切换至 "中华医学电子期刊资源库"

中华损伤与修复杂志(电子版) ›› 2019, Vol. 14 ›› Issue (05) : 384 -387. doi: 10.3877/cma.j.issn.1673-9450.2019.05.013

所属专题: 文献

综述

干细胞抑制病理性瘢痕形成的研究进展
孔维诗1, 肖永强1, 孙瑜1,()   
  1. 1. 200433 上海,海军军医大学第一附属医院烧伤科
  • 收稿日期:2019-08-13 出版日期:2019-10-01
  • 通信作者: 孙瑜
  • 基金资助:
    国家自然科学基金面上项目(81772125); 公益性行业科研专项项目(20150208)

Research progress on stem cell therapy for pathological skin scars

Weishi Kong1, Yongqiang Xiao1, Yu Sun1,()   

  1. 1. Department of Burns, First Affiliated Hospital, Navy Medical University, Shanghai 200433, China
  • Received:2019-08-13 Published:2019-10-01
  • Corresponding author: Yu Sun
  • About author:
    Corresponding author: Sun Yu, Email:
引用本文:

孔维诗, 肖永强, 孙瑜. 干细胞抑制病理性瘢痕形成的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2019, 14(05): 384-387.

Weishi Kong, Yongqiang Xiao, Yu Sun. Research progress on stem cell therapy for pathological skin scars[J/OL]. Chinese Journal of Injury Repair and Wound Healing(Electronic Edition), 2019, 14(05): 384-387.

病理性瘢痕当前临床治疗方法的效果尚不理想,干细胞因其自我更新和分化能力有望给治疗带来新思路,本文介绍了病理性瘢痕干细胞疗法中常见的不同来源的细胞类型,包括各类间充质干细胞、人羊膜上皮细胞、胚胎干细胞和诱导性多能干细胞,以及各类干细胞用于临床治疗的优、缺点,指出了干细胞疗法的关键突破点在于分泌蛋白的调控、干细胞使用的时机、干性的传递与维持、为患者选择合适的干细胞群等,为病理性瘢痕干细胞疗法的发展方向提供了参考。

The current clinical treatment effect of hypertrophic scar is not satisfactory. Stem cells are expected to bring new ideas to treatment because of their ability to self-renew and differentiate. This article introduces some scar stem cells of different sources and their advantages and disadvantages, including various mesenchymal stem cells, human amniotic epithelial cells, embryonic stem cells and induced pluripotent stem cells etc. Besides, this article points out that the key points of breakthrough in stem cell therapy are the regulation of secreted protein, the proper using time of stem cells, the transmission and maintenance of stemness, and the selection of appropriate stem cell population for patients, etc. and provide a reference for the development of pathological scar stem cell therapy.

