1 |
Gauthier SA, Pérez-González R, Sharma A, et al. Enhanced exosome secretion in down syndrome brain - a protective mechanism to alleviate neuronal endosomal abnormalities[J]. Acta Neuropathol Commun, 2017, 5(1): 65.
|
2 |
Mobergslien A, Sioud M. Exosome-derived miRNAs and cellular miRNAs activate innate immunity[J]. J Innate Immun, 2014, 6(1): 105-110.
|
3 |
Katsuda T, Tsuchiya R, Kosaka N, et al. Human adipose tissue-derived mesenchymal stem cells secrete functional neprilysin-bound exosomes[J]. Sci Rep, 2013, 3: 1197.
|
4 |
肖春红,冉曦,冉新泽. 干细胞治疗皮肤创伤的研究[J/CD]. 中华损伤与修复杂志(电子版), 2016, 11(5): 357-360.
|
5 |
Strong AL, Neumeister MW, Levi B. Stem cells and tissue engineering: Regeneration of the skin and its contents[J]. Clin Plast Surg, 2017, 44(3): 635-650.
|
6 |
曹胜军,王凌峰,巴特,等. 脂肪源性间充质干细胞的基础与临床应用研究进展[J]. 中华烧伤杂志,2017, 33(3): 184-189.
|
7 |
Zhang LX, Shen LL, Ge SH, et al. Systemic BMSC homing in the regeneration of pulp-like tissue and the enhancing effect of stromal cell-derived factor-1 on BMSC homing[J]. Int J Clin Exp Pathol, 2015, 8(9): 10261-10271.
|
8 |
Li T, Yan Y, Wang B, et al. Exosomes derived from human umbilical cord mesenchymal stem cells alleviate liver fibrosis[J]. Stem Cells Dev, 2013, 22(6): 845-854.
|
9 |
Rodriguez J, Boucher F, Lequeux C, et al. Intradermal injection of human adipose-derived stem cells accelerates skin wound healing in nude mice[J]. Stem Cell Res Ther, 2015, 6: 241.
|
10 |
Vériter S, André W, Aouassar N, et al. Human adipose-derived mesenchymal stem cells in cell therapy: Safety and feasibility in different " hospital exemption" clinical applications[J]. PLoS One, 2015, 10(10): e0139566.
|
11 |
李全,崔凤瑞,巴特,等. 脂肪干细胞来源的外泌体促进肉芽组织来源的成纤维细胞增殖的初步研究[J/CD]. 中华损伤与修复杂志(电子版), 2019, 14(2): 91-96.
|
12 |
Quesenberry PJ, Dooner MS, Aliotta JM. Stem cell plasticity revisited: The continuum marrow model and phenotypic changes mediated by microvesicles[J]. Exp Hematol, 2010, 38(7): 581-592.
|
13 |
Fang S, Xu C, Zhang Y, et al. Umbilical cord-derived mesenchymal stem cell-derived exosomal microRNAs suppress myofibroblast differentiation by inhibiting the transforming growth factor-beta/ Smad2 pathway during wound healing[J]. Stem Cells Transl Med, 2016, 5(10): 1425-1439.
|
14 |
Kang T, Jones TM, Naddell C, et al. Adipose-derived stem cells induce angiogenesis via microvesicle transport of miRNA-31[J]. Stem Cells Transl Med, 2016, 5(4): 440-450.
|
15 |
Hu L, Wang J, Zhou X, et al. Exosomes derived from human adipose mensenchymal stem cells accelerates cutaneous wound healing via optimizing the characteristics of fibroblasts[J]. Sci Rep, 2016, 6: 32993.
|
16 |
Toh WS, Lai RC, Hui JHP, et al. MSC exosome as a cell-free MSC therapy for cartilage regeneration: Implications for osteoarthritis treatment[J]. Semin Cell Dev Biol, 2017, 67: 56-64.
|
17 |
Nakamura Y, Inloes JB, Katagiri T, et al. Chondrocyte-specific microRNA-140 regulates endochondral bone development and targets Dnpep to modulate bone morphogenetic protein signaling[J]. Mol Cell Biol, 2011, 31(14): 3019-3028.
|
18 |
Li J, Huang J, Dai L, et al. MiR-146a, an IL-1beta responsive miRNA, induces vascular endothelial growth factor and chondrocyte apoptosis by targeting Smad4[J]. Arthritis Res Ther, 2012, 14(2): R75.
