切换至 "中华医学电子期刊资源库"

中华损伤与修复杂志(电子版) ›› 2020, Vol. 15 ›› Issue (01) : 67 -69. doi: 10.3877/cma.j.issn.1673-9450.2020.01.012

所属专题: 文献

综述

间充质干细胞源性外泌体在创面修复中的研究进展
王宏宇1, 刘玲英2, 巴特3,()   
  1. 1. 010059 呼和浩特,内蒙古医科大学;014010 包头,内蒙古医科大学第三附属医院烧伤科
    2. 100048 北京,解放军总医院第四医学中心烧伤整形科
    3. 014010 包头,内蒙古医科大学第三附属医院烧伤科
  • 收稿日期:2019-12-31 出版日期:2020-02-01
  • 通信作者: 巴特
  • 基金资助:
    国家自然科学基金青年项目(81701900); 解放军总医院科技创新苗圃基金项目(17KMM28); 解放军总医院扶持基金项目(2017FC-304M-CXYY-01); 解放军总医院转化医学项目(2017TM-029); 内蒙古自治区自然科学基金项目(2015MS0815); 内蒙古医科大学科技百万工程(联合)项目(YKD2016KJBW(LH)041)

Research progress of mesenchymal stem cell-derived exosomes in wound repair

Hongyu Wang1, Lingying Liu2, Te Ba3,()   

  1. 1. Inner Mongolia Medical University, Huhhot 010059, China;Department of Burns, Third Affiliated Hospital of Inner Mongolia Medical University, Baotou 014010, China
    2. Department of Burns and Plastic Surgery, Fourth Medical Center of PLA General Hospital, Beijing 100048, China
    3. Department of Burns, Third Affiliated Hospital of Inner Mongolia Medical University, Baotou 014010, China
  • Received:2019-12-31 Published:2020-02-01
  • Corresponding author: Te Ba
  • About author:
    Corresponding author: Ba Te, Email:
引用本文:

王宏宇, 刘玲英, 巴特. 间充质干细胞源性外泌体在创面修复中的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2020, 15(01): 67-69.

Hongyu Wang, Lingying Liu, Te Ba. Research progress of mesenchymal stem cell-derived exosomes in wound repair[J/OL]. Chinese Journal of Injury Repair and Wound Healing(Electronic Edition), 2020, 15(01): 67-69.

外泌体是由细胞通过旁分泌途径产生的一种直径在30~100 nm的囊泡结构。作为活细胞分泌的一种亚细胞成分,外泌体广泛参与细胞间的信息交流。多项研究表明,间充质干细胞源性外泌体调控创面修复的多个过程。它可以通过抑制创面过度炎症反应,促进创面血管新生,促进成纤维细胞增殖、迁移,以及抑制创面瘢痕形成来促进创面的修复与再生。本文就间充质干细胞源性外泌体在创面修复中的作用及相关机制进行综述,为外泌体在临床中的应用提供依据。

Exosomes are a vesicle structure with a diameter of about 30 to 100 nm produced by cells through the paracrine pathway. As a subcellular component secreted by living cells, exosomes are widely involved in the communication of information between cells. A number of studies have shown that exosomes derived from mesenchymal stem cells regulate multiple processes of wound repair. It can promote the repair and regeneration of wounds by inhibiting the excessive inflammation response of the wound, promoting the angiogenesis of the wound, promoting the proliferation and migration of fibroblasts, and inhibiting the formation of wound scars. This article reviews the role of mesenchymal stem cell-derived exosomes in wound repair and related mechanisms, and provides a basis for clinical application of exosomes.

