[1] |
Rezaie F, Momeni-Moghaddam M, Naderi-Meshkin H. Regeneration and Repair of Skin Wounds: Various Strategies for Treatment[J]. Int J Low Extrem Wounds, 2019, 18(3): 247-261.
|
[2] |
韩焱福. 组织工程技术应用于创面修复的现状与未来[J/CD].中华损伤与修复杂志(电子版), 2019, 14(4): 245-248.
|
[3] |
Yannas IV, Burke JF, Gordon PL, et al. Design of an artificial skin.II.Control of chemical composition[J]. J Biomed Mater Res, 1980, 14(2): 107-132.
|
[4] |
Vacanti JP, Morse MA, Saltzman WM, et al. Selective cell transplantation using bioabsorbable artificial polymers as matrices[J]. J Pediatr Surg, 1988, 23(1 Pt 2): 3-9.
|
[5] |
Eaglstein WH. Dermagraft treatment of diabetic ulcers[J]. J Dermatol, 1998, 25(12): 803-804.
|
[6] |
Towler MA, Rush EW, Richardson MK, et al. Randomized, Prospective, Blinded-Enrollment, Head-To-Head Venous Leg Ulcer Healing Trial Comparing Living, Bioengineered Skin Graft Substitute (Apligraf) with Living, Cryopreserved, Human Skin Allograft (TheraSkin) [J]. Clin Podiatr Med Surg, 2018, 35(3): 357-365.
|
[7] |
Keck M, Gugerell A, Kober J. Engineering a Multilayered Skin Substitute with Keratinocytes, Fibroblasts, Adipose-Derived Stem Cells, and Adipocytes[J]. Methods Mol Biol, 2019, 1993: 149-157.
|
[8] |
Millán-Rivero JE, Martínez CM, Romecín PA, et al. Silk fibroin scaffolds seeded with Wharton's jelly mesenchymal stem cells enhance re-epithelialization and reduce formation of scar tissue after cutaneous wound healing[J]. Stem Cell Res Ther, 2019, 10(1): 126.
|
[9] |
Abbasi S, Biernaskie J. Injury modifies the fate of hair follicle dermal stem cell progeny in a hair cycle-dependent manner[J]. Exp Dermatol, 2019, 28(4): 419-424.
|
[10] |
Li B, Hu W, Ma K, et al. Are hair follicle stem cells promising candidates for wound healing[J]. Expert Opin Biol Ther, 2019, 19(2): 119-128.
|
[11] |
Hoffman RM, Amoh Y. Hair Follicle-Associated Pluripotent(HAP) Stem Cells[J]. Prog Mol Biol Transl Sci, 2018, 160: 23-28.
|
[12] |
Martin-Piedra MA, Alfonso-Rodriguez CA, Zapater A, et al. Effective use of mesenchymal stem cells in human skin substitutes generated by tissue engineering[J]. Eur Cell Mater, 2019, 37: 233-249.
|
[13] |
Han Y, Sun T, Han Y, et al. Human umbilical cord mesenchymal stem cells implantation accelerates cutaneous wound healing in diabetic rats via the Wnt signaling pathway[J]. Eur J Med Res, 2019, 24(1): 10.
|
[14] |
Maged A, Abdelkhalek AA, Mahmoud AA, et al. Mesenchymal stem cells associated with chitosan scaffolds loaded with rosuvastatin to improve wound healing[J]. Eur J Pharm Sci, 2019, 127: 185-198.
|
[15] |
Mirzaei-Parsa MJ, Ghanbari H, Alipoor B, et al. Nanofiber-acellular dermal matrix as a bilayer scaffold containing mesenchymal stem cell for healing of full-thickness skin wounds[J]. Cell Tissue Res, 2019, 375(3): 709-721.
|
[16] |
祁永军,王晓,焦亚,等. 富含小鼠骨髓间充质干细胞的生物活性小鼠烧伤变性脱细胞真皮基质的制备[J]. 中华烧伤杂志,2018, 34(12): 895-900.
|
[17] |
Alapure BV, Lu Y, He M, et al. Accelerate Healing of Severe Burn Wounds by Mouse Bone Marrow Mesenchymal Stem Cell-Seeded Biodegradable Hydrogel Scaffold Synthesized from Arginine-Based Poly(ester amide) and Chitosan[J]. Stem Cells Dev, 2018, 27(23): 1605-1620.
|
[18] |
韩婷璐,赵振民,张辰,等. 骨髓间充质干细胞促进皮肤创伤愈合的作用机制及临床应用[J]. 现代生物医学进展,2017, 17(35): 6964-6968.
|
[19] |
Yang Yadong, Zhang Wenyuan, Li Ying, et al. Scalded skin of rat treated by using fibrin glue combined with allogeneic bone marrow mesenchymal stem cells[J]. Ann Dermatol, 2014, 26: 289-295.
|
[20] |
Suh A, Pham A, Cress MJ, et al. Adipose-derived cellular and cell-derived regenerative therapies in dermatology and aesthetic rejuvenation[J]. Ageing Res Rev, 2019, 54: 100933.
|
[21] |
Lin CW, Chen YK, Tang KC, et al. Keratin scaffolds with human adipose stem cells: Physical and biological effects toward wound healing[J]. J Tissue Eng Regen Med, 2019, 13(6): 1044-1058.
|
[22] |
Oryan A, Alemzadeh E, Mohammadi AA, et al. Healing potential of injectable Aloe vera hydrogel loaded by adipose-derived stem cell in skintissue-engineering in a rat burn wound model[J]. Cell Tissue Res, 2019, 377(2): 215-227.
|
[23] |
Han Y, Sun T, Han Y, et al. Human umbilical cord mesenchymal stem cells implantation accelerates cutaneous wound healing in diabetic rats via the Wnt signaling pathway[J]. Eur J Med Res, 2019, 24(1): 10.
