切换至 "中华医学电子期刊资源库"

中华损伤与修复杂志(电子版) ›› 2019, Vol. 14 ›› Issue (04) : 241 -244. doi: 10.3877/cma.j.issn.1673-9450.2019.04.001

所属专题: 文献

专家述评

组织工程技术在创面修复中的应用
姜笃银1, 潘伊1, 邱道静2,()   
  1. 1. 250033 济南,山东大学第二医院急诊医学中心、整形烧伤外科
    2. 250033 济南,山东大学第二医院急诊医学中心、整形烧伤外科;100043 中国医学科学院,北京协和医学院整形外科医院
  • 收稿日期:2019-07-05 出版日期:2019-08-01
  • 通信作者: 邱道静
  • 基金资助:
    国家自然科学基金(81372074,81071560,81873934); 山东省科技攻关项目(2015GSF118041); 山东省重点研发计划(2019GGX105011); 济南市科技攻关项目(201704129)

Application of tissue engineering technology in wound repair

Duyin Jiang1, Yi Pan1, Daojing Qiu2,()   

  1. 1. Emergency Medical Center, Department of Burns and Plastic Surgery, the Second Hospital of Shandong University, Jinan 250033, China
    2. Emergency Medical Center, Department of Burns and Plastic Surgery, the Second Hospital of Shandong University, Jinan 250033, China; Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100043, China
  • Received:2019-07-05 Published:2019-08-01
  • Corresponding author: Daojing Qiu
  • About author:
    Corresponding author: Qiu Daojing, Email:
引用本文:

姜笃银, 潘伊, 邱道静. 组织工程技术在创面修复中的应用[J]. 中华损伤与修复杂志(电子版), 2019, 14(04): 241-244.

Duyin Jiang, Yi Pan, Daojing Qiu. Application of tissue engineering technology in wound repair[J]. Chinese Journal of Injury Repair and Wound Healing(Electronic Edition), 2019, 14(04): 241-244.

烧创伤等原因引起的大面积皮肤缺损是修复重建外科的一大难题。传统皮肤移植术往往组织来源受限,且存在供皮区损伤等缺点。组织工程技术的进步和商品化皮肤的临床应用,为大面积烧伤和难治性创面修复提供了新的治疗手段。本文回顾组织工程技术在创面修复领域的研究进展,并分析其在研发和转化过程中的关键问题,以期为人类皮肤的功能化构建提供新思路。

Large skin defects caused by burns or trauma are a major problem in repair and reconstruction surgery. Traditional skin graft often has limited tissue sources and has disadvantages such as damage to the donor site. With the development of tissue engineering, commercial artificial skin has been applied in practice, providing a new therapy for refractory ulcers. This article reviews the research progress of tissue engineering technology in the field of wound repair, and analyzes its key problems in the process of research and development, in order to provide new ideas for the functional construction of human skin.