表1 用于治疗病理性瘢痕的干细胞的优势与不足
[1]
Berman B, Maderal A, Raphael B. Keloids and Hypertrophic Scars: Pathophysiology, Classification, and Treatment[J]. Dermatol Surg, 2017, 43 Suppl 1: S3-S18.
[2]
Zhang C, Chen Y, Fu X. Sweat gland regeneration after burn injury: is stem cell therapy a new hope?[J]. Cytotherapy, 2015, 17(5): 526-535.
[3]
Li Q, Zhang C, Fu X. Will stem cells bring hope to pathological skin scar treatment?[J]. Cytotherapy, 2016, 18(8): 943-956.
[4]
Fu X, Li H. Mesenchymal stem cells and skin wound repair and regeneration: possibilities and questions[J]. Cell Tissue Res, 2009, 335(2): 317-321.
[5]
Wang J, Liao L, Wang S, et al. Cell therapy with autologous mesenchymal stem cells-how the disease process impacts clinical considerations[J]. Cytotherapy, 2013, 15(8): 893-904.
[6]
Ding L, Li X, Sun H, et al. Transplantation of bone marrow mesenchymal stem cells on collagen scaffolds for the functional regeneration of injured rat uterus[J]. Biomaterials, 2014, 35(18): 4888-4900.
[7]
Huang S, Wu Y, Gao D, et al. Paracrine action of mesenchymal stromal cells delivered by microspheres contributes to cutaneous wound healing and prevents scar formation in mice[J]. Cytotherapy, 2015, 17(7): 922-931.
[8]
Li Z, Wang H, Yang B, et al. Three-dimensional graphene foams loaded with bone marrow derived mesenchymal stem cells promote skin wound healing with reduced scarring[J]. Mater Sci Eng C Mater Biol Appl, 2015, 57: 181-188.
[9]
Jeong JH. Adipose stem cells and skin repair[J]. Curr Stem Cell Res Ther, 2010, 5(2): 137-140.
[10]
Liu J, Ren J, Su L, et al. Human adipose tissue-derived stem cells inhibit the activity of keloid fibroblasts and fibrosis in a keloid model by paracrine signaling[J]. Burns, 2018, 44(2): 370-385.
[11]
Wang L, Hu L, Zhou X, et al. Exosomes secreted by human adipose mesenchymal stem cells promote scarless cutaneous repair by regulating extracellular matrix remodelling[J]. Sci Rep, 2017, 7(1): 13321.
[12]
Zonari A, Martins TM, Paula AC, et al. Polyhydroxybutyrate-co-hydroxyvalerate structures loaded with adipose stem cells promote skin healing with reduced scarring[J]. Acta Biomater, 2015, 17: 170-181.
[13]
Kocaefe C, Balci D, Hayta BB, et al. Reprogramming of human umbilical cord stromal mesenchymal stem cells for myogenic differentiation and muscle repair[J]. Stem Cell Rev Rep, 2010, 6(4): 512-522.
[14]
Peng J, Wang Y, Zhang L, et al. Human umbilical cord Wharton′s jelly-derived mesenchymal stem cells differentiate into a Schwann-cell phenotype and promote neurite outgrowth in vitro[J]. Brain Res Bull, 2011, 84(3): 235-243.
[15]
Bongso A, Fong CY. The therapeutic potential, challenges and future clinical directions of stem cells from the Wharton′s jelly of the human umbilical cord[J]. Stem Cell Rev Rep, 2013, 9(2): 226-240.
[16]
Anzalone R, Lo Iacono M, Corrao S, et al. New emerging potentials for human Wharton′s jelly mesenchymal stem cells: immunological features and hepatocyte-like differentiative capacity[J]. Stem Cells Dev, 2010, 19(4): 423-438.
[17]
Nekanti U, Rao VB, Bahirvani AG, et al. Long-term expansion and pluripotent marker array analysis of Wharton′s jelly-derived mesenchymal stem cells[J]. Stem Cells Dev, 2010, 19(1): 117-130.
[18]
Fan CG, Zhang QJ, Zhou JR. Therapeutic potentials of mesenchymal stem cells derived from human umbilical cord[J]. Stem Cell Rev Rep, 2011, 7(1): 195-207.
[19]
Batsali AK, Pontikoglou C, Koutroulakis D, et al. Differential expression of cell cycle and WNT pathway-related genes accounts for differences in the growth and differentiation potential of Wharton′s jelly and bone marrow-derived mesenchymal stem cells[J]. Stem Cell Res Ther, 2017, 8(1): 102.
[20]
