切换至 "中华医学电子期刊资源库"

中华损伤与修复杂志(电子版) ›› 2020, Vol. 15 ›› Issue (01) : 70 -72. doi: 10.3877/cma.j.issn.1673-9450.2020.01.013

所属专题: 文献

综述

硫化氢及硫化氢与细胞内钙离子关系的研究概况
沈丛墨1, 李毅2,()   
  1. 1. 810016 西宁,青海大学研究生院
    2. 810001 西宁,青海大学附属医院烧伤整形科
  • 收稿日期:2019-12-26 出版日期:2020-02-01
  • 通信作者: 李毅
  • 基金资助:
    国家自然科学基金(81660320)

General situation of research on hydrogen sulfide and its relation with intracellular calcium ions

Congmo Shen1, Yi Li2,()   

  1. 1. Graduate School of Qinghai University, Xining 810016, China
    2. Department of Burns and Plastic Surgery, Qinghai University Affiliated Hospital, Xining 810001, China
  • Received:2019-12-26 Published:2020-02-01
  • Corresponding author: Yi Li
  • About author:
    Corresponding author: Li Yi, Email:
引用本文:

沈丛墨, 李毅. 硫化氢及硫化氢与细胞内钙离子关系的研究概况[J]. 中华损伤与修复杂志(电子版), 2020, 15(01): 70-72.

Congmo Shen, Yi Li. General situation of research on hydrogen sulfide and its relation with intracellular calcium ions[J]. Chinese Journal of Injury Repair and Wound Healing(Electronic Edition), 2020, 15(01): 70-72.

硫化氢作为一种新型的气体信号分子,广泛参与机体各个系统的生理活动。硫化氢能够通过改变细胞内钙离子的浓度对细胞的功能状态产生一定影响。表皮细胞内存在胱硫醚-γ-裂解酶和胱硫醚-β-合酶体系,烧伤应激会抑制大鼠表皮细胞内硫化氢/胱硫酶-γ-裂解酶体系功能,使硫化氢生成减少。严重烧伤应激使多种脏器出现功能障碍,同时再灌注损伤促使机体产生大量氧自由基。各种酶类的激活、炎性因子的释放可加重细胞的水肿,在细胞内发生钙离子超载。因此研究硫化氢对于表皮细胞的作用机制,进一步探究硫化氢在表皮细胞内是否通过钙离子介导信号转导途径具有重要意义。本文对现有国内外关于硫化氢及硫化氢与细胞内钙离子关系的研究进行总结,旨在丰富硫化氢功能研究的理论基础,研究硫化氢与胞内钙离子浓度的相关性从而探讨钙离子是否在硫化氢胞内的信号通路中发挥一定的作用。

Hydrogen sulfide, as a new type of gas signaling molecule, is widely involved in the physiological activities of various systems of the body. Hydrogen sulfide can change the concentration of calcium ions in cells and have a certain effect on the functional state of cells. In epidermal cells, there are systems of cystethioether -γ-lyase and cystethioether-β-synthase. Burn stress can inhibit the function of hydrogen sulfide/cystethioether-γ-lyase system in rat epidermal cells and reduce hydrogen sulfide production. Severe burn stress caused the dysfunction of various organs. And the reperfusion injury caused the body to produce a large amount of oxygen free radicals at the same time. The activation of various enzymes and the release of inflammatory factors can aggravate the edema of cells, and calcium ion overload occurs in the cells. Therefore, it is of great significance to study the mechanism of action of hydrogen sulfide on epidermal cells, and to further explore whether hydrogen sulfide is mediated by calcium ions in epidermal cells. This paper summarizes the current domestic and foreign studies in order to enrich the theoretical basis of hydrogen sulfide function research, study the correlation between hydrogen sulfide and intracellular calcium ion concentration to explore calcium ions whether it plays a certain role in the intracellular signal pathway of hydrogen sulfide.

