切换至 "中华医学电子期刊资源库"

中华损伤与修复杂志(电子版) ›› 2019, Vol. 14 ›› Issue (04) : 245 -248. doi: 10.3877/cma.j.issn.1673-9450.2019.04.002

所属专题: 文献

专家述评

组织工程技术应用于创面修复的现状与未来
韩焱福1,()   
  1. 1. 100038 首都医科大学附属北京世纪坛医院整形外科
  • 收稿日期:2019-07-01 出版日期:2019-08-01
  • 通信作者: 韩焱福
  • 基金资助:
    全军医学科技"十二五"科研面上项目(CWS11J111); 北京市科技新星与领军人才培养项目(Z1511000003150128)

Current situation and future of tissue engineering applied in wound repair

Yanfu Han1,()   

  1. 1. Department of Plastic Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
  • Received:2019-07-01 Published:2019-08-01
  • Corresponding author: Yanfu Han
  • About author:
    Corresponding author: Han Yanfu, Email:
引用本文:

韩焱福. 组织工程技术应用于创面修复的现状与未来[J/OL]. 中华损伤与修复杂志(电子版), 2019, 14(04): 245-248.

Yanfu Han. Current situation and future of tissue engineering applied in wound repair[J/OL]. Chinese Journal of Injury Repair and Wound Healing(Electronic Edition), 2019, 14(04): 245-248.

组织工程技术已在创面修复领域应用数十年,先后研制出了不同类型的组织工程皮肤替代物。随着3D生物打印技术的发展,为组织工程皮肤产品的研制提供了最理想的方法。目前,组织工程技术虽取得了不少进展,同时也呈现出诸多发展机遇。本文回顾和分析了组织工程在创面修复中的关键要素,包括细胞疗法、支架材料及其生长因子的调节,并提出了组织工程技术在创面修复中的意义、难点、热点和今后发展的策略与方向。

Tissue engineering technology has been applied in the field of wound repair for decades, and different types of tissue engineering skin substitutes have been developed successively. With the development of 3D bioprinting technology, it provides an ideal method for the development of tissue engineered skin products. At present, although a lot of progress has been made, at the same time, there are also many opportunities for development. This paper reviews and analyses the key elements of tissue engineering in wound repair, including cell therapy, scaffold material and growth factor regulation, and puts forward the significance, difficulties, hotspots and future development strategies and directions of tissue engineering in wound repair.