|
[24] |
Liu Z, Yu D, Xu J, et al. Human umbilical cord mesenchymal stem cells improve irradiation-induced skin ulcers healing of rat models[J]. Biomed Pharmacother, 2018, 101: 729-736.
|
[25] |
Luo H, Cha R, Li J, et al. Advances in tissue engineering of nanocellulose-based scaffolds: A review[J]. Carbohydr Polym, 2019, 224: 115144.
|
[26] |
Celie KB, Toyoda Y, Dong X, et al. Microstructured hydrogel scaffolds containing differential density interfaces promote rapid cellular invasion and vascularization[J]. Acta Biomater, 2019, 91: 144-158.
|
[27] |
Azizian S, Hadjizadeh A, Niknejad H. Chitosan-gelatin porous scaffold incorporated with Chitosan nanoparticles for growth factordelivery in tissue engineering[J]. Carbohydr Polym, 2018, 202: 315-322.
|
[28] |
Goyer B, Larouche D, Kim DH, et al. mmune tolerance of tissue-engineered skin produced with allogeneic or xenogeneic fibroblastsand syngeneic keratinocytes grafted on mice[J]. Acta Biomater, 2019, 90: 192-204.
|
[29] |
Sigaux N, Pourchet L, Breton P, et al. 3D Bioprinting:principles, fantasies and prospects[J]. J Stomatol Oral Maxillofac Surg, 2019, 120(2): 128-132.
|
[30] |
Rahmani Del Bakhshayesh A, Mostafavi E, Alizadeh E, et al. Fabrication of Three-Dimensional Scaffolds Based on Nano-biomimetic Collagen Hybrid Constructs for Skin Tissue Engineering[J]. ACS Omega, 2018, 3(8): 8605-8611.
|
[31] |
Randall MJ, Jüngel A, Rimann M, et al. Advances in the Biofabrication of 3D Skin in vitro: Healthy and Pathological Models[J]. Front Bioeng Biotechnol, 2018, 6: 154.
|
[32] |
Binder KW, Zhao WX, Aboushwareb T, et al. In situ bioprinting of the skin for burns[J]. J Am College of Surgeons, 2010, 211(3): S76-S76.
|
[33] |
Skardal A, Mack D, Kapetanovic E, et al. Bioprinted amniotic fluid-derived stem cells accelerate healing of large skin wounds[J]. Stem Cells Transl Med, 2012, 1(11): 792-802.
|
[34] |
Intini C, Elviri L, Cabral J, et al. 3D-printed chitosan-based scaffolds: An in vitro study of human skin cell growth and an in-vivo wound healing evaluation in experimental diabetes in rats[J]. Carbohydr Polym, 2018, 199: 593-602.
|
[35] |
Koch L, Deiwick A, Schlie S, et al. Skin tissue generation by laser cell printing[J]. Biotechnol Bioeng, 2012, 109(7): 1855-1863.
|
[36] |
Cubo N, Garcia M, del Canizo JF, et al. 3D bioprinting of functional human skin: production and in vivo analysis[J]. Biofabrication, 2016, 9(1): 015006.
|
[37] |
Hakimi N, Cheng R, Leng L, et al. Handheld skin printer: in situ formation of planar biomaterials and tissues[J]. Lab Chip, 2018, 18(10): 1440-1451.
|
[38] |
王新刚,吴攀,翁婷婷,等. 浅议目前组织工程皮肤研发面临的关键问题[J/CD]. 中华损伤与修复杂志(电子版), 2017, 12(3): 164-168.
|
[39] |
Su L, Zheng J, Wang Y, et al. Emerging progress on the mechanism and technology in wound repair[J]. Biomed Pharmacother, 2019, 117: 109191.
|
[40] |
Strong AL, Neumeister MW, Levi B. Stem Cells and Tissue Engineering: Regeneration of the Skin and Its Contents[J]. Clin Plast Surg, 2017, 44(3): 635-650.
|
[41] |
Hur W, Lee HY, Min HS, et al. Regeneration of full-thickness skin defects by differentiated adipose-derived stem cells into fibroblast-like cells by fibroblast-conditioned medium[J]. Stem Cell Res Ther, 2017, 8(1): 92.
|
[42] |
Won CH, Park GH, Wu X, et al. The Basic Mechanism of Hair Growth Stimulation by Adipose-derived Stem Cells and Their Secretory Factors[J]. Curr Stem Cell Res Ther, 2017, 12(7): 535-543.
|
[43] |
Rezaie F, Momeni-Moghaddam M, Naderi-Meshkin H. Regeneration and Repair of Skin Wounds: Various Strategies for Treatment[J]. Int J Low Extrem Wounds, 2019, 18(3): 247-261.
|
[44] |
Golchin A, Farahany TZ, Khojasteh A, et al. The Clinical Trials of Mesenchymal Stem Cell Therapy in Skin Diseases: An Update and Concise Review[J]. Curr Stem Cell Res Ther, 2019, 14(1): 22-33.
|
[45] |
Savoji H, Godau B, Hassani MS, et al. Skin Tissue Substitutes and Biomaterial Risk Assessment and Testing[J]. Front Bioeng Biotechnol, 2018, 6: 86.
|
[46] |
Yu JR, Navarro J, Coburn JC, et al. Current and Future Perspectives on Skin Tissue Engineering: Key Features of Biomedical Research, Translational Assessment, and Clinical Application[J]. Adv Healthc Mater, 2019, 8(5): e1801471.
|
[47] |
Varkey M, Visscher DO, van Zuijlen PPM, et al. PPM Skin bioprinting: the future of burn wound reconstruction[J]. Burns Trauma, 2019, 7: 4.
|