切换至 "中华医学电子期刊资源库"

中华损伤与修复杂志(电子版) ›› 2019, Vol. 14 ›› Issue (05) : 384 -387. doi: 10.3877/cma.j.issn.1673-9450.2019.05.013

所属专题: 文献

综述

干细胞抑制病理性瘢痕形成的研究进展
孔维诗1, 肖永强1, 孙瑜1,()   
  1. 1. 200433 上海,海军军医大学第一附属医院烧伤科
  • 收稿日期:2019-08-13 出版日期:2019-10-01
  • 通信作者: 孙瑜
  • 基金资助:
    国家自然科学基金面上项目(81772125); 公益性行业科研专项项目(20150208)

Research progress on stem cell therapy for pathological skin scars

Weishi Kong1, Yongqiang Xiao1, Yu Sun1,()   

  1. 1. Department of Burns, First Affiliated Hospital, Navy Medical University, Shanghai 200433, China
  • Received:2019-08-13 Published:2019-10-01
  • Corresponding author: Yu Sun
  • About author:
    Corresponding author: Sun Yu, Email:
引用本文:

孔维诗, 肖永强, 孙瑜. 干细胞抑制病理性瘢痕形成的研究进展[J]. 中华损伤与修复杂志(电子版), 2019, 14(05): 384-387.

Weishi Kong, Yongqiang Xiao, Yu Sun. Research progress on stem cell therapy for pathological skin scars[J]. Chinese Journal of Injury Repair and Wound Healing(Electronic Edition), 2019, 14(05): 384-387.

病理性瘢痕当前临床治疗方法的效果尚不理想,干细胞因其自我更新和分化能力有望给治疗带来新思路,本文介绍了病理性瘢痕干细胞疗法中常见的不同来源的细胞类型,包括各类间充质干细胞、人羊膜上皮细胞、胚胎干细胞和诱导性多能干细胞,以及各类干细胞用于临床治疗的优、缺点,指出了干细胞疗法的关键突破点在于分泌蛋白的调控、干细胞使用的时机、干性的传递与维持、为患者选择合适的干细胞群等,为病理性瘢痕干细胞疗法的发展方向提供了参考。

The current clinical treatment effect of hypertrophic scar is not satisfactory. Stem cells are expected to bring new ideas to treatment because of their ability to self-renew and differentiate. This article introduces some scar stem cells of different sources and their advantages and disadvantages, including various mesenchymal stem cells, human amniotic epithelial cells, embryonic stem cells and induced pluripotent stem cells etc. Besides, this article points out that the key points of breakthrough in stem cell therapy are the regulation of secreted protein, the proper using time of stem cells, the transmission and maintenance of stemness, and the selection of appropriate stem cell population for patients, etc. and provide a reference for the development of pathological scar stem cell therapy.

