1605-1620.
[18]
韩婷璐,赵振民,张辰,等. 骨髓间充质干细胞促进皮肤创伤愈合的作用机制及临床应用[J]. 现代生物医学进展,2017, 17(35): 6964-6968.
[19]
Yang Yadong, Zhang Wenyuan, Li Ying, et al. Scalded skin of rat treated by using fibrin glue combined with allogeneic bone marrow mesenchymal stem cells[J]. Ann Dermatol, 2014, 26: 289-295.
[20]
Suh A, Pham A, Cress MJ, et al. Adipose-derived cellular and cell-derived regenerative therapies in dermatology and aesthetic rejuvenation[J]. Ageing Res Rev, 2019, 54: 100933.
[21]
Lin CW, Chen YK, Tang KC, et al. Keratin scaffolds with human adipose stem cells: Physical and biological effects toward wound healing[J]. J Tissue Eng Regen Med, 2019, 13(6): 1044-1058.
[22]
Oryan A, Alemzadeh E, Mohammadi AA, et al. Healing potential of injectable Aloe vera hydrogel loaded by adipose-derived stem cell in skintissue-engineering in a rat burn wound model[J]. Cell Tissue Res, 2019, 377(2): 215-227.
[23]
Han Y, Sun T, Han Y, et al. Human umbilical cord mesenchymal stem cells implantation accelerates cutaneous wound healing in diabetic rats via the Wnt signaling pathway[J]. Eur J Med Res, 2019, 24(1): 10.
[24]
Liu Z, Yu D, Xu J, et al. Human umbilical cord mesenchymal stem cells improve irradiation-induced skin ulcers healing of rat models[J]. Biomed Pharmacother, 2018, 101: 729-736.
[25]
Luo H, Cha R, Li J, et al. Advances in tissue engineering of nanocellulose-based scaffolds: A review[J]. Carbohydr Polym, 2019, 224: 115144.
[26]
Celie KB, Toyoda Y, Dong X, et al. Microstructured hydrogel scaffolds containing differential density interfaces promote rapid cellular invasion and vascularization[J]. Acta Biomater, 2019, 91: 144-158.
[27]
Azizian S, Hadjizadeh A, Niknejad H. Chitosan-gelatin porous scaffold incorporated with Chitosan nanoparticles for growth factordelivery in tissue engineering[J]. Carbohydr Polym, 2018, 202: 315-322.
[28]
Goyer B, Larouche D, Kim DH, et al. mmune tolerance of tissue-engineered skin produced with allogeneic or xenogeneic fibroblastsand syngeneic keratinocytes grafted on mice[J]. Acta Biomater, 2019, 90: 192-204.
[29]
Sigaux N, Pourchet L, Breton P, et al. 3D Bioprinting:principles, fantasies and prospects[J]. J Stomatol Oral Maxillofac Surg, 2019, 120(2): 128-132.
[30]
Rahmani Del Bakhshayesh A, Mostafavi E, Alizadeh E, et al. Fabrication of Three-Dimensional Scaffolds Based on Nano-biomimetic Collagen Hybrid Constructs for Skin Tissue Engineering[J]. ACS Omega, 2018, 3(8): 8605-8611.
[31]
Randall MJ, Jüngel A, Rimann M, et al. Advances in the Biofabrication of 3D Skin in vitro: Healthy and Pathological Models[J]. Front Bioeng Biotechnol, 2018, 6: 154.
[32]
Binder KW, Zhao WX, Aboushwareb T, et al. In situ bioprinting of the skin for burns[J]. J Am College of Surgeons, 2010, 211(3): S76-S76.
[33]
Skardal A, Mack D, Kapetanovic E, et al. Bioprinted amniotic fluid-derived stem cells accelerate healing of large skin wounds[J]. Stem Cells Transl Med, 2012, 1(11): 792-802.
[34]
Intini C, Elviri L, Cabral J, et al. 3D-printed chitosan-based scaffolds: An in vitro study of human skin cell growth and an in-vivo wound healing evaluation in experimental diabetes in rats[J]. Carbohydr Polym, 2018, 199: 593-602.
[35]
Koch L, Deiwick A, Schlie S, et al. Skin tissue generation by laser cell printing[J]. Biotechnol Bioeng, 2012, 109(7): 1855-1863.
[36]
Cubo N, Garcia M, del Canizo JF, et al. 3D bioprinting of functional human skin: production and in vivo analysis[J]. Biofabrication, 2016, 9(1): 015006.
[37]
Hakimi N, Cheng R, Leng L, et al. Handheld skin printer: in situ formation of planar biomaterials and tissues[J]. Lab Chip, 2018, 18(10): 1440-1451.
[38]
王新刚,吴攀,翁婷婷,等. 浅议目前组织工程皮肤研发面临的关键问题[J/CD]. 中华损伤与修复杂志(电子版), 2017, 12(3): 164-168.
[39]
Su L, Zheng J, Wang Y, et al. Emerging progress on the mechanism and technology in wound repair[J]. Biomed Pharmacother, 2019, 117: 109191.