[1]
Groeber F,Holeiter M,Hampel M, et al. Skin tissue engineering--in vivo and in vitro applications[J]. Adv Drug Deliv Rev, 2011, 63(4/5): 352-366.
[2]
Cao Y,Vacanti JP,Paige KT, et al. Transplantation of chondrocytes utilizing a polymer-cell construct to produce tissue-engineered cartilage in the shape of a human ear[J]. Plast Reconstr Surg, 1997, 100(2): 297-302; discussion 303-304.
[3]
Gonfiotti A,Jaus MO,Barale D, et al. The first tissue-engineered airway transplantation: 5-year follow-up results[J]. Lancet, 2014, 383(9913): 238-244.
[4]
Vacanti JP,Kulig KM. Liver cell therapy and tissue engineering for transplantation[J]. Semin Pediatr Surg, 2014, 23(3): 150-155.
[5]
Shiba Y. New strategy for the treatment of myocarditis by cell-sheet technology[J]. Circ J, 2015, 79(1): 51-52.
[6]
Ma H,Feng C,Chang J, et al. 3D-printed bioceramic scaffolds: From bone tissue engineering to tumor therapy[J]. Acta Biomater, 2018, 79: 37-59.
[7]
Boni R,Ali A,Shavandi A, et al. Current and novel polymeric biomaterials for neural tissue engineering[J]. J Biomed Sci, 2018, 25(1): 90.
[8]
Yu JR,Navarro J,Coburn JC, et al. Current and Future Perspectives on Skin Tissue Engineering: Key Features of Biomedical Research, Translational Assessment, and Clinical Application[J]. Adv Healthc Mater, 2019, 8(5): e1801471.
[9]
Turner NJ,Badylak SF. The Use of Biologic Scaffolds in the Treatment of Chronic Nonhealing Wounds[J]. Adv Wound Care (New Rochelle), 2015, 4(8): 490-500.
[10]
Maranda EL,Rodriguez-Menocal L,Badiavas EV. Role of Mesenchymal Stem Cells in Dermal Repair in Burns and Diabetic Wounds[J]. Curr Stem Cell Res Ther, 2017, 12(1): 61-70.
[11]
Xie J,Yao B,Han Y, et al. Skin appendage-derived stem cells: cell biology and potential for wound repair[J]. Burns Trauma, 2016, 4: 38.
[12]
Zhou H,You C,Wang X, et al. The progress and challenges for dermal regeneration in tissue engineering[J]. J Biomed Mater Res A, 2017, 105(4): 1208-1218.
[13]
Qi K,Li N,Zhang Z, et al. Tissue regeneration: The crosstalk between mesenchymal stem cells and immune response[J]. Cell Immunol, 2018, 326: 86-93.
[14]
Yang R,Zheng Y,Burrows M, et al. Generation of folliculogenic human epithelial stem cells from induced pluripotent stem cells[J]. Nat Commun, 2014, 5: 3071.
[15]
Cubo N,Garcia M,Del Cañizo JF, et al. 3D bioprinting of functional human skin: production and in vivo analysis[J]. Biofabrication, 2016, 9(1): 015006.
[16]
Sakamoto M,Morimoto N,Ogino S, et al. Efficacy of gelatin gel sheets in sustaining the release of basic fibroblast growth factor for murine skin defects[J]. J Surg Res, 2016, 201(2): 378-387.
[17]
Loan F,Cassidy S,Marsh C, et al. Keratin-based products for effective wound care management in superficial and partial thickness burns injuries[J]. Burns, 2016, 42(3): 541-547.
[18]
Sarkar SD,Farrugia BL,Dargaville TR, et al. Chitosan-collagen scaffolds with nano/microfibrous architecture for skin tissue engineering[J]. J Biomed Mater Res A, 2013, 101(12): 3482-3492.
[19]
Qi Y,Dong Z,Chu H, et al. Denatured acellular dermal matrix seeded with bone marrow mesenchymal stem cells for wound healing in mice[J]. Burns, 2019: pii: S0305-4179(18)31116-1.
[20]
Price BL,Lovering AM,Bowling FL, et al. Development of a Novel Collagen Wound Model To Simulate the Activity and Distribution of Antimicrobials in Soft Tissue during Diabetic Foot Infection[J]. Antimicrob Agents Chemother, 2016, 60(11): 6880-6889.
[21]
Bhardwaj N,Chouhan D,Mandal BB. Tissue Engineered Skin and Wound Healing: Current Strategies and Future Directions[J]. Curr Pharm Des, 2017, 23(24): 3455-3482.
[22]
Pinzón-García AD,Cassini-Vieira P,Ribeiro CC, et al. Efficient cutaneous wound healing using bixin-loaded PCL nanofibers in diabetic mice[J]. J Biomed Mater Res B Appl Biomater, 2017, 105(7): 1938-1949.
