切换至 "中华医学电子期刊资源库"

中华损伤与修复杂志(电子版) ›› 2020, Vol. 15 ›› Issue (06) : 502 -505. doi: 10.3877/cma.j.issn.1673-9450.2020.06.015

所属专题: 文献

综述

干细胞来源外泌体在烧伤创面修复中的研究进展
符雪1, 李俊亮1, 徐洋1, 曹胜军1, 王凌峰1,()   
  1. 1. 014010 包头,内蒙古医科大学第三附属医院实验中心,烧伤科
  • 收稿日期:2020-10-08 出版日期:2020-12-01
  • 通信作者: 王凌峰
  • 基金资助:
    国家自然科学基金项目(81360293)

Research of stem cell-derived exosome in burn wound repair

Xue Fu1, Junliang Li1, Yang Xu1, Shengjun Cao1, Lingfeng Wang1,()   

  1. 1. Experiment Center, Department of Burns, Third Affiliated Hospital of Inner Mongolia Medical University, Baotou 014010, China
  • Received:2020-10-08 Published:2020-12-01
  • Corresponding author: Lingfeng Wang
  • About author:
    Corresponding author: Wang Lingfeng, Email:
引用本文:

符雪, 李俊亮, 徐洋, 曹胜军, 王凌峰. 干细胞来源外泌体在烧伤创面修复中的研究进展[J]. 中华损伤与修复杂志(电子版), 2020, 15(06): 502-505.

Xue Fu, Junliang Li, Yang Xu, Shengjun Cao, Lingfeng Wang. Research of stem cell-derived exosome in burn wound repair[J]. Chinese Journal of Injury Repair and Wound Healing(Electronic Edition), 2020, 15(06): 502-505.

外泌体通过与目标细胞融合,调控目标细胞的增殖、迁移和凋亡。其来源丰富,易于获取和储存,移植后不易诱发免疫排斥反应,在烧伤创面修复领域存在良好的应用前景。本文通过阐述外泌体生物特征、干细胞来源外泌体修复烧伤创面的机制及在创面修复领域的研究进展,以期为烧伤创面修复提供新思路。

Exosomes are able to regulate proliferation, migration, and apoptosis of target cells by fusing with them. Exosomes are abundant in source, easy to be acquired and stored, and not easy to induce immune rejection after transplantation. Therefore, exosomes have a good application prospect in the field of burn wound repair. In this paper, the biological characteristics of exosomes, the mechanism of stem cell derived-exosomes repairing burn wounds and the research progress in the field of wound repair are described, in order to provide new ideas for burns wound repair.

