切换至 "中华医学电子期刊资源库"

中华损伤与修复杂志(电子版) ›› 2019, Vol. 14 ›› Issue (04) : 241 -244. doi: 10.3877/cma.j.issn.1673-9450.2019.04.001

所属专题: 文献

专家述评

组织工程技术在创面修复中的应用
姜笃银1, 潘伊1, 邱道静2,()   
  1. 1. 250033 济南,山东大学第二医院急诊医学中心、整形烧伤外科
    2. 250033 济南,山东大学第二医院急诊医学中心、整形烧伤外科;100043 中国医学科学院,北京协和医学院整形外科医院
  • 收稿日期:2019-07-05 出版日期:2019-08-01
  • 通信作者: 邱道静
  • 基金资助:
    国家自然科学基金(81372074,81071560,81873934); 山东省科技攻关项目(2015GSF118041); 山东省重点研发计划(2019GGX105011); 济南市科技攻关项目(201704129)

Application of tissue engineering technology in wound repair

Duyin Jiang1, Yi Pan1, Daojing Qiu2,()   

  1. 1. Emergency Medical Center, Department of Burns and Plastic Surgery, the Second Hospital of Shandong University, Jinan 250033, China
    2. Emergency Medical Center, Department of Burns and Plastic Surgery, the Second Hospital of Shandong University, Jinan 250033, China; Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100043, China
  • Received:2019-07-05 Published:2019-08-01
  • Corresponding author: Daojing Qiu
  • About author:
    Corresponding author: Qiu Daojing, Email:
引用本文:

姜笃银, 潘伊, 邱道静. 组织工程技术在创面修复中的应用[J/OL]. 中华损伤与修复杂志(电子版), 2019, 14(04): 241-244.

Duyin Jiang, Yi Pan, Daojing Qiu. Application of tissue engineering technology in wound repair[J/OL]. Chinese Journal of Injury Repair and Wound Healing(Electronic Edition), 2019, 14(04): 241-244.

烧创伤等原因引起的大面积皮肤缺损是修复重建外科的一大难题。传统皮肤移植术往往组织来源受限,且存在供皮区损伤等缺点。组织工程技术的进步和商品化皮肤的临床应用,为大面积烧伤和难治性创面修复提供了新的治疗手段。本文回顾组织工程技术在创面修复领域的研究进展,并分析其在研发和转化过程中的关键问题,以期为人类皮肤的功能化构建提供新思路。

Large skin defects caused by burns or trauma are a major problem in repair and reconstruction surgery. Traditional skin graft often has limited tissue sources and has disadvantages such as damage to the donor site. With the development of tissue engineering, commercial artificial skin has been applied in practice, providing a new therapy for refractory ulcers. This article reviews the research progress of tissue engineering technology in the field of wound repair, and analyzes its key problems in the process of research and development, in order to provide new ideas for the functional construction of human skin.