[23]
Chen G,Sato T,Ohgushi H, et al. Culturing of skin fibroblasts in a thin PLGA-collagen hybrid mesh[J]. Biomaterials, 2005, 26(15): 2559-2566.
[24]
Marston WA. Dermagraft, a bioengineered human dermal equivalent for the treatment of chronic nonhealing diabetic foot ulcer[J]. Expert Rev Med Devices, 2004, 1(1): 21-31.
[25]
Pyun do G,Choi HJ,Yoon HS, et al. Polyurethane foam containing rhEGF as a dressing material for healing diabetic wounds: Synthesis, characterization, in vitro and in vivo studies[J]. Colloids Surf B Biointerfaces, 2015, 135: 699-706.
[26]
Vacík J,Dvoránková B,Michálek J, et al. Cultivation of human keratinocytes without feeder cells on polymer carriers containing ethoxyethyl methacrylate: in vitro study[J]. J Mater Sci Mater Med, 2008, 19(2): 883-888.
[27]
Smits AI,Bonito V,Stoddart M. In Situ Tissue Engineering: Seducing the Body to Regenerate[J]. Tissue Eng Part A, 2016, 22(17/18): 1061-1062.
[28]
Aibibu D,Hild M,Wöltje M, et al. Textile cell-free scaffolds for in situ tissue engineering applications[J]. J Mater Sci Mater Med, 2016, 27(3): 63.
[29]
Maes C,Araldi E,Haigh K, et al. VEGF-independent cell-autonomous functions of HIF-1alpha regulating oxygen consumption in fetal cartilage are critical for chondrocyte survival[J]. J Bone Miner Res, 2012, 27(3): 596-609.
[30]
Rheinwald JG,Green H. Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells[J]. Cell, 1975, 6(3): 331-343.
[31]
Ronfard V,Rives JM,Neveux Y, et al. Long-term regeneration of human epidermis on third degree burns transplanted with autologous cultured epithelium grown on a fibrin matrix[J]. Transplantation, 2000, 70(11): 1588-1598.
[32]
Qiu D,Wang X,Wang X, et al. Risk factors for necrosis of skin flap-like wounds after ED debridement and suture[J]. Am J Emerg Med, 2019, 37(5): 828-831.
[33]
Yu G,Ye L,Tan W, et al. A novel dermal matrix generated from burned skin as a promising substitute for deep-degree burns therapy[J]. Mol Med Rep, 2016, 13(3): 2570-2582.
[34]
Trent JF,Kirsner RS. Tissue engineered skin: Apligraf, a bi-layered living skin equivalent[J]. Int J Clin Pract, 1998, 52(6): 408-413.
[1] 刘镭, 杨昕, 许晓华, 林胜谋, 熊初琴, 农丽录, 董振宇, 李胜利. 中孕期胎儿鼻前皮肤厚度及鼻骨长度筛查胎儿染色体病的临床价值[J]. 中华医学超声杂志(电子版), 2023, 20(05): 506-510.
[2] 卫杨文祥, 黄浩然, 刘予豪, 陈镇秋, 王海彬, 周驰. 股骨头坏死细胞治疗的前景和挑战[J]. 中华关节外科杂志(电子版), 2023, 17(05): 694-700.
[3] 张健, 刘小龙, 查天建, 姚俊杰, 王傑. 富含血小板血浆联合异种脱细胞真皮基质修复糖尿病足缺血性创面的临床效果[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 503-506.
[4] 朴广昊, 李屹洲, 刘瑞, 赵建民, 王凌峰. 皮肤撕脱伤撕脱皮瓣活力早期评估与修复的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 528-532.
[5] 韩李念, 王君. 放射性皮肤损伤治疗的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 533-537.
[6] 陈继秋, 朱世辉. 皮肤牵张装置的临床应用现状[J]. 中华损伤与修复杂志(电子版), 2023, 18(05): 451-453.
[7] 全勇, 冉新泽, 胡梦佳, 陈芳, 陈乃成, 廖伟年, 陈默, 申明强, 陈石磊, 王崧, 王军平. 低氧习服在小鼠造血干细胞急性放射损伤修复中的作用观察[J]. 中华损伤与修复杂志(电子版), 2023, 18(04): 293-298.
[8] 郭姗姗, 朱磊, 刘柳, 高燕, 梁应凤, 朱丽娜, 张丹, 张涛. 对放射性皮肤损伤链式管理模式联合结构化皮肤干预的临床疗效分析[J]. 中华损伤与修复杂志(电子版), 2023, 18(04): 306-311.
[9] 贾蔓箐, 卞婧, 周业平. 对小剂量胰岛素局部注射促进脂肪干细胞移植成活及改善糖尿病创面愈合临床观察[J]. 中华损伤与修复杂志(电子版), 2023, 18(04): 312-316.
[10] 王湘滔, 张爱娟, 王万春, 王芳萍, 徐颖婕, 孟洋. 中药白及在口腔疾病中的研究与应用[J]. 中华口腔医学研究杂志(电子版), 2023, 17(05): 371-375.
[11] 孔欣, 宋宝全, 刘吟, 张剑, 仇惠英, 吴德沛. 异基因造血干细胞移植并发难治性呃逆一例[J]. 中华移植杂志(电子版), 2023, 17(04): 253-255.
[12] 钟文文, 李科, 刘碧好, 蔡炳, 脱颖, 叶雷, 马波, 瞿虎, 汪中扬, 王德娟, 邱剑光. 不同比例聚乳酸/丝素蛋白复合支架在兔尿道缺损修复中的疗效[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(05): 516-522.
[13] 唐英俊, 李华娟, 王赛妮, 徐旺, 刘峰, 李羲, 郝新宝, 黄华萍. 人脐带间充质干细胞治疗COPD小鼠及机制分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 476-480.
[14] 乔小梅, 孔凯丽, 方敬爱, 张晓东. "肠-皮肤轴"与尿毒症皮肤病变的关系研究进展[J]. 中华肾病研究电子杂志, 2023, 12(05): 291-294.
[15] 梁宇同, 丁旭, 马国慧, 黄艳红. 间充质干细胞在宫腔粘连治疗中的研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(05): 596-599.
阅读次数
全文


摘要