切换至 "中华医学电子期刊资源库"

中华损伤与修复杂志(电子版) ›› 2021, Vol. 16 ›› Issue (01) : 71 -73. doi: 10.3877/cma.j.issn.1673-9450.2021.01.014

所属专题: 文献

综述

干细胞源性外泌体在损伤修复中作用的研究进展
崔凤瑞1, 李芳1, 张铁凝1, 李全1,()   
  1. 1. 014010 包头,内蒙古医科大学第三附属医院烧伤外科,内蒙古烧伤研究所
  • 收稿日期:2020-12-01 出版日期:2021-02-01
  • 通信作者: 李全
  • 基金资助:
    内蒙古自治区自然科学基金项目(2017MS0877,2020MS03022); 内蒙卫生计生委员会科研计划项目(201703157)

Research progress of stem cell-derived exosomes in injury repair

Fengrui Cui1, Fang Li1, Tiening Zhang1, Quan Li1,()   

  1. 1. Department of Burn surgery, Third Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia Institute of Burn Research, Baotou 014010, China
  • Received:2020-12-01 Published:2021-02-01
  • Corresponding author: Quan Li
引用本文:

崔凤瑞, 李芳, 张铁凝, 李全. 干细胞源性外泌体在损伤修复中作用的研究进展[J]. 中华损伤与修复杂志(电子版), 2021, 16(01): 71-73.

Fengrui Cui, Fang Li, Tiening Zhang, Quan Li. Research progress of stem cell-derived exosomes in injury repair[J]. Chinese Journal of Injury Repair and Wound Healing(Electronic Edition), 2021, 16(01): 71-73.

器官和组织发生损伤后,干细胞自身的增殖与分化在损伤修复中只发挥很少一部分作用,其修复作用主要是通过干细胞旁分泌功能发挥。外泌体是以胞吐方式分泌到细胞外的纳米级囊泡,靶细胞吸收外泌体后其自身功能会受到调节。干细胞源性外泌体通过传递蛋白质、脂质和微小RNA(miRNA)实现细胞间的通讯。干细胞源性外泌体的靶向性和生物学特性是由其携带的miRNA水平决定的。外泌体到达靶细胞并发生融合后,通过降解后再表达来改变靶细胞的基因表达。此外干细胞源性外泌体的RNA和蛋白质还会通过细胞归巢作用来限制损伤的发展。本文将对干细胞源性外泌体在创面愈合、关节损伤、骨折愈合和心脏损伤中的作用机制作一综述。

After organ and tissue injury, the proliferation and differentiation of stem cells themselves play only a small role in the repair of injury, and their repair function is mainly played by the paracrine function of stem cells.Exosomes are nano-scale vesicles that are secreted out of the cell by exocytosis. After target cells absorb exosomes, their own functions will be regulated. Stem cell-derived exosomes achieve intercellular communication by delivering proteins, lipids, and microRNA (miRNA). The targeting and biological characteristics of stem cell-derived exosomes are determined by the level of miRNA that they carry. After the exosomes reach the target cells and undergo fusion, they are degraded and then expressed to change the gene expression of the target cells. In addition, the RNA and protein of stem cell-derived exosomes can also limit the development of damage through cell homing. This article will review the mechanism of stem cell-derived exosomes in wound healing, joint injury, fracture healing and heart injury.