[1]
Arya AK, Tripathi R, Kumar S, et al. Recent advances on the association of apoptosis in chronic non healing diabetic wound[J]. World J Diabetes, 2014, 5(6): 756-762.
[2]
Strong AL, Neumeister MW, Levi B. Stem Cells and Tissue Engineering:Regeneration of the Skin and Its Contents[J]. Clin Plast Surg, 2017, 44(3): 635-650.
[3]
Taverna S, Pucci M, Alessandro R. Extracellular vesicles: small bricks for tissue repair/regeneration[J]. Ann Transl Med, 2017, 5(4): 83.
[4]
Ghosh D, McGrail DJ, Dawson MR. TGF-β1 Pretreatment Improves the Function of Mesenchymal Stem Cells in the Wound Bed[J]. Front Cell Dev Biol, 2017, 5: 28.
[5]
Swaminathan M, Stafford-Smith M, Chertow GM, et al. Allogeneic mesenchymal stem cells for treatment of AKI after cardiac surgery[J]. J Am Soc Nephrol, 2018, 29(1): 260-267.
[6]
Zhu F, Chong Lee Shin OLS, Pei G, et al. Adipose-derived mesenchymal stem cells employed exosomes to attenuate AKI-CKD transition through tubular epithelial cell dependent Sox9 activation[J]. Oncotarget, 2017, 8(41): 70707-70726.
[7]
Hao ZC, Lu J, Wang SZ, et al. Stem cell-derived exosomes:A promising strategy for fracture healing[J]. Cell Prolif, 2017, 50(5).
[8]
Xu JY, Chen GH, Yang YJ. Exosomes:A Rising Star in Falling Hearts[J]. Front Physiol, 2017, 8: 494.
[9]
Zhang G, Liu Z, Ding H, et al. Tumor induces muscle wasting in mice through releasing extracellular Hsp70 and Hsp90[J]. 2017, 8(1): 589.
[10]
Chen W, Jiang J, Xia W, et al. Tumor-Related Exosomes Contribute to Tumor-Promoting Microenvironment:An Immunological Perspective[J]. J Immunol Res, 2017, 2017: 1073947.
[11]
Rani S, Ryan AE, Griffin MD, et al. Mesenchymal Stem Cell-derived Extracellular Vesicles: Toward Cell-free Therapeutic Applications[J]. Mol Ther, 2015, 23(5): 812-823.
[12]
Katsuda T, Kosaka N, Takeshita F, et al. The therapeutic potential of mesenchymal stem cell-derived extracellular vesicles[J]. Proteomics, 2013, 13(10-11): 1637-1653.
[13]
Than UTT, Guanzon D, Leavesley D, et al. Association of extracellular membrane vesicles with cutaneous wound healing[J]. Int J Mol Sci, 2017, 18(5). pii: 956.
[14]
Sugimoto MA, Sousa LP, Pinho V, et al. Resolution of inflammation: what controls its onset?[J]. Front Immunol, 2016, 7: 160.
[15]
Jónsdóttir B, Jaworowski A, San Miguel C, et al. IL-8 predicts early mortality in patients with acute hypercapnic respiratory failure treated with noninvasive positive pressure ventilation[J]. BMC Pulm Med, 2017, 17(1): 35.
[16]
Wang X, Gu H, Qin D, et al. Exosomal miR-223 contributes to mesenchymal stem cell-elicited cardioprotection in polymicrobial sepsis[J]. Sci Rep, 2015, 5: 13721.
[17]
Zhang B, Yin Y, Lai RC, et al. Mesenchymal stem cells secrete immunologically active exosomes[J]. Stem Cells Dev, 2014, 23(11): 1233-1244.
[18]
Huang JH, Yin XM, Xu Y et al. Systemic Administration of Exosomes Released from Mesenchymal Stromal Cells Attenuates Apoptosis,Inflammation,and Promotes Angiogenesis after Spinal Cord Injury in Rats[J]. J Neurotrauma, 2017, 34(24): 3388-3396.
[19]
Li X, Liu L, Yang J, et al. Exosome Derived From Human Umbilical Cord Mesenchymal Stem Cell Mediates MIR-181c Attenuating Burn-induced Excessive Inflammation[J]. EBioMedicine, 2016, 8: 72-82.
[20]
Todorova D, Simoncini S, Lacroix R, et al. Extracellular Vesicles in Angiogenesis[J]. Circ Res, 2017, 120(10): 1658-1673.
[21]
张静,易阳艳,阳水发,等. 脂肪干细胞来源外泌体对人脐静脉血管内皮细胞增殖、迁移及管样分化的影响[J]. 中国修复重建外科杂志,2018, 32(10): 1351-1357.
[22]
Liang X, Zhang L, Wang S, et al. Exosomes secreted by mesenchymal stem cells promote endothelial cell angiogenesis by transferring miR-125a[J]. J Cell Sci, 2016, 129(11): 2182-2189.
[23]
Li X, Chen C, Wei L, et al. Exosomes derived from endothelial progenitor cells attenuate vascular repair and accelerate reendothelializa tion by enhancing endothelial function[J]. Cytotherapy, 2016, 18(2): 253-262.
[24]