[1]
Nilsson J, Skog J, Nordstrand A, et al. Prostate cancer-derived urine Exosomes:a novel approach to biomarkers for prostate cancer[J]. Br J Cancer, 2009, 100(10): 1603-1607.
[2]
Pant S, Hilton H, Burczynski ME. The multifaceted Exosome:biogenesis,role in normal and aberrant cellular function,and frontiers for pharmacological and biomarker opportunities[J]. Biochem Pharmacol, 2012, 83(11): 1484-1494.
[3]
Pfeffer SR. Two Rabs for Exosome release[J]. Nat Cell Biol, 2010, 12(1): 3-4.
[4]
Rana S, Zöller M. Exosome target cell selection and the importance of exosomal tetraspanins:a hypothesis[J]. Biochem Soc Trans, 2011, 39(2): 559-562.
[5]
Vlassov AV, Magdaleno S, Setterquist R, et al. Exosomes:current knowledge of their composition, biological functions,and diagnostic and therapeutic potentials[J]. Biochim Biophys Acta, 2012, 1820(7): 940-948.
[6]
Simpson RJ, Jensen SS, Lim JW. Proteomic profiling of Exosomes:current perspectives[J]. Proteomics, 2008, 8(19): 4083-4099.
[7]
Kim HS, Choi DY, Yun SJ, et al. Proteomic analysis of microvesicles derived from human mesenchymal stem cells[J]. J Proteome Res, 2012, 11(2): 839-849.
[8]
Pan BT, Johnstone RM. Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: Selective externalization of the receptor[J]. Cell, 1983, 33(3): 967-978.
[9]
Wolfers J, Lozier A, Raposo G, et al. Tumor-derived exosomes are a source of shared tumor rejection antigens for CTL cross-priming[J]. Nat Med, 2001, 7(3): 297-303.
[10]
Lee TH, D′Asti E, Magnus N, et al. Microvesicles as mediators of intercellular communication in cancer-the emerging science of cellular 'debris’[J]. Semin Immunopathol, 2011, 33(5): 455-467.
[11]
Feng DQ, Huang B, Li J, et al. Selective miRNA expression profile in chronic myeloid leukemia K562 cell-derived exosomes[J]. Asian Pac J Cancer Prev, 2013, 14(12): 7501-7508.
[12]
Bang C, Thum T. Exosomes: New players in cell-cell communication[J]. Int J Biochem Cell Biol, 2012, 44(11): 2060-2064.
[13]
Camussi G, Deregibus MC, Bruno S, et al. Exosomes/microvesicles as a mechanism of cell-to-cell communication[J]. Kidney Int, 2010, 78(9): 838-848.
[14]
Ong SG, Lee WH, Huang M, et al. Cross talk of combined gene and cell therapy in ischemic heart disease:role of exosomal microRNA transfer[J]. Circulation, 2014, 130(11 Suppl 1): S60-S69.
[15]
Pironti G, Strachan RT, Abraham D, et al. Circulating Exosomes Induced by Cardiac Pressure Overload Contain Functional Angiotensin II Type 1 Receptors[J]. Circulation, 2015, 131(24): 2120-2130.
[16]
Ibrahim AG, Cheng K, Marbán E. Exosomes as critical agents of cardiac regeneration triggered by cell therapy[J]. Stem Cell Reports, 2014, 2(5): 606-619.
[17]
Khan M, Nickoloff E, Abramova T, et al. Embryonic stem cell-derived exosomes promote endogenous repair mechanisms and enhance cardiac function following myocardial infarction[J]. Circ Res, 2015, 117(1): 52-64.
[18]
Vicencio JM, Yellon DM, Sivaraman V, et al. Plasma exosomes protect the myocardium from ischemia-reperfusion injury[J]. J Am Coll Cardiol, 2015, 65(15): 1525-1536.
[19]
Bruno S, Grange C, Collino F, et al. Microvesicles derived from mesenchymal stem cells enhance survival in a lethal model of acute kidney injury[J]. PLoS One, 2012, 7(3): e33115.
[20]
Gatti S, Bruno S, Deregibus MC, et al. Microvesicles derived from human adult mesenchymal stem cells protect against ischaemia-reperfusion-induced acute and chronic kidney injury[J]. Nephrol Dial Transplant, 2011, 26(5): 1474-1483.
[21]
Singla DK. Stem cells and exosomes in cardiac repair[J]. Curr Opin Pharmacol, 2016, 27(5): 19-23.
[22]
Than UTT, Guanzon D, Leavesley D, et al. Association of extracellular membrane vesicles with cutaneous wound healing[J]. Int J Mol Sci, 2017, 18(5): 956.
[23]
Bruno S, Grange C, Deregibus MC, et al. Mesenchymal stem cell-derived microvesicles protect against acute tubular injury[J]. J Am Soc Nephrol, 2009, 20(5): 1053-1067.
[24]
Tetta C, Bruno S, Fonsato V, et al. The role of microvesicles in tissue repair[J]. Organogenesis, 2011, 7(2): 105-115.
[25]
Kosaka N, Izumi H, Sekine K, et al. MicroRNA as a new immune-regulatory agent in breast milk[J]. Silence, 2010, 1(1): 7.
[26]