[1]
南文滨, 陈红丽, 刘瑞,等. 胶原-纤维蛋白胶膜复合脐带间充质干细胞修复小鼠全层皮肤创面的实验研究[J/CD]. 中华损伤与修复杂志(电子版), 2015, 10(1): 50-55.
[2]
王新刚, 吴攀, 翁婷婷,等. 浅议目前组织工程皮肤研发面临的关键问题[J/CD]. 中华损伤与修复杂志(电子版), 2017, 12(3): 164-168.
[3]
Lee KH. Tissue-engineered human living skin substitutes: development and clinical application[J]. Yonsei Med J, 2000, 41(6): 774-779.
[4]
Ho J,Walsh C,Yue D, et al. Current Advancements and Strategies in Tissue Engineering for Wound Healing: A Comprehensive Review[J]. Adv Wound Care (New Rochelle), 2017 , 6(6): 191-209.
[5]
Hart CE,Loewen-Rodriguez A,Lessem J. Dermagraft: Use in the Treatment of Chronic Wounds[J]. Adv Wound Care (New Rochelle), 2012, 1(3): 138-141.
[6]
Sorice S,Rustad KC,Li AY, et al. The role of stem cell therapeutics in wound healing: Current understanding and future directions[J]. Plast Reconstr Surg, 2016, 138(3 Suppl): 31S-41S.
[7]
Dazzi F,Lopes L,Weng L. Mesenchymal stromal cells: a key player in 'innate tolerance'?[J]. Immunology, 2012, 137(3): 206-213.
[8]
Caplan AI,Dennis JE. Mesenchymal stem cells as trophic mediators[J]. J Cell Biochem, 2006, 98(5): 1076-1084.
[9]
Mansilla E,Spretz R,Larsen G, et al. Outstanding survival and regeneration process by the use of intelligent acellular dermal matrices and mesenchymal stem cells in a burn pig model[J]. Transplant Proc, 2010, 42(10): 4275-4278.
[10]
Li H,Fu X,Ouyang Y, et al. Adult bone-marrowderived mesenchymal stem cells contribute to wound healing of skin appendages[J]. Cell Tissue Res, 2006, 326(3): 7257736.
[11]
Hocking AM,Gibran NS. Mesenchymal stem cells: Paracrine signaling and differentiation during cutaneous wound repair[J]. Exp Cell Res, 2010, 316(14): 2213-2219.
[12]
Duscher D,Barrera J,Wong VW, et al. Stem Cells in Wound Healing: The Future of Regenerative Medicine? A Mini-Review[J]. Gerontology, 2016, 62(2): 216-225.
[13]
Ma PX. Biomimetic materials for tissue engineering[J]. Adv Drug Deliv Rev, 2008, 60(2): 184-198.
[14]
Crapo PM,Gilbert TW,Badylak SF. An overview of tissue and whole organ decellularization processes[J]. Biomaterials, 2011, 32(12): 3233-3243.
[15]
Climov M,Bayer LR,Moscoso AV, et al. The Role of Dermal Matrices in Treating Inflammatory and Diabetic Wounds[J]. Plast Reconstr Surg, 2016, 138(3 Suppl): 148S-157S.
[16]
Millán-Rivero JE,Martínez CM,Romecín PA, et al. Silk fibroin scaffolds seeded with Wharton's jelly mesenchymal stem cells enhance re-epithelialization and reduce formation of scar tissue after cutaneous wound healing[J]. Stem Cell Res Ther, 2019, 10(1): 126.
[17]
Rowley AT,Nagalla RR,Wang SW, et al. Extracellular Matrix-Based Strategies for Immunomodulatory Biomaterials Engineering[J]. Adv Healthc Mater, 2019, 8(8): e1801578.
[18]
Ninan N,Muthiah M,Park IK, et al. Natural polymer/inorganic material based hybrid scaffolds for skin wound healing[J]. Polym Rev, 2015, 55(3): 453-490.
[19]
Cubo N,Garcia M,Del Cañizo JF, et al. 3D bioprinting of functional human skin: Production and in vivo analysis[J]. Biofabrication, 2016, 9(1): 015006.
[20]
van Kogelenberg S,Yue Z,Dinoro JN, et al. Three-Dimensional Printing and Cell Therapy for Wound Repair[J]. Adv Wound Care (New Rochelle), 2018, 7(5): 145-155.
[21]
Murphy SV,Atala A. 3D bioprinting of tissues and organs[J]. Nat Biotechnol, 2014, 32(3): 773-785.
[22]
Cheema U,Alekseeva T,Abou-Neel EA, et al. Switching off angiogenic signalling: Creating channelled constructs for adequate oxygen delivery in tissue engineered constructs[J]. Eur Cells Mater, 2010, 20: 274-281; discussion 280-281.
[23]
Yoshikawa T,Mitsuno H,Nonaka I, et al. Wound therapy by marrow mesenchymal cell transplantation[J]. Plast Reconstr Surg, 2008, 121(3): 860-877.
[24]
Powell RJ,Marston WA,Berceli SA, et al. Cellular therapy with ixmyelocel-T to treat critical limb ischemia: The randomized, double-blind, placebo-controlled RESTORE-CLI trial[J]. Mol Ther, 2012, 20(6): 1280-1286.
[25]
Sorice S,Rustad KC,Li AY, et al. The role of stem cell therapeutics in wound healing: Current understanding and future directions[J]. Plast Reconstr Surg, 2016, 138(3 Suppl): 31S-41S.
[1] 宇文培之, 程鑫群, 雷翔, 张晓娟, 朱燕宾, 吕红芝, 陈伟, 张英泽. 肩胛骨三角支点三角区的三维测量及形态学分析[J/OL]. 中华关节外科杂志(电子版), 2024, 18(01): 78-85.
[2] 徐志刚, 曹涛, 何亭, 李博奥, 魏婧韬, 张栋梁, 官浩, 杨薛康. 采用抗生素骨水泥治疗糖尿病患者心脏术后胸骨骨髓炎的临床效果观察[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 498-502.
[3] 关丁丁, 李伟, 孔维诗, 包郁露, 孙瑜. 负载干细胞的光交联蛋白基水凝胶在组织工程中应用的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(05): 447-452.
[4] 王强, 金光哲, 巨积辉, 王凯, 唐晓强, 吕文涛, 程贺云, 杨林, 王海龙. 超声辅助定位下游离臂内侧皮瓣在修复手指创面中的临床应用[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(05): 393-397.
[5] 孙勇, 彭曦. 重视烧伤创面愈合中的葡萄糖代谢以优化营养治疗策略[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(04): 277-281.
[6] 狄海萍, 郑军杰, 刘磊, 郭海娜, 邢培朋, 曹大勇, 马超, 黄万新, 张博, 夏成德, 周超. 人工真皮联合富血小板纤维蛋白修复小面积深度创面的临床疗效[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(04): 288-293.
[7] 崔子豪, 阳跃, 赵景峰, 冯光, 庹晓晔. Fournier坏疽创面感染控制策略及创面修复的临床分析[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(04): 319-323.
[8] 廖晓霜, 曾李, 杨波. 脱细胞同种异体真皮联合自体皮修复糖尿病足创面的临床效果[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(01): 46-50.
[9] 程宇欣, 张伟, 孔维诗, 孙瑜. 胶原蛋白敷料在创面修复中应用的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(01): 73-77.
[10] 张健, 刘小龙, 查天建, 姚俊杰, 王傑. 富含血小板血浆联合异种脱细胞真皮基质修复糖尿病足缺血性创面的临床效果[J/OL]. 中华损伤与修复杂志(电子版), 2023, 18(06): 503-506.
[11] 王湘滔, 张爱娟, 王万春, 王芳萍, 徐颖婕, 孟洋. 中药白及在口腔疾病中的研究与应用[J/OL]. 中华口腔医学研究杂志(电子版), 2023, 17(05): 371-375.
[12] 钟文文, 李科, 刘碧好, 蔡炳, 脱颖, 叶雷, 马波, 瞿虎, 汪中扬, 王德娟, 邱剑光. 不同比例聚乳酸/丝素蛋白复合支架在兔尿道缺损修复中的疗效[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(05): 516-522.
[13] 万周程, 钟章锋, 钟侨霖, 王景浩, 刘婷, 王华军, 郑小飞. 中药有效成分结合生物材料在骨组织工程中作用的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(04): 249-253.
[14] 焦振东, 惠鹏, 金上博. 三维可视化结合ICG显像技术在腹腔镜肝切除术治疗复发性肝癌中的应用[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 859-864.
[15] 费发珠, 张帅, 刘发蓉, 芦佳骏, 任宾, 樊海宁. 三维可视化联合术中ICG荧光引导腹腔镜肝包虫病切除术一例[J/OL]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 577-580.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?