1
Gauthier SA, Pérez-González R, Sharma A, et al. Enhanced exosome secretion in down syndrome brain - a protective mechanism to alleviate neuronal endosomal abnormalities[J]. Acta Neuropathol Commun, 2017, 5(1): 65.
2
Mobergslien A, Sioud M. Exosome-derived miRNAs and cellular miRNAs activate innate immunity[J]. J Innate Immun, 2014, 6(1): 105-110.
3
Katsuda T, Tsuchiya R, Kosaka N, et al. Human adipose tissue-derived mesenchymal stem cells secrete functional neprilysin-bound exosomes[J]. Sci Rep, 2013, 3: 1197.
4
肖春红,冉曦,冉新泽. 干细胞治疗皮肤创伤的研究[J/CD]. 中华损伤与修复杂志(电子版), 2016, 11(5): 357-360.
5
Strong AL, Neumeister MW, Levi B. Stem cells and tissue engineering: Regeneration of the skin and its contents[J]. Clin Plast Surg, 2017, 44(3): 635-650.
6
曹胜军,王凌峰,巴特,等. 脂肪源性间充质干细胞的基础与临床应用研究进展[J]. 中华烧伤杂志,2017, 33(3): 184-189.
7
Zhang LX, Shen LL, Ge SH, et al. Systemic BMSC homing in the regeneration of pulp-like tissue and the enhancing effect of stromal cell-derived factor-1 on BMSC homing[J]. Int J Clin Exp Pathol, 2015, 8(9): 10261-10271.
8
Li T, Yan Y, Wang B, et al. Exosomes derived from human umbilical cord mesenchymal stem cells alleviate liver fibrosis[J]. Stem Cells Dev, 2013, 22(6): 845-854.
9
Rodriguez J, Boucher F, Lequeux C, et al. Intradermal injection of human adipose-derived stem cells accelerates skin wound healing in nude mice[J]. Stem Cell Res Ther, 2015, 6: 241.
10
Vériter S, André W, Aouassar N, et al. Human adipose-derived mesenchymal stem cells in cell therapy: Safety and feasibility in different " hospital exemption" clinical applications[J]. PLoS One, 2015, 10(10): e0139566.
11
李全,崔凤瑞,巴特,等. 脂肪干细胞来源的外泌体促进肉芽组织来源的成纤维细胞增殖的初步研究[J/CD]. 中华损伤与修复杂志(电子版), 2019, 14(2): 91-96.
12
Quesenberry PJ, Dooner MS, Aliotta JM. Stem cell plasticity revisited: The continuum marrow model and phenotypic changes mediated by microvesicles[J]. Exp Hematol, 2010, 38(7): 581-592.
13
Fang S, Xu C, Zhang Y, et al. Umbilical cord-derived mesenchymal stem cell-derived exosomal microRNAs suppress myofibroblast differentiation by inhibiting the transforming growth factor-beta/ Smad2 pathway during wound healing[J]. Stem Cells Transl Med, 2016, 5(10): 1425-1439.
14
Kang T, Jones TM, Naddell C, et al. Adipose-derived stem cells induce angiogenesis via microvesicle transport of miRNA-31[J]. Stem Cells Transl Med, 2016, 5(4): 440-450.
15
Hu L, Wang J, Zhou X, et al. Exosomes derived from human adipose mensenchymal stem cells accelerates cutaneous wound healing via optimizing the characteristics of fibroblasts[J]. Sci Rep, 2016, 6: 32993.
16
Toh WS, Lai RC, Hui JHP, et al. MSC exosome as a cell-free MSC therapy for cartilage regeneration: Implications for osteoarthritis treatment[J]. Semin Cell Dev Biol, 2017, 67: 56-64.
17
Nakamura Y, Inloes JB, Katagiri T, et al. Chondrocyte-specific microRNA-140 regulates endochondral bone development and targets Dnpep to modulate bone morphogenetic protein signaling[J]. Mol Cell Biol, 2011, 31(14): 3019-3028.
18
Li J, Huang J, Dai L, et al. MiR-146a, an IL-1beta responsive miRNA, induces vascular endothelial growth factor and chondrocyte apoptosis by targeting Smad4[J]. Arthritis Res Ther, 2012, 14(2): R75.
19
Jones SW, Watkins G, Le Good N, et al. The identification of differentially expressed microRNA in osteoarthritic tissue that modulate the production of TNF-alpha and MMP13[J]. Osteoarthritis Cartilage, 2009, 17(4): 464-472.
20
Lai RC, Yeo RW, Lim SK. Mesenchymal stem cell exosomes[J]. Semin Cell Dev Biol, 2015, 40: 82-88.
21
Yan S, Wang M, Zhao J, et al. MicroRNA-34a affects chondrocyte apoptosis and proliferation by targeting the SIRT1/p53 signaling pathway during the pathogenesis of osteoarthritis[J]. Int J Mol Med, 2016, 38(1): 201-209.
22
Zhang HG, Liu C, Su K, et al. A membrane form of TNF-alpha presented by exosomes delays T cell activation-induced cell death[J]. J Immunol, 2006, 176(12): 7385-7393.
23
Hao ZC, Lu J, Wang SZ, et al. Stem cell-derived exosomes: A promising strategy for fracture healing[J]. Cell Prolif, 2017, 50(5): e12359.