Keller S, Rupp C, Stoeck A, et al. CD24 is a marker of Exosomes secreted into urine and amniotic fluid[J]. Kidney Int, 2007, 72(9): 1095-1102.
[27]
Lee C, Mitsialis SA, Aslam M, et al. Exosomes mediate the cytoprotective action of mesenchymal stromal cells on hypoxia-induced pulmonary hypertension[J]. Circulation, 2012, 126(22): 2601-2611.
[28]
Singer AJ, Clark RA. Cutaneous wound healing[J]. N Engl J Med, 1999, 341(10): 738-746.
[29]
Kou X, Xu X, Chen C, et al. The Fas/Fap-1/Cav-1 complex regulates IL-1RA secretion in mesenchymal stem cells to accelerate wound healing[J]. Sci Transl Med, 2018, 10(432): 24-25.
[30]
Kapustin AN, Chatrou ML, Drozdov I, et al. Vascular smooth muscle cell calciication is mediated by regulated exosome secretion[J]. Circ Res, 2015, 116(8): 1312-1323.
[31]
Haney MJ, Klyachko NL, Zhao Y, et al. Exosomes as drug delivery vehicles for Parkinson′s disease therapy[J]. J Control Release, 2015, 207: 18-30.
[32]
Ho DH, Yi S, Seo H, et al. Increased DJ-1 in urine exosome of Korean males with Parkinson′s disease[J]. Biomed Res Int, 2014, 2014: 704678.
[33]
Yuyama K, Sun H, Mitsutake S, et al. Sphingolipid-modulated exosome secretion promotes clearance of amyloid-β by microglia[J]. J Biol Chem, 2012, 287(14): 10977-10989.
[34]
Dinkins MB, Dasgupta S, Wang G, et al. Exosome reduction in vivo is associated with lower amyloid plaque load in the 5XFAD mouse model of Alzheimer′s disease[J]. Neurobiol Aging, 2014, 35(8): 1792-1800.
[35]
Zhang Y, Chopp M, Meng Y, et al. Effect of exosomes derived from multipluripotent mesenchymal stromal cells on functional recovery and neurovascular plasticity in rats after traumatic brain injury[J]. J Neurosurg, 2015, 122(4): 856-867.
[36]
Zhu YG, Feng XM, Abbott J, et al. Human mesenchymal stem cell microvesicles for treatment of Escherichia coli endotoxin-induced acute lung injury in mice[J]. Stem Cells, 2014, 32(1): 116-125.
[37]
Tan CY, Lai RC, Wong W, et al. Mesenchymal stem cell-derived exosomes promote hepatic regeneration in drug-induced liver injury models[J]. Stem Cell Res Ther, 2014, 5(3): 76.
[38]
Zhao B, Wu X, Zhang X, et al. Human umbilical cord mesenchymal stem cell exosomes enhance angiogenesis through the wnt4/beta-catenin pathway[J]. Stem Cells Transl Med, 2015, 4(5): 513-522.
[39]
Geiger A, Walker A, Nissen E. Human fibrocyte-derived exosomes accelerate wound healing in genetically diabetic mice[J]. Biochem Biophys Res Commun, 2015, 467(2): 303-309.
[40]
Zhi Wu, Dan He, Haiyan Li. Bioglass enhances the production of exosomes and improves their capability of promoting vascularization [J]. Bioactive Materials, 2020, 6(3): 823-835.
[41]
王江文,易阳艳,朱元正. MSCs来源外泌体在创面修复中的研究进展[J]. 中国修复重建外科杂志,2019, 33(5): 634-639.
[1] 王岩, 马剑雄, 郎爽, 董本超, 田爱现, 李岩, 孙磊, 靳洪震, 卢斌, 王颖, 柏豪豪, 马信龙. 外泌体在骨质疏松症诊疗中应用的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(05): 673-678.
[2] 卫杨文祥, 黄浩然, 刘予豪, 陈镇秋, 王海彬, 周驰. 股骨头坏死细胞治疗的前景和挑战[J]. 中华关节外科杂志(电子版), 2023, 17(05): 694-700.
[3] 代雯荣, 赵丽娟, 李智慧. 细胞外囊泡对胚胎着床影响的研究进展[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 616-620.
[4] 涂家金, 廖武强, 刘金晶, 涂志鹏, 毛远桂. 严重烧伤患者鲍曼不动杆菌血流感染的危险因素及预后分析[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 491-497.
[5] 王成, 张慧君, 覃凤均, 陈辉. 网状植皮与ReCell表皮细胞种植在深Ⅱ度烧伤治疗中的疗效对比[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 498-502.
[6] 韩李念, 王君. 放射性皮肤损伤治疗的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 533-537.
[7] 周子慧, 李恭驰, 李炳辉, 王知, 刘慧真, 王卉, 邹利军. 细胞自噬在创面愈合中作用的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 542-546.
[8] 姚咏明. 如何精准评估烧伤脓毒症患者免疫状态[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 552-552.
[9] 中华医学会烧伤外科学分会小儿烧伤学组. 儿童烧伤早期休克液体复苏专家共识(2023版)[J]. 中华损伤与修复杂志(电子版), 2023, 18(05): 371-376.
[10] 蔡柔妹, 曾洁梅, 黄伟丽, 谢文敏, 刘燕丹, 吴漫君, 蔡楚燕. 利用QC小组干预降低经烧伤创面股静脉置管导管相关性感染发生率的临床观察[J]. 中华损伤与修复杂志(电子版), 2023, 18(05): 399-404.
[11] 陈继秋, 朱世辉. 皮肤牵张装置的临床应用现状[J]. 中华损伤与修复杂志(电子版), 2023, 18(05): 451-453.
[12] 王楚风, 蒋安. 原发性肝癌的分子诊断[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 499-503.
[13] 杨蕴钊, 周诚, 石美涵, 赵静, 白雪源. 人羊水间充质干细胞对膜性肾病大鼠的治疗作用[J]. 中华肾病研究电子杂志, 2023, 12(04): 181-186.
[14] 宋艳琪, 任雪景, 王文娟, 韩秋霞, 续玥, 庄凯婷, 肖拓, 蔡广研. 间充质干细胞对顺铂诱导的小鼠急性肾损伤中细胞铁死亡的作用[J]. 中华肾病研究电子杂志, 2023, 12(04): 187-193.
[15] 梁宇同, 丁旭, 马国慧, 黄艳红. 间充质干细胞在宫腔粘连治疗中的研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(05): 596-599.
阅读次数
全文


摘要