[1]
唐诚. 外源性硫化氢对烧伤血清干预表皮细胞H2S/CSE体系的影响[D]. 西宁:青海大学,2018.
[2]
李毅,王磊,王洪瑾. 硫化氢对烧伤大鼠创面巨噬细胞硫化氢/胱硫醚-γ-裂解酶体系的影响[J/CD]. 中华损伤与修复杂志(电子版), 2016, 11(4): 254-259.
[3]
宗群川,王涛. 新型气体信号分子H2S与骨质疏松的研究概况[J]. 中国骨质疏松杂志,2017, 23(10): 1396-1400.
[4]
Geng B, Yang J, Qi Y, et al. H2S generated by heart in rat and its effect on cardiac fuction[J]. Biochem Biophys Res Commun, 2004, 313(2): 362-368.
[5]
蔡文杰. 硫化氢对血管新生的作用及其机制[D]. 上海:复旦大学,2007.
[6]
刘姝媛. 硫化氢促血管新生机制研究——硫化氢靶分子VEGFR2的发现[D]. 上海:复旦大学,2012.
[7]
Xu K, Wu F, Xu K, et al. NaHS restores mitochondrial function and inhibits autophagy by activating the PI3K/Akt/mTOR signalling pathway to improve functional recovery after traumatic brain injury[J]. Chem Biol Interact, 2018, 286: 96-105.
[8]
张玉静,钟才高. 钙离子依赖的内质网应激在细胞凋亡中作用研究进展[J]. 中国职业医学,2017, 44(3): 365-370.
[9]
贺怀贞. 新型Ca2+荧光探针的设计、合成及胞内信使作用研究[D]. 西安:西北大学,2009.
[10]
李铭,邹颖,郭寒,等. 钙离子在内质网应激中的作用[J]. 动物医学进展,2018, 39(9): 112-116.
[11]
刘深泉,陈玉花,刘颖理. 细胞内钙离子形成的波形图案[J]. 北华大学学报(自然科学版), 2010, 11(1): 38-42.
[12]
张圣明. 钙离子载体A23187影响K562细胞硫化氢生成的实验研究[G]//中国解剖学会2012年年会论文文摘汇编. 重庆:2012: 1.
[13]
Elies J, Johnson E, Boyle JP, et al. H2S does not regulate proliferation via T-type Ca2+ channels[J]. Biochem Biophys Res Commun, 2015, 461(4): 659-664.
[14]
Elrod JW, Calvert JW, Morrison J, et al. Hydrogen sulfide attenuates myocardial ischemia-reperfusion injury by preservation of mitochondrial function[J]. Proc Natl Acad Sci U S A, 2007, 104(39): 15560-15565.
[15]
Avanzato D, Merlino A, Porrera S, et al. Role of calcium channels in the protective effect of hydrogen sulfide in rat cardiomyoblasts[J]. Cell Physiol Biochem, 2014, 33(4): 1205-1214.
[16]
Kuntz S, Poeck B, Strauss R. Visual Working Memory Requires Permissive and Instructive NO/cGMP Signaling at Presynapses in the Drosophila Central Brain[J]. Curr Biol, 2017, 27(5): 613-623.
[17]
Cao X, Cao L, Ding L, et al. A New Hope for a Devastating Disease: Hydrogen Sulfide in Parkinson's Disease[J]. Mol Neurobiol, 2018, 55(5): 3789-3799.
[18]
Liu SY, Li D, Zheng HY, et al. Hydrogen Sulfide Inhibits Chronic Unpredictable Mild Stress-Induced[J]. Int J Neuropsychopharmacol, 2017, 20(11): 867-876.
[19]
Zhang X, Bian JS. Hydrogen sulfide: a neuromodulator and neuroprotectant in the central nervous system[J]. ACS Chem Neurosci, 2014, 5(10): 876-883.
[20]
Chen X, Zhao X, Cai H, et al. The role of sodium hydrosulfide in attenuating the aging process via PI3K/AKT and CaMKKβ/AMPK pathways[J]. Redox Biol, 2017, 12: 987-1003.
[21]