24
Liu X, Li Q, Niu X, et al. Exosomes secreted from human-induced pluripotent stem cell-derived mesenchymal stem cells prevent osteonecrosis of the femoral head by promoting angiogenesis[J]. Int J Biol Sci, 2017, 13(2): 232-244.
25
Lamplot JD, Qin J, Nan G, et al. BMP9 signaling in stem cell differentiation and osteogenesis[J]. Am J Stem Cells, 2013, 2(1): 1-21.
26
Martins M, Ribeiro D, Martins A, et al. Extracellular vesicles derived from osteogenically induced human bone marrow mesenchymal stem cells can modulate lineage commitment[J]. Stem Cell Reports, 2016, 6(3): 284-291.
27
Inose H, Ochi H, Kimura A, et al. A microRNA regulatory mechanism of osteoblast differentiation[J]. Proc Natl Acad Sci U S A, 2009, 106(49): 20794-20799.
28
Xu JF, Yang GH, Pan XH, et al. Altered microRNA expression profile in exosomes during osteogenic differentiation of human bone marrow-derived mesenchymal stem cells[J]. PLoS One, 2014, 9(12): e114627.
29
Furuta T, Miyaki S, Ishitobi H, et al. Mesenchymal stem cell-derived exosomes promote fracture healing in a mouse model[J]. Stem Cells Transl Med, 2016, 5(12): 1620-1630.
30
Bilal M, Haseeb A, Sher Khan MA. Intracoronary infusion of wharton′s jelly-derived mesenchymal stem cells: A novel treatment in patients of acute myocardial infarction[J]. J Pak Med Assoc, 2015, 65(12): 1369.
31
Pereg D, Cohen K, Mosseri M, et al. Incidence and expression of circulating cell free p53-related genes in acute myocardial infarction patients[J]. J Atheroscler Thromb, 2015, 22(9): 981-998.
32
Arslan F, Lai RC, Smeets MB, et al. Mesenchymal stem cell-derived exosomes increase ATP levels, decrease oxidative stress and activate PI3K/Akt pathway to enhance myocardial viability and prevent adverse remodeling after myocardial ischemia/reperfusion injury[J]. Stem Cell Res, 2013, 10(3): 301-312.
33
Suzuki T, Inoki K. Spatial regulation of the mTORC1 system in amino acids sensing pathway[J]. Acta Biochim Biophys Sin, 2011, 43(9): 671-679.
34
Barile L, Lionetti V, Cervio E, et al. Extracellular vesicles from human cardiac progenitor cells inhibit cardiomyocyte apoptosis and improve cardiac function after myocardial infarction[J]. Cardiovasc Res, 2014, 103(4): 530-541.
35
Nakazato K, Naganuma W, Ogawa K, et al. Attenuation of ischemic myocardial injury and dysfunction by cardiac fibroblast-derived factors[J]. Fukushima J Med Sci, 2010, 56(1): 1-16.
[1] 张中斌, 付琨朋, 朱凯, 张玉, 李华. 胫骨高位截骨术与富血小板血浆治疗膝骨关节炎的疗效[J]. 中华关节外科杂志(电子版), 2023, 17(05): 633-641.
[2] 王岩, 马剑雄, 郎爽, 董本超, 田爱现, 李岩, 孙磊, 靳洪震, 卢斌, 王颖, 柏豪豪, 马信龙. 外泌体在骨质疏松症诊疗中应用的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(05): 673-678.
[3] 卫杨文祥, 黄浩然, 刘予豪, 陈镇秋, 王海彬, 周驰. 股骨头坏死细胞治疗的前景和挑战[J]. 中华关节外科杂志(电子版), 2023, 17(05): 694-700.
[4] 罗晨, 宗开灿, 李世颖, 傅应亚. 微小RNA-199a-3p调控CD4T细胞表达参与肺炎支原体肺炎患儿免疫反应研究[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 569-574.
[5] 代雯荣, 赵丽娟, 李智慧. 细胞外囊泡对胚胎着床影响的研究进展[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 616-620.
[6] 韩李念, 王君. 放射性皮肤损伤治疗的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 533-537.
[7] 周子慧, 李恭驰, 李炳辉, 王知, 刘慧真, 王卉, 邹利军. 细胞自噬在创面愈合中作用的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 542-546.
[8] 陈继秋, 朱世辉. 皮肤牵张装置的临床应用现状[J]. 中华损伤与修复杂志(电子版), 2023, 18(05): 451-453.
[9] 全勇, 冉新泽, 胡梦佳, 陈芳, 陈乃成, 廖伟年, 陈默, 申明强, 陈石磊, 王崧, 王军平. 低氧习服在小鼠造血干细胞急性放射损伤修复中的作用观察[J]. 中华损伤与修复杂志(电子版), 2023, 18(04): 293-298.
[10] 贾蔓箐, 卞婧, 周业平. 对小剂量胰岛素局部注射促进脂肪干细胞移植成活及改善糖尿病创面愈合临床观察[J]. 中华损伤与修复杂志(电子版), 2023, 18(04): 312-316.
[11] 王楚风, 蒋安. 原发性肝癌的分子诊断[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 499-503.
[12] 刘卓, 段虎斌. 生物电相关疗法在神经损伤修复中的应用进展[J]. 中华神经创伤外科电子杂志, 2023, 09(05): 257-260.
[13] 袁媛, 赵良平, 刘智慧, 张丽萍, 谭丽梅, 閤梦琴. 子宫内膜癌组织中miR-25-3p、PTEN的表达及与病理参数的关系[J]. 中华临床医师杂志(电子版), 2023, 17(9): 1016-1020.
[14] 梁宇同, 丁旭, 马国慧, 黄艳红. 间充质干细胞在宫腔粘连治疗中的研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(05): 596-599.
[15] 刘感哲, 艾芬. MiRNA-210通过抑制HIF-1α的表达改善大鼠血管性认知功能障碍[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 489-494.
阅读次数
全文


摘要