[40]
Strong AL, Neumeister MW, Levi B. Stem Cells and Tissue Engineering: Regeneration of the Skin and Its Contents[J]. Clin Plast Surg, 2017, 44(3): 635-650.
[41]
Hur W, Lee HY, Min HS, et al. Regeneration of full-thickness skin defects by differentiated adipose-derived stem cells into fibroblast-like cells by fibroblast-conditioned medium[J]. Stem Cell Res Ther, 2017, 8(1): 92.
[42]
Won CH, Park GH, Wu X, et al. The Basic Mechanism of Hair Growth Stimulation by Adipose-derived Stem Cells and Their Secretory Factors[J]. Curr Stem Cell Res Ther, 2017, 12(7): 535-543.
[43]
Rezaie F, Momeni-Moghaddam M, Naderi-Meshkin H. Regeneration and Repair of Skin Wounds: Various Strategies for Treatment[J]. Int J Low Extrem Wounds, 2019, 18(3): 247-261.
[44]
Golchin A, Farahany TZ, Khojasteh A, et al. The Clinical Trials of Mesenchymal Stem Cell Therapy in Skin Diseases: An Update and Concise Review[J]. Curr Stem Cell Res Ther, 2019, 14(1): 22-33.
[45]
Savoji H, Godau B, Hassani MS, et al. Skin Tissue Substitutes and Biomaterial Risk Assessment and Testing[J]. Front Bioeng Biotechnol, 2018, 6: 86.
[46]
Yu JR, Navarro J, Coburn JC, et al. Current and Future Perspectives on Skin Tissue Engineering: Key Features of Biomedical Research, Translational Assessment, and Clinical Application[J]. Adv Healthc Mater, 2019, 8(5): e1801471.
[47]
Varkey M, Visscher DO, van Zuijlen PPM, et al. PPM Skin bioprinting: the future of burn wound reconstruction[J]. Burns Trauma, 2019, 7: 4.
[1] 李康, 耿喜林, 汪玉良, 刘京升. 踝关节Logsplitter损伤诊治的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(04): 566-570.
[2] 钱嘉天, 符培亮. 3D打印脱细胞的细胞外基质修复软骨缺损的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(03): 368-375.
[3] 陈严城, 符培亮. 组织工程技术在骨软骨缺损中应用的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(03): 376-384.
[4] 赵宇, 赵松, 赵金忠. 前交叉韧带损伤及重建后继发性膝骨关节炎的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(03): 415-423.
[5] 江钰璇, 陈颖, 周钟明, 温宝泓, 陈文韬, 钟国庆, 张余, 李丽萍. 全身关节过度活动的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(01): 52-59.
[6] 米洁, 陈晨, 李佳玲, 裴海娜, 张恒博, 李飞, 李东杰. 儿童头面部外伤特点分析[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 511-515.
[7] 周子慧, 李恭驰, 李炳辉, 王知, 刘慧真, 王卉, 邹利军. 细胞自噬在创面愈合中作用的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 542-546.
[8] 陈继秋, 朱世辉. 皮肤牵张装置的临床应用现状[J]. 中华损伤与修复杂志(电子版), 2023, 18(05): 451-453.
[9] 王雪, 程微, 苏建东. 微针法表皮移植应用的新进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(03): 270-273.
[10] 中国老年医学学会烧创伤分会, 中国生物材料学会烧创伤创面修复材料分会. 中国糖尿病足截肢(趾)治疗专家共识(2022年版)[J]. 中华损伤与修复杂志(电子版), 2023, 18(01): 1-9.
[11] 王宏宇, 周彪, 闫增强, 侯智慧, 德奇, 杨瑞, 王睿甲, 李洋洋, 黄瑞娟, 巴特. 双层人工真皮联合自体刃厚皮移植修复烧创伤后骨/肌腱外露创面的临床效果[J]. 中华损伤与修复杂志(电子版), 2023, 18(01): 25-31.
[12] 徐庆连. 下肢严重车祸伤创面修复的经验、教训[J]. 中华损伤与修复杂志(电子版), 2023, 18(01): 92-92.
[13] 刘甜甜, 李明, 朱含汀, 倪涛, 彭银波, 方勇. 创缘铁过载的临床样本验证与铁过载对小鼠创面愈合的影响[J]. 中华损伤与修复杂志(电子版), 2022, 17(06): 475-481.
[14] 王湘滔, 张爱娟, 王万春, 王芳萍, 徐颖婕, 孟洋. 中药白及在口腔疾病中的研究与应用[J]. 中华口腔医学研究杂志(电子版), 2023, 17(05): 371-375.
[15] 钟文文, 李科, 刘碧好, 蔡炳, 脱颖, 叶雷, 马波, 瞿虎, 汪中扬, 王德娟, 邱剑光. 不同比例聚乳酸/丝素蛋白复合支架在兔尿道缺损修复中的疗效[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(05): 516-522.
阅读次数
全文


摘要