Himal I, Goyal U, Ta M. Evaluating Wharton′s Jelly-Derived Mesenchymal Stem Cell′s Survival, Migration, and Expression of Wound Repair Markers under Conditions of Ischemia-Like Stress[J]. Stem Cells Int, 2017, 2017: 5259849.
[21]
Bakhtyar N, Jeschke MG, Herer E, et al. Exosomes from acellular Wharton′s jelly of the human umbilical cord promotes skin wound healing[J]. Stem Cell Res Ther, 2018, 9(1): 193.
[22]
Zheng Y, Zheng S, Fan X, et al. Amniotic Epithelial Cells Accelerate Diabetic Wound Healing by Modulating Inflammation and Promoting Neovascularization[J]. Stem Cells Int, 2018, 2018: 1082076.
[23]
Zhao B, Zhang Y, Han S, et al. Exosomes derived from human amniotic epithelial cells accelerate wound healing and inhibit scar formation[J]. J Mol Histol, 2017, 48(2): 121-132.
[24]
Zhao B, Liu JQ, Yang C, et al. Human amniotic epithelial cells attenuate TGF-β1-induced human dermal fibroblast transformation to myofibroblasts via TGF-β1/Smad3 pathway[J]. Cytotherapy, 2016, 18(8): 1012-1024.
[25]
Troy TC, Turksen K. Using high-throughput immunoblotting to identify proteins involved in the differentiation of ES cells along the hair follicle lineage in vitro[J]. Stem Cell Rev Rep, 2011, 7(4): 1041-1045.
[26]
Dreymueller D, Denecke B, Ludwig A, et al. Embryonic stem cell-derived M2-like macrophages delay cutaneous wound healing[J]. Wound Repair Regen, 2013, 21(1): 44-54.
[27]
Liu SP, Fu RH, Huang YC, et al. Induced pluripotent stem (iPS) cell research overview[J]. Cell Transplant, 2011, 20(1): 15-19.
[28]
Ren Y, Deng CL, Wan WD, et al. Suppressive effects of induced pluripotent stem cell-conditioned medium on in vitro hypertrophic scarring fibroblast activation[J]. Mol Med Rep, 2015, 11(4): 2471-2476.
[29]
Sorrell JM, Caplan AI. Topical delivery of mesenchymal stem cells and their function in wounds[J]. Stem Cell Res Ther, 2010, 1(4): 30.
[1] 何甘霖, 陈香侬, 李萍, 甄佳怡, 李京霞, 邹外一, 许多荣. 白血病异基因造血干细胞移植术后股骨坏死的影响因素[J/OL]. 中华关节外科杂志(电子版), 2024, 18(04): 450-456.
[2] 黄蓉, 梁自毓, 祁文瑾. NLRP3炎症小体在胎膜早破孕妇血清中的表达及其意义[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(05): 540-548.
[3] 刘昌玲, 张金丽, 张志, 李孝建, 汤文彬, 胡逸萍, 陈宾, 谢晓娜. 负载人脂肪干细胞外泌体的甲基丙烯酰化明胶水凝胶对人皮肤成纤维细胞增殖和迁移的影响[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 517-525.
[4] 雷子威, 凌萍, 沈纵, 魏晨如, 朱邦晖, 伍国胜, 孙瑜. 类器官肺损伤疾病模型构建及应用的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 531-535.
[5] 宋勤琴, 李双汝, 李林, 杜鹃, 刘继松. 间充质干细胞源性外泌体在改善病理性瘢痕中作用的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 550-553.
[6] 聂生军, 王钰, 王毅, 鲜小庆, 马生成. 复方倍他米松局部注射联合光动力疗法治疗小型瘢痕疙瘩的临床疗效观察[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(05): 404-410.
[7] 关丁丁, 李伟, 孔维诗, 包郁露, 孙瑜. 负载干细胞的光交联蛋白基水凝胶在组织工程中应用的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(05): 447-452.
[8] 傅红兴, 王植楷, 谢贵林, 蔡娟娟, 杨威, 严盛. 间充质干细胞促进胰岛移植效果的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 351-360.
[9] 王大伟, 陆雅斐, 皇甫少华, 陈玉婷, 陈澳, 江滨. 间充质干细胞通过调控免疫机制促进创面愈合的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 361-366.
[10] 刘文竹, 唐窈, 刘付臣. 诱导多潜能干细胞在神经肌肉疾病研究中的应用进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 367-373.
[11] 袁园园, 岳乐淇, 张华兴, 武艳, 李全海. 间充质干细胞在呼吸系统疾病模型中肺组织分布及治疗机制的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 374-381.
[12] 蔡艺丹, 方坚, 张志强, 陈莉, 张世安, 夏磊, 阮梅, 李东良. 经颈静脉肝内门体分流术对肝硬化门脉高压患者肠道菌群及肝功能的影响[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(05): 285-293.
[13] 王俊楠, 刘晔, 李若涵, 叶青松. 间充质干细胞调控肠脑轴治疗神经系统疾病的潜力[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(05): 313-319.
[14] 杜鑫, 刘霞霞, 张恬波, 张夏林, 杨林花, 张睿娟. AHNAK基因高表达与老年急性髓系白血病患者预后不良相关[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(04): 204-211.
[15] 王向前, 李清峰, 陈磊, 丘文丹, 姚志成, 李熠, 吴荣焕. 姜黄素抑制肝细胞癌索拉非尼耐药作用及其调控机制[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(05): 729-735.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?