Gong M, Yu B, Wang J, et al. Mesenchymal stem cells release exosomes that transfer miRNAs to endothelial cells and promote angiogenesis[J]. Oncotarget, 2017, 8(28): 45200-45212.
[25]
Martin P. Wound healing--aiming for perfect skin regeneration[J]. Science, 1997, 276(5309): 75-81.
[26]
Kim YJ, Yoo SM, Park HH, et al. Exosomes derived from human umbilical cord blood mesenchymal stem cells stimulates rejuvenation of human skin[J]. Biochem Biophys Res Commun, 2017, 493(2): 1102-1108.
[27]
尹刚,刘蔡钺,林耀发,等. 脂肪干细胞来源外泌体对周围神经损伤后再生作用的实验研究[J]. 中国修复重建外科杂志,2018, 32(12): 1592-1596.
[28]
Zhang B, Wang M, Gong A, et al. HucMSC-Exosome Mediated-Wnt4 Signaling Is Required for Cutaneous Wound Healing[J]. Stem Cells, 2015, 33(7): 2158-2168.
[29]
Zhang B, Wu X, Zhang X, et al. Human umbilical cord mesenchymal stem cell exosomes enhance angiogenesis through the Wnt4/beta-catenin pathway[J]. Stem Cells Transl Med, 2015, 4(5): 513-522.
[30]
Ding J, Wang X, Chen B, et al. Exosomes Derived from Human Bone Marrow Mesenchymal Stem Cells Stimulated by Deferoxamine Accelerate Cutaneous Wound Healing by Promoting Angiogenesis[J]. Biomed Res Int, 2019, 2019: 9742765.
[31]
Guo SC, Tao SC, Yin WJ, et al. Exosomes derived from platelet rich plasma promote the re-epithelization of chronic cutaneous wounds via activation of YAP in a diabetic rat model[J]. Theranostics, 2017, 7(1): 81-96.
[32]
Heng MC. Wound healing in adult skin: aiming for perfect regeneration[J]. Int J Dermatol, 2011, 50(9): 1058-1066.
[33]
Wang L, Hu L, Zhou X, et al. Exosomes secreted by human adipose mesenchymal stem cells promote scarless cutaneous repair by regulating extracellular matrix remodelling[J]. Sci Rep, 2017, 7(1): 13321.
[34]
Fang S, Xu C, Zhang Y, et al. Umbilical Cord-Derived Mesenchymal Stem Cell-Derived Exosomal MicroRNAs Suppress Myofibroblast Differentiation by Inhibiting the Transforming Growth Factor-β/SMAD2 Pathway During Wound Healing[J]. Stem Cells Transl Med, 2016, 5(10): 1425-1439.
[35]
Kou X, Xu X, Chen C, et al. The Fas/Fap-1/Cav-1 complex regulates IL-1RA secretion in mesenchymal stem cells to accelerate wound healing[J]. Sci Transl Med, 2018, 10(432). pii: eaai8524.
[1] 宋勤琴, 李双汝, 李林, 杜鹃, 刘继松. 间充质干细胞源性外泌体在改善病理性瘢痕中作用的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 550-553.
[2] 王振宇, 张洪美, 荆琳, 何名江, 闫奇. 膝骨关节炎相关炎症因子与血浆代谢物间的因果关系及中介效应[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 467-473.
[3] 刘昌玲, 张金丽, 张志, 李孝建, 汤文彬, 胡逸萍, 陈宾, 谢晓娜. 负载人脂肪干细胞外泌体的甲基丙烯酰化明胶水凝胶对人皮肤成纤维细胞增殖和迁移的影响[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 517-525.
[4] 雷子威, 凌萍, 沈纵, 魏晨如, 朱邦晖, 伍国胜, 孙瑜. 类器官肺损伤疾病模型构建及应用的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 531-535.
[5] 张洁, 罗小霞, 余鸿. 系统性免疫炎症指数对急性胰腺炎患者并发器官功能损伤的预测价值[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 68-71.
[6] 唐梅, 周丽, 牛岑月, 周小童, 王倩. ICG荧光导航的腹腔镜肝切除术临床意义[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 655-658.
[7] 付成旺, 杨大刚, 王榕, 李福堂. 营养与炎症指标在可切除胰腺癌中的研究进展[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 704-708.
[8] 高娟, 徐建庆, 闫芳, 丁盛华, 刘霞. Rutkow、TAPP、TEP 手术治疗单侧腹股沟疝患者的临床疗效及对血清炎症因子水平的影响[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(06): 675-680.
[9] 孙璐, 蒋亚玲, 陈凌君. 布托啡诺对脑缺血再灌注损伤大鼠神经炎症和JAK2/STAT3信号通路的影响[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 344-350.
[10] 傅红兴, 王植楷, 谢贵林, 蔡娟娟, 杨威, 严盛. 间充质干细胞促进胰岛移植效果的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 351-360.
[11] 王大伟, 陆雅斐, 皇甫少华, 陈玉婷, 陈澳, 江滨. 间充质干细胞通过调控免疫机制促进创面愈合的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 361-366.
[12] 刘文竹, 唐窈, 刘付臣. 诱导多潜能干细胞在神经肌肉疾病研究中的应用进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 367-373.
[13] 袁园园, 岳乐淇, 张华兴, 武艳, 李全海. 间充质干细胞在呼吸系统疾病模型中肺组织分布及治疗机制的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 374-381.
[14] 袁雨涵, 杨盛力. 体液和组织蛋白质组学分析在肝癌早期分子诊断中的研究进展[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 883-888.
[15] 王湛, 李文坤, 杨奕, 徐芳, 周敏思, 苏珈仪, 王亚丹, 吴静. 炎症指标在早发性结直肠肿瘤中的应用[J/OL]. 中华临床医师杂志(电子版), 2024, 18(09): 802-810.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?