|
19 |
Jones SW, Watkins G, Le Good N, et al. The identification of differentially expressed microRNA in osteoarthritic tissue that modulate the production of TNF-alpha and MMP13[J]. Osteoarthritis Cartilage, 2009, 17(4): 464-472.
|
20 |
Lai RC, Yeo RW, Lim SK. Mesenchymal stem cell exosomes[J]. Semin Cell Dev Biol, 2015, 40: 82-88.
|
21 |
Yan S, Wang M, Zhao J, et al. MicroRNA-34a affects chondrocyte apoptosis and proliferation by targeting the SIRT1/p53 signaling pathway during the pathogenesis of osteoarthritis[J]. Int J Mol Med, 2016, 38(1): 201-209.
|
22 |
Zhang HG, Liu C, Su K, et al. A membrane form of TNF-alpha presented by exosomes delays T cell activation-induced cell death[J]. J Immunol, 2006, 176(12): 7385-7393.
|
23 |
Hao ZC, Lu J, Wang SZ, et al. Stem cell-derived exosomes: A promising strategy for fracture healing[J]. Cell Prolif, 2017, 50(5): e12359.
|
24 |
Liu X, Li Q, Niu X, et al. Exosomes secreted from human-induced pluripotent stem cell-derived mesenchymal stem cells prevent osteonecrosis of the femoral head by promoting angiogenesis[J]. Int J Biol Sci, 2017, 13(2): 232-244.
|
25 |
Lamplot JD, Qin J, Nan G, et al. BMP9 signaling in stem cell differentiation and osteogenesis[J]. Am J Stem Cells, 2013, 2(1): 1-21.
|
26 |
Martins M, Ribeiro D, Martins A, et al. Extracellular vesicles derived from osteogenically induced human bone marrow mesenchymal stem cells can modulate lineage commitment[J]. Stem Cell Reports, 2016, 6(3): 284-291.
|
27 |
Inose H, Ochi H, Kimura A, et al. A microRNA regulatory mechanism of osteoblast differentiation[J]. Proc Natl Acad Sci U S A, 2009, 106(49): 20794-20799.
|
28 |
Xu JF, Yang GH, Pan XH, et al. Altered microRNA expression profile in exosomes during osteogenic differentiation of human bone marrow-derived mesenchymal stem cells[J]. PLoS One, 2014, 9(12): e114627.
|
29 |
Furuta T, Miyaki S, Ishitobi H, et al. Mesenchymal stem cell-derived exosomes promote fracture healing in a mouse model[J]. Stem Cells Transl Med, 2016, 5(12): 1620-1630.
|
30 |
Bilal M, Haseeb A, Sher Khan MA. Intracoronary infusion of wharton′s jelly-derived mesenchymal stem cells: A novel treatment in patients of acute myocardial infarction[J]. J Pak Med Assoc, 2015, 65(12): 1369.
|
31 |
Pereg D, Cohen K, Mosseri M, et al. Incidence and expression of circulating cell free p53-related genes in acute myocardial infarction patients[J]. J Atheroscler Thromb, 2015, 22(9): 981-998.
|
32 |
Arslan F, Lai RC, Smeets MB, et al. Mesenchymal stem cell-derived exosomes increase ATP levels, decrease oxidative stress and activate PI3K/Akt pathway to enhance myocardial viability and prevent adverse remodeling after myocardial ischemia/reperfusion injury[J]. Stem Cell Res, 2013, 10(3): 301-312.
|
33 |
Suzuki T, Inoki K. Spatial regulation of the mTORC1 system in amino acids sensing pathway[J]. Acta Biochim Biophys Sin, 2011, 43(9): 671-679.
|
34 |
Barile L, Lionetti V, Cervio E, et al. Extracellular vesicles from human cardiac progenitor cells inhibit cardiomyocyte apoptosis and improve cardiac function after myocardial infarction[J]. Cardiovasc Res, 2014, 103(4): 530-541.
|
35 |
Nakazato K, Naganuma W, Ogawa K, et al. Attenuation of ischemic myocardial injury and dysfunction by cardiac fibroblast-derived factors[J]. Fukushima J Med Sci, 2010, 56(1): 1-16.
|