[1]
Groeber F,Holeiter M,Hampel M, et al. Skin tissue engineering--in vivo and in vitro applications[J]. Adv Drug Deliv Rev, 2011, 63(4/5): 352-366.
[2]
Cao Y,Vacanti JP,Paige KT, et al. Transplantation of chondrocytes utilizing a polymer-cell construct to produce tissue-engineered cartilage in the shape of a human ear[J]. Plast Reconstr Surg, 1997, 100(2): 297-302; discussion 303-304.
[3]
Gonfiotti A,Jaus MO,Barale D, et al. The first tissue-engineered airway transplantation: 5-year follow-up results[J]. Lancet, 2014, 383(9913): 238-244.
[4]
Vacanti JP,Kulig KM. Liver cell therapy and tissue engineering for transplantation[J]. Semin Pediatr Surg, 2014, 23(3): 150-155.
[5]
Shiba Y. New strategy for the treatment of myocarditis by cell-sheet technology[J]. Circ J, 2015, 79(1): 51-52.
[6]
Ma H,Feng C,Chang J, et al. 3D-printed bioceramic scaffolds: From bone tissue engineering to tumor therapy[J]. Acta Biomater, 2018, 79: 37-59.
[7]
Boni R,Ali A,Shavandi A, et al. Current and novel polymeric biomaterials for neural tissue engineering[J]. J Biomed Sci, 2018, 25(1): 90.
[8]
Yu JR,Navarro J,Coburn JC, et al. Current and Future Perspectives on Skin Tissue Engineering: Key Features of Biomedical Research, Translational Assessment, and Clinical Application[J]. Adv Healthc Mater, 2019, 8(5): e1801471.
[9]
Turner NJ,Badylak SF. The Use of Biologic Scaffolds in the Treatment of Chronic Nonhealing Wounds[J]. Adv Wound Care (New Rochelle), 2015, 4(8): 490-500.
[10]
Maranda EL,Rodriguez-Menocal L,Badiavas EV. Role of Mesenchymal Stem Cells in Dermal Repair in Burns and Diabetic Wounds[J]. Curr Stem Cell Res Ther, 2017, 12(1): 61-70.
[11]
Xie J,Yao B,Han Y, et al. Skin appendage-derived stem cells: cell biology and potential for wound repair[J]. Burns Trauma, 2016, 4: 38.
[12]
Zhou H,You C,Wang X, et al. The progress and challenges for dermal regeneration in tissue engineering[J]. J Biomed Mater Res A, 2017, 105(4): 1208-1218.
[13]
Qi K,Li N,Zhang Z, et al. Tissue regeneration: The crosstalk between mesenchymal stem cells and immune response[J]. Cell Immunol, 2018, 326: 86-93.
[14]
Yang R,Zheng Y,Burrows M, et al. Generation of folliculogenic human epithelial stem cells from induced pluripotent stem cells[J]. Nat Commun, 2014, 5: 3071.
[15]
Cubo N,Garcia M,Del Cañizo JF, et al. 3D bioprinting of functional human skin: production and in vivo analysis[J]. Biofabrication, 2016, 9(1): 015006.
[16]
Sakamoto M,Morimoto N,Ogino S, et al. Efficacy of gelatin gel sheets in sustaining the release of basic fibroblast growth factor for murine skin defects[J]. J Surg Res, 2016, 201(2): 378-387.
[17]
Loan F,Cassidy S,Marsh C, et al. Keratin-based products for effective wound care management in superficial and partial thickness burns injuries[J]. Burns, 2016, 42(3): 541-547.
[18]
Sarkar SD,Farrugia BL,Dargaville TR, et al. Chitosan-collagen scaffolds with nano/microfibrous architecture for skin tissue engineering[J]. J Biomed Mater Res A, 2013, 101(12): 3482-3492.
[19]
Qi Y,Dong Z,Chu H, et al. Denatured acellular dermal matrix seeded with bone marrow mesenchymal stem cells for wound healing in mice[J]. Burns, 2019: pii: S0305-4179(18)31116-1.
[20]
Price BL,Lovering AM,Bowling FL, et al. Development of a Novel Collagen Wound Model To Simulate the Activity and Distribution of Antimicrobials in Soft Tissue during Diabetic Foot Infection[J]. Antimicrob Agents Chemother, 2016, 60(11): 6880-6889.
[21]
Bhardwaj N,Chouhan D,Mandal BB. Tissue Engineered Skin and Wound Healing: Current Strategies and Future Directions[J]. Curr Pharm Des, 2017, 23(24): 3455-3482.
[22]
Pinzón-García AD,Cassini-Vieira P,Ribeiro CC, et al. Efficient cutaneous wound healing using bixin-loaded PCL nanofibers in diabetic mice[J]. J Biomed Mater Res B Appl Biomater, 2017, 105(7): 1938-1949.
[23]
Chen G,Sato T,Ohgushi H, et al. Culturing of skin fibroblasts in a thin PLGA-collagen hybrid mesh[J]. Biomaterials, 2005, 26(15): 2559-2566.