Wang XL, Tian B, Huang Y, et al. Hydrogen sulfide-induced itch requires activation of Cav3.2 T-type calcium channel in mice[J]. Sci Rep, 2015, 5: 16768.
[22]
Terada Y, Fujimura M, Nishimura S, et al. Roles of Cav3.2 and TRPA1 channels targeted by hydrogen sulfide in pancreatic nociceptive processing in mice with or without acute pancreatitis[J]. J Neurosci Res, 2015, 93(2): 361-369.
[23]
Okubo K, Takahashi T, Sekiguchi F, et al. Inhibition of T-type calcium channels and hydrogen sulfide-forming enzyme reverses paclitaxel-evoked neuropathic hyperalgesia in rats[J]. Neuroscience, 2011, 188: 148-156.
[24]
Meng XM, Huang X, Zhang CM, et al. Hydrogen sulfide-induced enhancement of gastric fundus smooth muscle tone is mediated by voltage-dependent potassium and calcium channels in mice[J]. World J Gastroenterol, 2015, 21(16): 4840-4851.
[25]
李永波. 类固醇激素20-羟基蜕皮酮通过增加细胞内钙离子水平促进自噬向凋亡转化[D]. 济南:山东大学,2017.
[26]
李毅,王洪瑾,宋学芳,等. 硫化氢对严重烧伤大鼠重要脏器的影响[J]. 中华烧伤杂志,2011, 27(1): 54-58.
[27]
张海瑞,李毅,王洪瑾. 外源性硫化氢对大鼠深Ⅱ°烧伤创面巨噬细胞数量和微血管数量的影响[J]. 青海医学院学报,2013, 34(3): 177-181.
[1] 姚咏明. 如何精准评估烧伤脓毒症患者免疫状态[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 552-552.
[2] 涂家金, 廖武强, 刘金晶, 涂志鹏, 毛远桂. 严重烧伤患者鲍曼不动杆菌血流感染的危险因素及预后分析[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 491-497.
[3] 王成, 张慧君, 覃凤均, 陈辉. 网状植皮与ReCell表皮细胞种植在深Ⅱ度烧伤治疗中的疗效对比[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 498-502.
[4] 中华医学会烧伤外科学分会小儿烧伤学组. 儿童烧伤早期休克液体复苏专家共识(2023版)[J]. 中华损伤与修复杂志(电子版), 2023, 18(05): 371-376.
[5] 蔡柔妹, 曾洁梅, 黄伟丽, 谢文敏, 刘燕丹, 吴漫君, 蔡楚燕. 利用QC小组干预降低经烧伤创面股静脉置管导管相关性感染发生率的临床观察[J]. 中华损伤与修复杂志(电子版), 2023, 18(05): 399-404.
[6] 茹天峰, 戴浩楠, 袁林, 吴坤平, 谢卫国. 对肌肉超声在严重烧伤患者肌肉性能评估中应用的效果观察[J]. 中华损伤与修复杂志(电子版), 2023, 18(03): 197-203.
[7] 杨姣, 王玲, 古兰, 安慎通, 胡大海, 韩军涛. 对艾司氯胺酮在烧伤后瘢痕手术患儿静脉穿刺中的应用效果观察[J]. 中华损伤与修复杂志(电子版), 2023, 18(03): 210-216.
[8] 李峰, 黎君友, 冯书堂, 李国平, 杨洁蓉. 对GGTA1/β4GalNT2双基因敲除近交系五指山小型猪皮进行异种移植的效果观察[J]. 中华损伤与修复杂志(电子版), 2023, 18(03): 241-248.
[9] 刘晓彬, 朱峰. 危重烧伤患者肾功能亢进的药物治疗[J]. 中华损伤与修复杂志(电子版), 2023, 18(03): 260-264.
[10] 肖仕初. 微型皮移植的创新与应用[J]. 中华损伤与修复杂志(电子版), 2023, 18(02): 184-184.
[11] 李东杰, 贾晓明. 加强研究皮肤低温损伤机制以提高皮肤储存质量[J]. 中华损伤与修复杂志(电子版), 2023, 18(02): 93-97.
[12] 何泽亮, 李锦, 张程亮, 随振阳, 安亮恩, 刘玲玲, 姚媛媛, 张聚磊, 仇树林, 李晓东. 采用超声清创联合负压吸引疗法治疗深度烧伤溶痂创面的临床观察[J]. 中华损伤与修复杂志(电子版), 2023, 18(02): 123-127.
[13] 任国华, 杜晓晓, 洪善玲, 邵帅. 妊娠期高血压并发急性肾损伤患者血清白细胞介素-22、硫化氢及护骨素水平的变化与意义[J]. 中华肾病研究电子杂志, 2023, 12(03): 150-155.
[14] 王燕, 郭蕊, 王淑杰. 老年烧伤气管切开患者死亡风险诊断模型构建及对策分析[J]. 中华诊断学电子杂志, 2023, 11(04): 249-253.
[15] 高雷, 李全, 巴雅力嘎, 陈强, 侯智慧, 曹胜军, 巴特. 重度烧伤患者血小板外泌体对凝血功能调节作用的初步研究[J]. 中华卫生应急电子杂志, 2023, 09(03): 149-154.
阅读次数
全文


摘要