表1 用于治疗病理性瘢痕的干细胞的优势与不足
[1]
Berman B, Maderal A, Raphael B. Keloids and Hypertrophic Scars: Pathophysiology, Classification, and Treatment[J]. Dermatol Surg, 2017, 43 Suppl 1: S3-S18.
[2]
Zhang C, Chen Y, Fu X. Sweat gland regeneration after burn injury: is stem cell therapy a new hope?[J]. Cytotherapy, 2015, 17(5): 526-535.
[3]
Li Q, Zhang C, Fu X. Will stem cells bring hope to pathological skin scar treatment?[J]. Cytotherapy, 2016, 18(8): 943-956.
[4]
Fu X, Li H. Mesenchymal stem cells and skin wound repair and regeneration: possibilities and questions[J]. Cell Tissue Res, 2009, 335(2): 317-321.
[5]
Wang J, Liao L, Wang S, et al. Cell therapy with autologous mesenchymal stem cells-how the disease process impacts clinical considerations[J]. Cytotherapy, 2013, 15(8): 893-904.
[6]
Ding L, Li X, Sun H, et al. Transplantation of bone marrow mesenchymal stem cells on collagen scaffolds for the functional regeneration of injured rat uterus[J]. Biomaterials, 2014, 35(18): 4888-4900.
[7]
Huang S, Wu Y, Gao D, et al. Paracrine action of mesenchymal stromal cells delivered by microspheres contributes to cutaneous wound healing and prevents scar formation in mice[J]. Cytotherapy, 2015, 17(7): 922-931.
[8]
Li Z, Wang H, Yang B, et al. Three-dimensional graphene foams loaded with bone marrow derived mesenchymal stem cells promote skin wound healing with reduced scarring[J]. Mater Sci Eng C Mater Biol Appl, 2015, 57: 181-188.
[9]
Jeong JH. Adipose stem cells and skin repair[J]. Curr Stem Cell Res Ther, 2010, 5(2): 137-140.
[10]
Liu J, Ren J, Su L, et al. Human adipose tissue-derived stem cells inhibit the activity of keloid fibroblasts and fibrosis in a keloid model by paracrine signaling[J]. Burns, 2018, 44(2): 370-385.
[11]
Wang L, Hu L, Zhou X, et al. Exosomes secreted by human adipose mesenchymal stem cells promote scarless cutaneous repair by regulating extracellular matrix remodelling[J]. Sci Rep, 2017, 7(1): 13321.
[12]
Zonari A, Martins TM, Paula AC, et al. Polyhydroxybutyrate-co-hydroxyvalerate structures loaded with adipose stem cells promote skin healing with reduced scarring[J]. Acta Biomater, 2015, 17: 170-181.
[13]
Kocaefe C, Balci D, Hayta BB, et al. Reprogramming of human umbilical cord stromal mesenchymal stem cells for myogenic differentiation and muscle repair[J]. Stem Cell Rev Rep, 2010, 6(4): 512-522.
[14]
Peng J, Wang Y, Zhang L, et al. Human umbilical cord Wharton′s jelly-derived mesenchymal stem cells differentiate into a Schwann-cell phenotype and promote neurite outgrowth in vitro[J]. Brain Res Bull, 2011, 84(3): 235-243.
[15]
Bongso A, Fong CY. The therapeutic potential, challenges and future clinical directions of stem cells from the Wharton′s jelly of the human umbilical cord[J]. Stem Cell Rev Rep, 2013, 9(2): 226-240.
[16]
Anzalone R, Lo Iacono M, Corrao S, et al. New emerging potentials for human Wharton′s jelly mesenchymal stem cells: immunological features and hepatocyte-like differentiative capacity[J]. Stem Cells Dev, 2010, 19(4): 423-438.
[17]
Nekanti U, Rao VB, Bahirvani AG, et al. Long-term expansion and pluripotent marker array analysis of Wharton′s jelly-derived mesenchymal stem cells[J]. Stem Cells Dev, 2010, 19(1): 117-130.
[18]
Fan CG, Zhang QJ, Zhou JR. Therapeutic potentials of mesenchymal stem cells derived from human umbilical cord[J]. Stem Cell Rev Rep, 2011, 7(1): 195-207.
[19]
Batsali AK, Pontikoglou C, Koutroulakis D, et al. Differential expression of cell cycle and WNT pathway-related genes accounts for differences in the growth and differentiation potential of Wharton′s jelly and bone marrow-derived mesenchymal stem cells[J]. Stem Cell Res Ther, 2017, 8(1): 102.