[24]
Marston WA. Dermagraft, a bioengineered human dermal equivalent for the treatment of chronic nonhealing diabetic foot ulcer[J]. Expert Rev Med Devices, 2004, 1(1): 21-31.
[25]
Pyun do G,Choi HJ,Yoon HS, et al. Polyurethane foam containing rhEGF as a dressing material for healing diabetic wounds: Synthesis, characterization, in vitro and in vivo studies[J]. Colloids Surf B Biointerfaces, 2015, 135: 699-706.
[26]
Vacík J,Dvoránková B,Michálek J, et al. Cultivation of human keratinocytes without feeder cells on polymer carriers containing ethoxyethyl methacrylate: in vitro study[J]. J Mater Sci Mater Med, 2008, 19(2): 883-888.
[27]
Smits AI,Bonito V,Stoddart M. In Situ Tissue Engineering: Seducing the Body to Regenerate[J]. Tissue Eng Part A, 2016, 22(17/18): 1061-1062.
[28]
Aibibu D,Hild M,Wöltje M, et al. Textile cell-free scaffolds for in situ tissue engineering applications[J]. J Mater Sci Mater Med, 2016, 27(3): 63.
[29]
Maes C,Araldi E,Haigh K, et al. VEGF-independent cell-autonomous functions of HIF-1alpha regulating oxygen consumption in fetal cartilage are critical for chondrocyte survival[J]. J Bone Miner Res, 2012, 27(3): 596-609.
[30]
Rheinwald JG,Green H. Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells[J]. Cell, 1975, 6(3): 331-343.
[31]
Ronfard V,Rives JM,Neveux Y, et al. Long-term regeneration of human epidermis on third degree burns transplanted with autologous cultured epithelium grown on a fibrin matrix[J]. Transplantation, 2000, 70(11): 1588-1598.
[32]
Qiu D,Wang X,Wang X, et al. Risk factors for necrosis of skin flap-like wounds after ED debridement and suture[J]. Am J Emerg Med, 2019, 37(5): 828-831.
[33]
Yu G,Ye L,Tan W, et al. A novel dermal matrix generated from burned skin as a promising substitute for deep-degree burns therapy[J]. Mol Med Rep, 2016, 13(3): 2570-2582.
[34]
Trent JF,Kirsner RS. Tissue engineered skin: Apligraf, a bi-layered living skin equivalent[J]. Int J Clin Pract, 1998, 52(6): 408-413.
[1] 顾盼盼, 董传莉, 宋梦瑶, 瞿色华, 杨小迪, 周瑞. 不完全性川崎病患儿临床特征及冠状动脉损害情况分析[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(04): 446-451.
[2] 徐志刚, 曹涛, 何亭, 李博奥, 魏婧韬, 张栋梁, 官浩, 杨薛康. 采用抗生素骨水泥治疗糖尿病患者心脏术后胸骨骨髓炎的临床效果观察[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 498-502.
[3] 刘昌玲, 张金丽, 张志, 李孝建, 汤文彬, 胡逸萍, 陈宾, 谢晓娜. 负载人脂肪干细胞外泌体的甲基丙烯酰化明胶水凝胶对人皮肤成纤维细胞增殖和迁移的影响[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 517-525.
[4] 雷子威, 凌萍, 沈纵, 魏晨如, 朱邦晖, 伍国胜, 孙瑜. 类器官肺损伤疾病模型构建及应用的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 531-535.
[5] 宋勤琴, 李双汝, 李林, 杜鹃, 刘继松. 间充质干细胞源性外泌体在改善病理性瘢痕中作用的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 550-553.
[6] 王强, 金光哲, 巨积辉, 王凯, 唐晓强, 吕文涛, 程贺云, 杨林, 王海龙. 超声辅助定位下游离臂内侧皮瓣在修复手指创面中的临床应用[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(05): 393-397.
[7] 关丁丁, 李伟, 孔维诗, 包郁露, 孙瑜. 负载干细胞的光交联蛋白基水凝胶在组织工程中应用的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(05): 447-452.
[8] 傅红兴, 王植楷, 谢贵林, 蔡娟娟, 杨威, 严盛. 间充质干细胞促进胰岛移植效果的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 351-360.
[9] 王大伟, 陆雅斐, 皇甫少华, 陈玉婷, 陈澳, 江滨. 间充质干细胞通过调控免疫机制促进创面愈合的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 361-366.
[10] 刘文竹, 唐窈, 刘付臣. 诱导多潜能干细胞在神经肌肉疾病研究中的应用进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 367-373.
[11] 袁园园, 岳乐淇, 张华兴, 武艳, 李全海. 间充质干细胞在呼吸系统疾病模型中肺组织分布及治疗机制的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 374-381.
[12] 蔡艺丹, 方坚, 张志强, 陈莉, 张世安, 夏磊, 阮梅, 李东良. 经颈静脉肝内门体分流术对肝硬化门脉高压患者肠道菌群及肝功能的影响[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(05): 285-293.
[13] 王俊楠, 刘晔, 李若涵, 叶青松. 间充质干细胞调控肠脑轴治疗神经系统疾病的潜力[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(05): 313-319.
[14] 王向前, 李清峰, 陈磊, 丘文丹, 姚志成, 李熠, 吴荣焕. 姜黄素抑制肝细胞癌索拉非尼耐药作用及其调控机制[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(05): 729-735.
[15] 陈慧, 邹祖鹏, 周田田, 张艺丹, 张海萍. 皮肤镜对头皮红斑性皮肤病辅助鉴别诊断的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 692-698.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?