[20]
Himal I, Goyal U, Ta M. Evaluating Wharton′s Jelly-Derived Mesenchymal Stem Cell′s Survival, Migration, and Expression of Wound Repair Markers under Conditions of Ischemia-Like Stress[J]. Stem Cells Int, 2017, 2017: 5259849.
[21]
Bakhtyar N, Jeschke MG, Herer E, et al. Exosomes from acellular Wharton′s jelly of the human umbilical cord promotes skin wound healing[J]. Stem Cell Res Ther, 2018, 9(1): 193.
[22]
Zheng Y, Zheng S, Fan X, et al. Amniotic Epithelial Cells Accelerate Diabetic Wound Healing by Modulating Inflammation and Promoting Neovascularization[J]. Stem Cells Int, 2018, 2018: 1082076.
[23]
Zhao B, Zhang Y, Han S, et al. Exosomes derived from human amniotic epithelial cells accelerate wound healing and inhibit scar formation[J]. J Mol Histol, 2017, 48(2): 121-132.
[24]
Zhao B, Liu JQ, Yang C, et al. Human amniotic epithelial cells attenuate TGF-β1-induced human dermal fibroblast transformation to myofibroblasts via TGF-β1/Smad3 pathway[J]. Cytotherapy, 2016, 18(8): 1012-1024.
[25]
Troy TC, Turksen K. Using high-throughput immunoblotting to identify proteins involved in the differentiation of ES cells along the hair follicle lineage in vitro[J]. Stem Cell Rev Rep, 2011, 7(4): 1041-1045.
[26]
Dreymueller D, Denecke B, Ludwig A, et al. Embryonic stem cell-derived M2-like macrophages delay cutaneous wound healing[J]. Wound Repair Regen, 2013, 21(1): 44-54.
[27]
Liu SP, Fu RH, Huang YC, et al. Induced pluripotent stem (iPS) cell research overview[J]. Cell Transplant, 2011, 20(1): 15-19.
[28]
Ren Y, Deng CL, Wan WD, et al. Suppressive effects of induced pluripotent stem cell-conditioned medium on in vitro hypertrophic scarring fibroblast activation[J]. Mol Med Rep, 2015, 11(4): 2471-2476.
[29]
Sorrell JM, Caplan AI. Topical delivery of mesenchymal stem cells and their function in wounds[J]. Stem Cell Res Ther, 2010, 1(4): 30.
[1] 庄蕙嘉, 岳志成, 钟坤岑, 朱慧莉. 乳腺癌患者生育力保存的研究进展[J]. 中华乳腺病杂志(电子版), 2023, 17(04): 238-242.
[2] 卫杨文祥, 黄浩然, 刘予豪, 陈镇秋, 王海彬, 周驰. 股骨头坏死细胞治疗的前景和挑战[J]. 中华关节外科杂志(电子版), 2023, 17(05): 694-700.
[3] 罗丹, 孔为民, 陈姝宁, 赵小玲, 谢云凯. 子宫内膜异位症患者在位及异位内膜上皮细胞-间充质转化相关生物标志物的变化[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 530-539.
[4] 韩李念, 王君. 放射性皮肤损伤治疗的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 533-537.
[5] 全勇, 冉新泽, 胡梦佳, 陈芳, 陈乃成, 廖伟年, 陈默, 申明强, 陈石磊, 王崧, 王军平. 低氧习服在小鼠造血干细胞急性放射损伤修复中的作用观察[J]. 中华损伤与修复杂志(电子版), 2023, 18(04): 293-298.
[6] 贾蔓箐, 卞婧, 周业平. 对小剂量胰岛素局部注射促进脂肪干细胞移植成活及改善糖尿病创面愈合临床观察[J]. 中华损伤与修复杂志(电子版), 2023, 18(04): 312-316.
[7] 李晔, 何洁, 胡锦秀, 王金祥, 田川, 潘杭, 陈梦蝶, 赵晓娟, 叶丽, 张敏, 潘兴华. 高活性间充质干细胞干预猕猴卵巢衰老的研究[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 210-219.
[8] 龙慧玲, 林蜜, 邵婷. 三维球体间充质干细胞培养技术的研究进展及其应用[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 229-234.
[9] 刘文慧, 吴涛, 张曦. 间充质干细胞联合血小板生成素受体激动剂在异基因造血干细胞移植后血小板恢复中的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 242-246.
[10] 王红敏, 谢云波, 王彦虎, 王福生. 间充质干细胞治疗新冠病毒感染的临床研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 247-256.
[11] 孙文琦, 吴欣荣, 王运荣, 赵贝, 窦晓坛, 李雯, 邹晓平, 王雷, 陈敏. 结直肠上皮细胞ROS及FH检测对结直肠癌筛查的应用价值[J]. 中华结直肠疾病电子杂志, 2023, 12(04): 326-330.
[12] 杨蕴钊, 周诚, 石美涵, 赵静, 白雪源. 人羊水间充质干细胞对膜性肾病大鼠的治疗作用[J]. 中华肾病研究电子杂志, 2023, 12(04): 181-186.
[13] 宋艳琪, 任雪景, 王文娟, 韩秋霞, 续玥, 庄凯婷, 肖拓, 蔡广研. 间充质干细胞对顺铂诱导的小鼠急性肾损伤中细胞铁死亡的作用[J]. 中华肾病研究电子杂志, 2023, 12(04): 187-193.
[14] 陈婷婷, 江学良, 余佳丽, 柯剑林. 干细胞治疗炎症性肠病的安全性[J]. 中华消化病与影像杂志(电子版), 2023, 13(04): 193-198.
[15] 梁宇同, 丁旭, 马国慧, 黄艳红. 间充质干细胞在宫腔粘连治疗中的研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(05): 596-599.
阅读次数
全文


摘要